
CAHIERS DE
TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

EUGENIA CHENG

NICK GURSKI
The periodic table of n-categories II:
degenerate tricategories
Cahiers de topologie et géométrie différentielle catégoriques, tome
52, no 2 (2011), p. 82-125
<http://www.numdam.org/item?id=CTGDC_2011__52_2_82_0>

© Andrée C. Ehresmann et les auteurs, 2011, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_2011__52_2_82_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


CAHIERS DE TOPOLOGIE ET 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Vol. LU-2 (2011)

THE PERIODIC TABLE OF n-CATEGORIES II: 

DEGENERATE TRICATEGORIES

by Eugenia CHENG and Nick GURSKI,

Abstract

Nous continuons le travail commencé en [5] en étudiant les 
tricatégories dégénérées et en les comparant avec les structures 
prédites par le tableau périodique des n-catégories. Pour les 
tricatégories trois fois dégénérées nous démontrons une triéquiv- 
alence avec la tricatégorie partiellement discrète des monoïdes 
commutatifs. Pour les tricatégories deux fois dégénérées nous 
expliquons comment on peut construire une catégorie monoïdale 
tressée d’une tricatégorie deux fois dégénérée donnée, mais nous 
démontrons que cette construction n’induit pas une comparai­
son simple entre BrMonCat et Tricat. Nous discutons com­
ment on peut itérer la construction des “icônes” pour produire un 
équivalence, mais nous espérons à la suite pour donner les détails. 
Finalement nous étudions les tricatégories dégénérées pour don­
ner la première définition de bicatégorie monoïdale complètement 
algébrique et la structure entière de tricatégorie de MonBicat.

We continue the project begun in [5] by examining degener­
ate tricategories and comparing them with the structures pre­
dicted by the Periodic table. For triply degenerate tricategories 
we exhibit a triequivalence with the partially discrete tricate­
gory of commutative monoids. For the doubly degenerate case 
we explain how to construct a braided monoidal category from 
a given doubly degenerate category, but show that this does not 
induce a straightforward comparison between BrMonCat and 
Tricat. We indicate how to iterate the icon construction to pro­
duce an equivalence, but leave the details to a sequel. Finally we 
study degenerate tricategories in order to give the first fully alge­
braic definition of monoidal bicategories and the full tricategory 
structure MonBicat.
Keywords: tricategory, degenerate tricategory, braided 
monoidal category, monoidal bicategory, icon.
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I n t r o d u c t i o n

This work is a continuation of the work begun in [5], studying the “Pe­
riodic Table” of n-categories proposed by Baez and Dolan [1]. The idea 
of the Periodic Table is to study “degenerate” n-categories, th a t is, n- 
categories in which the lowest dimensions are trivial. For small n this 
is supposed to yield well-known algebraic structures such as commuta­
tive monoids or braided monoidal categories; this helps us understand 
some specific part of the whole 77,-category via better-known algebraic 
structures, and also helps us to try  to predict what n-categories should 
look like for higher n.

More precisely, the idea of degeneracy is as follows. Consider an n- 
category in which the lowest non-trivial dimension is the kth  dimension, 
tha t is, there is only one cell of each dimension lower than k. We call 
this a “/¿-degenerate n-category” . We can then perform a “dimension 
shift” and consider the fc-cells of the old n-category to be 0-cells of a 
new (n — fc)-category, as shown in the schematic diagram in Figure 1.

This yields a “new” (n — fc)-category, but it will always have some

Figure 1: Dimension-shift for A;-fold degenerate n-categories

“o ld ” n -c a teg o ry  ----------------> “new ” (n — fc)-category

0-cells
1-cells

> trivial

(k — l)-cells J

A>cells ----------------> 0-cells

(k +  l)-cells ----------------> 1-cells

n-cells ----------------o (n — A;)-cells
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special extra structure: the fc-cells of the old n-category have k differ­
ent compositions defined on them (along bounding cells of each lower 
dimension), so the 0-cells of the “new” (n — A;)-category must have k 
multiplications defined on them, interacting via the interchange laws 
from the old n-category. Likewise every cell of higher dimension will 
have k “extra” multiplications defined on them as well as composition 
along bounding cells.

In [1], Baez and Dolan define a “fc-tuply monoidal (n — A;)-category” 
to be a fc-degenerate n-category, but a priori it should be an (n — 
A;)-category with k monoidal structures on it, interacting via coherent 
pseudo-invertible cells. A direct definition has not yet been made for 
general n and k. Balteanu et al [3] study a lax version of this, where the 
monoidal structures interact via non-invertible cells; this gives different 
structures, which we will discuss later.

The Periodic Table seeks to answer the question: exactly what sort 
of (n — fc)-category structure does the degeneracy process produce? Fig­
ure 2 shows the first few columns of the hypothesised Periodic Table: 
the (n, A;)th entry predicts what a /¿-degenerate n-category “is” . (In this 
table we follow Baez and Dolan and omit the word “weak” understand­
ing th a t all the n-categories in consideration are weak.)

One consequence of the present work is tha t although fc-tuply monoi­
dal (n — fc)-categories and /¿-degenerate n-categories are related, we 
see th a t the relationship is not straightforward. So in fact we need to 
consider three possible structures for each n and k :

•  fc-degenerate n-categories

•  fc-tuply monoidal (n — fc)-categories

•  the (n, fc)th entry of the Periodic Table.

In [5] we examined the top left hand corner of the table, tha t is, 
degenerate categories and degenerate bicategories. We found tha t we 
had to be careful about the exact meaning of “is” . The main problem 
is the presence of some unwanted extra structure in the “new” (n — k)- 
categories in the form of distinguished elements, arising from the struc­
ture constraints in the original n-categories — a specified fc-cell structure

- 84-



Figure 2: The hypothesised Periodic Table of n-categories
CHENG & GURSKI - THE PERIODICAL TABLE OF n-CATEGORIES

set category 2-category 3-category

monoid monoidal category monoidal 2-category monoidal 3-category
= category with = 2-category with = 3-category with = 4-category with

only one object only one object only one object only one object

commutative braided monoidal braided monoidal braided monoidal
monoid category 2-category 3-category
= 2-category with = 3-category with = 4-category with = 5-category with

only one object only one object only one object only one object
only one 1-cell only one 1-cell only one 1-cell only one 1-cell

H symmetric monoidal sylleptic monoidal sylleptic monoidal
category 2-category 3-category

= 3-category with = 4-category with = 5-category with = 6-category with
only one object only one object only one object only one object
only one 1-cell only one 1-cell only one 1-cell only one 1-cell
only one 2 -ce llo n ly  one 2-cell only one 2-ceÛ /̂/  only one 2-cell

ff ff symmetric monoidal ?2-category
= 4-category with = 5-category with = 6-category with = 7-category with

only one object only one object only one object only one object i
only one 1-cell only one 1-cell only one 1-cell only one 1-cell
only one 2-cell only one 2-cell only one 2-cell only one 2-cell
only one 3 -ce llo n ly  one 3-cell only one S-cell̂ /̂  only one 3-cell

f!  ̂ ff symmetric monoidal
3-category
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constraint in the “old” n-category will appear as a distinguished 0-cell 
in the “new” (n — fc)-category under the dimension-shift depicted in 
Figure 1. (For n = 2 this phenomenon is mentioned by Leinster in [17] 
and was further described in a talk [18].)

This problem becomes worse when considering functors, transforma­
tions, modifications, and so on, as we will discuss in the next section.

0 .1  T o t a l i t i e s  o f  s t r u c t u r e s

Broadly speaking we have two aims:

1. Object level: to find the structures predicted by the Periodic Table 
arising from degenerate tricategories.

2. Structure level: to make precise statements about the claims of 
the Periodic Table by examining the totalities of the structures 
involved, tha t is, not just the degenerate n-categories but also all 
the higher morphisms between them.

The point of (1) is tha t in practice we may simply want to know 
tha t a given doubly degenerate tricategory is a braided monoidal cate­
gory, or tha t a given functor is a braided monoidal functor, for example, 
without needing to know if the theory of doubly degenerate tricategories 
corresponds to the theory of braided monoidal categories. The motivat­
ing example discussed in [1] is the degenerate n-category of “manifolds 
with corners embedded in n-cubes” ; work towards constructing such a 
structure appears in [2] and [6].

In this work we see tha t although the tricategories and functors 
behave more-or-less as expected, the higher morphisms are much more 
general than the ones we want. Moreover, for (2) we see tha t the overall 
dimensions of the totalities do not match up. On the one hand we have 
fc-degenerate n-categories, which naturally organise themselves into an 
(n +  l)-category—the full sub-(n +  l)-category of n C a t; by contrast, 
the structure predicted by the Periodic Table is an (n — fc)-category 
with extra structure, and these organise themselves into an (n — k +  1)- 
category—the full sub-(n — k + l)-category of (n -k )C a t. In order to
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compare an (n +  l)-category with an (n — k + l)-category we either need 
to remove some dimensions from the former or add some to the latter.

The most obvious thing to do is add dimensions to the latter in 
the form of higher identity cells. However, we quickly see tha t this 
does not yield an equivalence of (n +  l)-categories because the (n +  
l)-cells of n C a t are far from trivial. Instead we try  to reduce the 
dimensions of n C a t. We cannot in general apply a simple truncation to 
j-dimensions as this will not result in a j-category. Besides, we would 
also like to restrict the remaining morphisms in order to achieve a better 
comparison with the structures given in the Periodic Table— a priori our 
morphisms are too general.

The most efficacious way to deal with this is to perform a construc­
tion analogous to the construction of “icons” [16]. The idea of icons is 
to organise bicategories into a bicategory rather than a tricategory, by 
discarding the modifications, selecting only those transformations that 
have all their components the identity, and altering their composition to 
ensure closure. This gives us a bicategory Icon; the full sub-bicategory 
whose 0-cells are the degenerate bicategories is then biequivalent to 
the 2-category of monoidal categories, monoidal functors and monoidal 
transformations. Note tha t this is not a sub-tricategory of B ic a t (but 
is implicitly a quotient of one). In [5] a somewhat ad hoc approach 
was taken to yield this structure; icons were introduced in [16] shortly 
afterwards, and give the right framework for this analysis, as shown by 
the following results.

For degenerate tricategories, a straightforward generalisation pro­
duces the tricategory M o n B ica t of monoidal bicategories, and higher 
monoidal cells. The idea is tha t we can organise tricategories into a tri­
category rather than a tetracategory, by discarding the perturbations, 
and selecting only those transformations and modifications whose com­
ponents on objects are the identity; as for icons, we must then alter the 
composition to ensure closure. The full sub-tricategory whose 0-cells 
are the degenerate tricategories can then be taken as a definition of the 
tricategory M o n B ica t. We explicitly construct this tricategory in some 
detail in Section 3. As in the case of icons, this tricategory does not 
arise as a full sub-tetracategory of T rica t, but is a quotient of one.

-87-



CHENG & GURSKI - THE PERIODICAL TABLE OF n-CATEGORIES

For doubly degenerate tricategories, we must iterate the icon con­
struction in order to give the correct 2-category B rM o n C a t of braided 
monoidal categories and braided monoidal higher cells. The idea is tha t 
given a monoidal bicategory K  we can consider categories weakly en­
riched in K . These might be expected to organise themselves into a 
tricategory; however the “icon construction” produces a bicategory of 
these, by restricting the transformations to those with identity com­
ponents. Starting with K  = C a t and applying this construction once 
gives the original bicategory Ico n  as described above; applying this 
construction again (that is, with K  = Icon) gives a bicategory whose 
objects are special kinds of tricategories. The full sub-bicategory whose
0-cells are the doubly degenerate (special kinds of) tricategories is then 
biequivalent to B rM o n C a t.

An added advantage of the icon construction is tha t it becomes pos­
sible to consider lax maps. This is not possible in general as whiskering 
fails to be coherent, but modifying the composition as for icons solves 
this problem. This opens up the possibility of studying lax A;-tuply 
monoidal structures such as the n-fold monoidal categories of [3]; we 
will discuss this in the sequel to this work.

Note tha t the structure produced by iterating the icon construction 
is not the same as th a t given in [8]. In th a t work, tricategories are 
organised into a bicategory by a modified icon construction th a t re­
stricts the transformations further, whereas iterating the standard icon 
construction also restricts the tricategories and functors.

To keep this paper to a reasonable length, we will defer the details 
of this construction to a sequel; furthermore, this generalisation of icons 
is of independent interest. In the present work we will just give a brief 
explanation of why a more naive approach fails.

0 .2  R e s u l t s

The main results of [5] can be summed up as follows. (Here we write “de­
generate” for “ 1-degenerate” , and “doubly degenerate” for “2-degenerate” , 
although in general we also use “degenerate” for any level of degener- 
acy.)

•  Comparing each degenerate category with the monoid formed by
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its 1-cells, we exhibit an equivalence of categories of these struc­
tures, but not a biequivalence of bicategories.

• Comparing each doubly degenerate bicategory with the commu­
tative monoid formed by its 2-cells, we exhibit a biequivalence of 
bicategories of these structures, but not an equivalence of cate­
gories or a triequivalence of tricategories.

•  Comparing each degenerate bicategory with the monoidal cate­
gory formed by its 1-, 2-, and 3-cells, we exhibit an equivalence of 
categories of these structures, but not a biequivalence of bicate­
gories or a triequivalence of tricategories.

In the present work we proceed to the next dimension and study 
degenerate tricategories. We use the fully algebraic definition of tricat­
egory given in [12]; this is based on the definition given in [9] which 
is not fully algebraic. The results can be summed up as follows, but 
cannot be stated quite so succinctly.

•  Comparing each triply degenerate tricategory with the commuta­
tive monoid formed by its 3-cells, we exhibit a triequivalence of 
tricategories of these structures, but not an equivalence of cate­
gories, a biequivalence of bicategories, or a tetra-equivalence of 
tetra-categories.

•  We show how doubly degenerate tricategories give rise to braided 
monoidal categories. The process of producing the braiding is 
complicated, and there is a great deal of “extra structure” on the 
resulting braided monoidal category. The disparity is even greater 
for functors, transformations and modifications.

•  A degenerate tricategory gives, by definition, a monoidal bicat­
egory formed by its 1-cells, 2-cells and 3-cells. The totality of 
monoidal bicategories has not previously been understood; here 
we consider the tricategory of tricategories described above, and 
use this to define a tricategory M o n B ica t of monoidal bicate­
gories, in which the higher-dimensional structure is not directly 
inherited from T rica t.
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The organisation of the paper is as follows; it is worth noting th a t 
each section is significant for different reasons, as we will point out. In 
Section 1 we examine triply degenerate tricategories; the significance of 
this section is th a t this is a “stable” case, and the results therefore have 
implications for the Stabilisation Hypothesis. In Section 2 we exam­
ine doubly degenerate tricategories. We show th a t these give braided 
monoidal categories w ith extra structure, and briefly discuss how a naive 
approach fails to handle this structure correctly.

In Section 3 we examine degenerate tricategories (i.e. 1-degenerate 
tricategories). The main purpose of this section is to give the first 
full definition of algebraic monoidal bicategories, together with their 
functors, transform ations and modifications, and to organise them  into 
a tricategory M o n B ic a t.

The case of doubly degenerate tricategories shows us th a t a A;-degen- 
erate n-category does not give rise to a fc-tuply monoidal structure on 
the associated (n — fc)-category in a straightforward way. In the sequel 
to  this paper we will see th a t iterating the icon construction produces 
special kinds of n-categories whose ¿-degenerate versions more natu ­
rally give rise to fc-tuply monoidal structures as required. The problem 
of turning a fc-tuply monoidal structure into the desired entry in the 
Periodic Table is then a separate issue.

1  T r i p l y  d e g e n e r a t e  t r i c a t e g o r i e s

In this section, we will study triply degenerate tricategories and the 
higher morphisms between them —functors, transform ations, modifica­
tions and perturbations. By the Periodic Table, triply degenerate tri­
categories are expected to be commutative monoids; by results of [5] we 
now expect them  to be commutative monoids equipped with some distin­
guished invertible elements arising from the structure constraints in the 
tricategory. The process of finding how many such elements there are is 
highly technical and not particularly enlightening; we simply examine 
the da ta  and axioms for a tricategory and calculate which constraints 
determine the others in the triply degenerate case. The im portance of 
these results is not in the exact number of distinguished invertible ele-
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ments, but rather in the fact tha t there are any at all, and more than 
in the bicategory case. We expect n-degenerate n-categories to have 
increasing numbers of distinguished invertible elements as n increases, 
and thus for the precise algebraic situation to become more and more 
intractible in a somewhat uninteresting way.

The other im portant part of this result examines whether the higher 
morphisms between triply degenerate tricategories rectify the situation— 
if any higher morphisms essentially ignore the distinguished invertible 
elements already specified, then we can still have a structure equivalent 
to commutative monoids. For doubly degenerate bicategories, this hap­
pened at the transformation level; for triply degenerate tricategories, 
this happens at the modification level. As expected from results of [5], 
the top level morphisms, tha t is the perturbations, destroy the possibil­
ity of an equivalence on the level of tetracategories.

Throughout this section we use results of [5] to characterise the 
(single) doubly degenerate hom-bicategory of a triply degenerate tricat­
egory.

1 .1  B a s i c  r e s u l t s

The overall results for triply degenerate tricategories are as follows; we 
will discuss the calculations th a t lead to these results in the following 
sections. We should also point out tha t the results in this section show 
tha t the higher-dimensional hypotheses we made in [5] are incorrect.

T h e o re m  1.1.

1. A triply degenerate tricategory T  is precisely a commutative monoid 
X t  together with eight distinguished invertible elements d , m, a, Z, r, 
u , 7r, /l.

2. Extending the above correspondence, a weak functor S  —> T  is 
precisely a monoid homomorphism F  : S  —► T  together with four  
distinguished invertible elements

3. Extending the above correspondence, a tritransformation a  : F  —► 
G is precisely the assertion that (F, m p) =  (G, m ^) together with 
distinguished invertible elements II and olt-
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4- Extending the above correspondence, a trimodification m  : a  => ¡3 
is precisely the assertion that a  and ¡3 are parallel.

5. Extending the above correspondence, a perturbation a : m  ^  n is 
precisely an element a in T .

1 .2  T r ic a t e g o r ie s

In this section we perform the calculations for the triply degenerate tri­
categories themselves. First we prove a useful lemma concerning adjoint 
equivalences. The data  for a tricategory involves the specification of 
various adjoint equivalences whose components are themselves adjoint 
equivalences in the doubly-degenerate hom-bicategories. We are thus 
interested in adjoint equivalences in doubly degenerate bicategories.

L em m a 1.2. Let B  be a doubly degenerate bicategory. Then an adjoint 
equivalence ( / , <7,77,6:) in B  consists of an invertible element rj G X b 
with e — r)~l .

Proof The triangle identities yield the following equation in any bicat­
egory.

77 * l g = a -1 o (1 g * £-1) o r “ 1 o lg

Using the fact th a t B  is doubly degenerate, we see th a t in the commu­
tative monoid X b (with unit w ritten a s l ) a = l , l ^  =  l, and r = I. We 
also note tha t * =  o, so the above equation reduces to the fact th a t 77 
and £ are inverse to each other. □

A priori, a triply degenerate tricategory T  consists of the following 
data, which we will need to try  to “reduce” :

•  a single object ★ ;

•  a doubly degenerate bicategory T(*, ★ ) ,  which will be considered 
as a commutative monoid with distinguished invertible element, 
(T ,dr);

•  a weak functor T(*,*) x T(*, ★ )  —► T ( ★ , ★ ) ,  which will be consid­
ered as a monoid homomorphism together with a distinguished 
invertible element, (® ,m r);
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• a weak functor I  : 1 —► T(*, ★) , which will be considered as the 
unique monoid homomorphism 1 —» T  together with a distin­
guished invertible element ut\

• an adjoint equivalence a : ® o ® x l ^ > ® o l x ® ,  which is the 
assertion that ® is strictly associative as a binary operation on T  
together with a distinguished invertible element a^;

• adjoint equivalences l : ® o / x l ^ l , r : ® o l x / = » l ,  which 
is the assertion that 1 is a unit for ® as a binary operation on T, 
together with distinguished invertible elements

• and four distinguished invertible elements 7Tt, /¿t5 Pt-

Thus we have a commutative monoid T, a monoid homomorphism

® : T x T  -> T,

and distinguished invertible elements Pt
The fact that (g) is a monoid homomorphism is expressed in the following 
equation, where we have written the monoid structure on T  as concate­
nation.

(ab) <g> (cd) = (a® c)(b® d)

The adjoint equivalences 1, r each imply that 1 is a unit for <g). Using 
this and the equation above, the Eckmann-Hilton argument immediately 
implies that a ®b = ab.

We will later need to use the naturality isomorphisms; it is simple to 
compute that that the naturality isomorphism for the transformation a 
is 1, and the naturality isomorphisms for I and r are both % .

There are three tricategory axioms that we must now check to find 
the dependence between distinguished invertible elements. Using the 
above, it is straightforward to check that the first tricategory axiom is 
vacuous, the second gives the equation

\ tX = d2171̂ ,

and the third gives the equation

pn = d2m

-93-

It , tt ',

dr, rriT, ut, ax, It , tt , ttt , Ht , At



CHENG & GURSKI - THE PERIODICAL TABLE OF n-CATEGORIES

Since A, p, 7T, and d are invertible,

A =  p =  7T~ld2m ^.

Thus A and p are determined by the remaining data, hence we have the 
result as summarised above.

1 .3  W e a k  f u n c t o r s

In this section we characterise weak functors between triply degenerate 
tricategories. A priori a weak functor F  : £  —► T  between triply degen­
erate tricategories consists of the following data, which we will try  to 
simplify:

• a weak functor F*5* : £ ( ★ ,  ★ )  —> T(*,*), which by the results of
[5] is a monoid homomorphism F  : S  —» T  together with a distin­
guished invertible element rrtp G T;

•  an adjoint equivalence x  : ° { F x F) => F o®, which is the trivial 
assertion tha t F(a  ® 6) =  F a  ®' F6 together with a distinguished 
invertible element \  £ ^5

• an adjoint equivalence  ̂ : / '  => F o i* , which is the trivial assertion 
tha t F I  =  1 together with a distinguished invertible element i G
T\

•  and invertible modifications a;, 7, and 5.

Thus we have a monoid homomorphism F  and six distinguished in­
vertible elements and It is straightforward to compute 
tha t the naturality isomorphism for x  is given by the invertible element 
F m s  • and the naturality isomorphism for 1 is given by mp- 

There are two axioms for weak functors for tricategories. In the case 
of triply degenerate tricategories, the first axiom reduces to the equation

u  . ttt  . F m | • ra^2 • F d |  • d^2 =  F its

thus by invertibility uj is determined by the rest of the data. The second 
axiom reduces to the equation

u  • 5 • 7 • ¡It * F m | • m ^2 • F rf | • cÊ 2 =  Fp^s-
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By the previous equation and the invertibility of all terms involved, 6 
and 7 determine each other once the rest of the data  is fixed, hence we 
have the result as summarised above.

1 .4  T r i t r a n s f o r m a t io n s

In this section we characterise tritransformations for triply degenerate 
tricategories. First we need the following lemma, which is a simple 
calculation.

L em m a 1.3. Let T  be a triply degenerate tricategory. Then the functor

T (l, /*) =  J* o -  : T(*, ★ )  - ►  T(*, *)

is given by the identity homomorphism together with the distinguished 
invertible element d~1m . Additionally, T ( l,i* )  =  T(J*, 1).

A priori, the data for a tritransformation a : F  —> G of triply 
degenerate tricategories consists of:

•  an adjoint equivalence ot : T ( l,/* )  o F  => T(/*, 1) o G, which 
consists of the assertion tha t F  = G as monoid homomorphisms 
together with a distinguished invertible element and

• distinguished invertible elements II and M.

It is easy to compute tha t the naturality isomorphism for the trans­
formation a  is nip1 mo- The first transformation axiom reduces to the 
equation

m G = m F ,

the second axiom reduces to the equation

TVHt It I f =  M nrt^Spa^^Q,

and the third to the equation

IISF = a ^1l^ 1d̂ rrn^fjr1MSG-

Thus we see tha t II determines M , and tha t the second and third ax­
ioms combine to yield no new information. So we have remaining distin­
guished invertible elements II and a r ,  giving the results as summarised 
above.
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1 .5  T r im o d i f i c a t io n s  a n d  p e r t u r b a t io n s

The data for a trimodification m  : a  => (3 consists of a single invertible 
element m  in T, and there are two axioms. The first is the equation

m 2 • n  • Gds =  II • F ds  • m

which reduces to m  = 1 since F  = G as monoid homomorphisms. The 
second axiom also reduces to m  =  1, thus there is a unique trimodifi­
cation between any two parallel transformations. Note tha t this means 
tha t any diagram of trimodifications in this setting commutes, a fact 
tha t will be useful later.

The data for a perturbation a : m  ^  n  consists of an element a  in 
T. The single axiom is vacuous so a perturbation is precisely an element 
a e T .

1 .6  O v e r a l l  s t r u c t u r e

We now compare the totalities of, on the one hand triply degenerate 
tricategories, and on the other hand commutative monoids. Recall tha t 
for the case of doubly degenerate bicategories we were able to attem pt 
comparisons at the level of categories, bicategories and tricategories of 
such, simply by truncating the full sub-tricategory of B ic a t to the re­
quired dimension. However, for triply degenerate tricategories we show 
tha t truncating the full sub-tetracategory of T ric a t does not yield a 
category or a bicategory; truncation does yield a tricategory, and this is 
the only level tha t yields an equivalence with commutative monoids. As 
in [5] we compare with the discrete jf-categories of commutative monoids 
obtained by adding higher identity cells to C M on.

Note tha t we do not actually prove tha t we have a tetracategory 
of triply degenerate tricategories; for the comparison, we simply prove 
tha t the obvious putative functor is not full and faithful &nd therefore 
cannot be an equivalence.

We have a 4-dimensional structure with
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0-cells: triply degenerate tricategories

1-cells: weak functors between them

2-cells: tritransformations between those

3-cells: trimodifications between those

4-cells: perturbations between those.

We write T ric a t (3) j for the truncation of this structure to a j-dimensional 
structure, and C M oiij for the j-category of commutative monoids and 
their morphisms (and higher identities where necessary).

There are obvious assignments

triply degenerate tricategory i—► underlying commutative monoid 
weak functor i—> underlying homomorphism 

of monoids

which, together with the unique maps on higher cells, form the under­
lying morphism on j-globular sets for putative functors

£j : T rica t (3)j —» C M onj.

T h e o re m  1.4.

1. T r ic a t(3) i is not a category.

2. T r ic a t(3)2 is not a bicategory.

3. T r ic a t(3)3 is a tricategory, and £3 defines a functor which is a 
triequivalence.

4 . £4 does not give a tetra-equivalence of tetra-categories.

The rest of this section will constitute a gradual proof of the various 
parts of this theorem. We begin by constructing the hom-bicategories 
for a tricategory structure on T r ic a t(3)3.

P ro p o s itio n  1.5. Let X , Y  be triply degenerate tricategories. Then 
there is a bicategory T ricat(3)3(X , Y ) with 0-cells weak functors F  : 
X  —y Y , 1-cells tritransformations a  : F  => G, and 2-cells trimodifica­
tions m  : a  ^  (3.
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Proof. To give the bicategory structure, we need only provide unit 1- 
cells and 1-cell composition since there is a unique trimodification be­
tween every pair of parallel tritransformations. It is simple to read off 
the required distinguished invertible elements from the corresponding 
formulae for composites of tritransformations and from the data for the 
unit tritransformation. □

R e m a rk  1.6. Note tha t composition of 1-cells in T ricat(3 )3 (X ,Y )  is 
strictly associative, but is not strictly unital. In particular, this shows 
tha t Tricat(3)2 is not a bicategory, proving Theorem 1.4, part 2.

We now construct the composition functor

® : T rica t(3 )3(y, Z) x T rica t(3 )3(X, Y )  T rica t(3 )3(X, Z).

for any triply degenerate tricategories X, Y, Z. We define the composite 
G F  of functors F  : X  —> Y , G : Y  —> Z  by the following formulae 
which can be read off directly from the formulae giving the composite 
of functors between tricategories.

txiqf =  mcGmp
Xgf = XG G(xFdy)dz2

IGF — £GG{iFdy)dz2
7g = d z2m%m2G'yGG{'YFdYrriY)

The formulae for the composite (3 ® a  of two transformations are 
derived similarly, and thus we have a weak functor ® for composition 
as required.

Similarly, there is a unit functor

Ix  : 1 —* T rica t(3 )3 (X, X ) 

whose value on the unique 0-cell is the identity functor on X .

R e m a rk  1.7. The formulae above make it obvious tha t ® is not strictly 
associative on 0-cells, and tha t the identity functor is not a strict unit for 
®. This shows tha t T rica t(3 )i is not a category, proving Theorem 1.4, 
part 1.
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Next we need to specify the required constraint adjoint equivalences. 
It is straightforward to find adjoint equivalences

>1: ® o 0  x 1 ^  0 o l  x ®
£  : ® o /  x 1 => 1 
i R : ® o l x / = > l

in the appropriate functor bicategories; the actual choice of adjoint 
equivalence is irrelevant, since there is a unique modification between 
any pair of parallel transformations.

Finally, to finish constructing the tricategory T ric a t (3)3 we must 
define invertible modifications 7r, /¿, A, p and check three axioms. How­
ever since there are unique trimodifications between parallel tritransfor­
mations, these modifications are uniquely determined and the axioms 
automatically hold.

We now examine the morphism £3 of 3-globular sets and show that 
it defines a functor

T rica t(3 )3 — ► C M o n 3;

in fact functoriality is trivial as C M o n 3 has discrete hom-2-categories. 
Furthermore we show it is an equivalence as follows. The functor is 
clearly surjective on objects, and the functor on hom-bicategories

T rica t(3  )3{ X ,Y )  — C M o n  3^ 3X ^ 3Y )

is easily seen to be surjective on objects as well. This functor on hom- 
bicategories is also a local equivalence since C M o n 3 is discrete at dimen­
sions two and three and T rica t(3 )3 has unique 3-cells between parallel
2-cells. This finishes the proof of Theorem 1.4, part 3.

For part 4, we observe th a t the morphism £4 of 4-globular sets is 
clearly not locally faithful on 4-cells. This finishes the proof of Theo­
rem 1.4.

2  D o u b l y  d e g e n e r a t e  t r i c a t e g o r i e s

We now compare doubly degenerate tricategories with braided monoidal 
categories. As described informally in the Introduction the compari­
son is not straightforward. Therefore we begin by directly listing the
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structure tha t we get on the monoidal category given by the (unique) 
degenerate hom-bicategory; this is simply a m atter of writing out the 
definitions as nothing simplifies in this case. Afterwards, we show how 
to extract a braided monoidal category from this structure. Essentially, 
all of the data listed in Section 2.2 can be thought of as “extra structure” 
tha t arises on the braided monoidal category we will construct.

We will begin with an informal overview of this whole section as we 
feel tha t for many readers the ideas will be at least as im portant as the 
technical details.

2 .1  O v e r v ie w

It is widely accepted tha t a doubly degenerate bicategory “is” a commu­
tative monoid, and tha t a doubly degenerate tricategory “is” a braided 
monoidal category. Moreover, it is widely accepted tha t the proof of the 
bicategory case is “simply” a question of applying the Eckmann-Hilton 
argument to the multiplications given by horizontal and vertical com­
position, and tha t the tricategory result is proved by doing this process 
up to isomorphism. In this section we give an informal overview of the 
extent to which this is and is not the case. We believe tha t this is im­
portant because the disparity will increase as dimensions increase, and 
because this issue seems to lie at the heart of various critical phenomena 
in higher-dimensional category theory, such as:

1. why we do not expect every weak n-category to be equivalent to 
a strict one

2. why weak n-categories are expected to model homotopy n-types 
while strict ones are known not to do so [10, 1, 22]

3. why some diagrams of constraints in a tricategory do not in general 
commute, and why these do not arise in free tricategories [12]

4. why strict computads do not form a presheaf category [19]

5. why the existing definitions of n-categories based on reflexive glob­
ular sets fail to be fully weak [7]
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6. why a notion of semistrict n-category with weak units but strict 
interchange may be weak enough to model homotopy n-types and 
give coherence results [21, 15, 13].

A doubly degenerate bicategory B  has only one 0-cell ★  and only one
1-cell 7*. To show th a t the 2-cells form a commutative monoid we first 
use the fact th a t they are the morphisms of the single hom-category 
# ( ★ ,* ) ;  since this hom-category has only one object /* we know it is a 
monoid, with multiplication given by vertical composition of 2-cells. To 
show tha t it is a commutative monoid, we apply the Eckmann-Hilton 
argument to the two multiplications defined on the set of 2-cells: vertical 
composition and horizontal composition.

Recall tha t the Eckmann-Hilton argument says: Let A  be a set with 
two binary operations * and o such tha t

1. * and o are unital with the same unit

2. * and o distribute over each other i.e. Va, i>, c, d £ A

(a * b) o (c * d) = (a o c) * (b o d).

Then * and o are in fact equal and this operation is commutative.
However, in our case a difficulty arises because horizontal composi­

tion in a bicategory is not strictly unital. The situation is rescued by the 
fact tha t 11 = rj in any bicategory. This, together with the naturality 
of I and r, enables us to prove, albeit laboriously, tha t horizontal com­
position is strictly unital for 2-cells in a doubly degenerate bicategory, 
and moreover tha t the vertical 2-cell identity also acts as a horizontal 
identity. Thus we can in fact apply the Eckmann-Hilton argument.

Generalising this argument to doubly degenerate tricategories di­
rectly is tricky. There are various candidates for a “categorified Eckmann- 
Hilton argument” provided by Joyal and Street [14, 4]. The idea is to 
replace all the equalities in the argument by isomorphisms, but as usual 
we need to take some care over specifying these isomorphisms rather 
than merely asserting their existence; see Definition 2.8.

However, when we try and apply this result to a doubly degenerate 
tricategory we have some further difficulties: composition along bound­
ing 0-cells is difficult to manipulate as a multiplication, because we can­
not use coherence results for tricategories. Coherence for tricategories
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[11] tells us that “every diagram of constraints in a free tricategory (on 
a category-enriched 2-graph) commutes” . In particular this means that 
if we need to use cells that do not arise in a free tricategory, then we 
cannot use coherence results to check axioms. This is the case if we 
attempt to build a multiplication out of composition along 0-cells; we 
have to use the fact that we only have one 1-cell in our tricategory, 
and therefore that various composites of 1-cells are all “accidentally” 
the same. This comes down to the fact that the free tricategory on a 
doubly degenerate tricategory is not itself doubly degenerate; it is not 
clear how to construct a “free doubly degenerate tricategory”.

However, to rectify this situation we can look at an alternative way 
of proving the result for degenerate bicategories that does not make such 
identifications. We still use the Eckmann-Hilton argument but instead 
of attempting to apply it using horizontal composition of 2-cells, we 
define a new binary operation on 2-cells that is derived from horizontal 
composition as follows:

¡3 0  a = r o (p * a) o Z-1

(Essentially this is what we used to prove that horizontal composition 
is strictly unital in the previous argument.) Unlike horizontal composi­
tion, this operation does “categorify correctly”, that is, given a doubly 
degenerate tricategory we can define a multiplication on its associated 
monoidal category by using the above formula (this is the content of 
Theorem 2.10), and we can manipulate it using coherence for tricate­
gories.

To extract a braiding from this we then have to follow the steps of 
the Eckmann-Hilton argument and keep track of all the isomorphisms 
used; this is Proposition 2.9.

We see that we use instances of the following cells, in a lengthy 
composite:

• naturality constraints for Z/ and 77

• constraints for weak interchange of 2-cells

• isomorphisms showing that lj = rj
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This indicates why a theory with weak units but strict interchange 
can still produce braidings that are not necessarily symmetries—the 
braiding is built from all of the above structure contraints, so if any 
one of them is weak then braidings can still arise. As mentioned above 
we do, however, get a certain amount of extra structure on the braided 
monoidal category that arises; an iterated icon construction enables us 
to rectify this situation completely, but we defer the details of this to 
the sequel.

We will also show that every braided monoidal category gives rise 
to a doubly degenerate tricategory in a canonical way, and moreover, 
that every doubly degenerate tricategory is triequivalent to one arising 
in this way.

2 .2  B a s ic  r e su lts

Many of the diagrams needed in the theorems below are excessively 
large, and since they are all obtained by simply rewriting the appropriate 
definitions from [11] using the results of [5], we have omitted them.

Just as we began the previous section by characterising adjoints in 
doubly degenerate bicategories, we begin this section by recalling the 
definition of “dual pair” of objects in a monoidal category, since this 
characterises adjoints for 1-cells in degenerate bicategories; eventually 
we will of course be interested in adjoint equivalences, not just adjoints.

Definition 2.1. Let M  be a monoidal category. Then a dual pair in M  
consists of a pair of objects X , X ' together with morphisms e : X ® X ' —>
I,rj : I  —► X '® X  satisfying the two equations below, where all unmarked 
isomorphisms are given by coherence isomorphisms.

X — * X (X  X ) S (X X -)X  IX

-103-



CHENG & GURSKI - THE PERIODICAL TABLE OF n-CATEGORIES

X- - ^ ( X  X ) X  ^ X  ( X X  ) 1̂ X - I

---- “

T h e o re m  2.2. A doubly degenerate tricategory B  is precisely

•  a monoidal category (£?, ®, [/, a, /, r) given by the single degenerate 
hom-bicategory;

•  a monoidal functor : B  x B  —> B  from composition;

•  a monoid I  in B  and an isomorphism I  = U as monoids in B; 
this comes from the functor for units I  — > # (* , ★ )

•  a dual pair (A, A ,£ a ,Va ) with £a ,Va both invertible, and natural 
isomorphisms

Z )) ^ { x M { Y m Z ) ^ ® A  

A  ® ( x  B (Y B Z )) “  ((X  Z ))  ® A ;

subject to diagrams omitted as discussed above.

•  a dual pair (L, L ,S l , t]l ) with with both invertible, and nat­
ural isomorphisms

L ® ( I ^ X ) ^ X ® L  
L  ® X  = (IM  X )  ® L

subject to diagrams omitted as discussed above,

•  a dual pair (i?, R ',£ r , t]r ) with with £l , Vl both invertible, and nat­
ural isomorphisms

R ® ( X M I ) ^ X ® R  
R  ® X ^  (XEI J ) ® # ;

subject to diagrams omitted as discussed above,
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all subject to three axioms omitted as discussed above.

R em ark 2.3. It is important to note that £3 does not a priori give 
a monoidal structure on the category B\ the obstruction is that lax 
transformations between weak functors of degenerate tricategories are 
more general than monoidal transformations between the associated 
monoidal functors (see [5]). As noted in Section 2.1 it may be possible 
to prove that EH is a valid monoidal structure, but since we cannot use 
coherence for tricategories to help us, the proof is not very evident. 
Thus to extract a braiding from all this structure, we will not simply 
apply an Eckmann-Hilton-style argument to ® and E3 (see Section 2.3).

We now describe functors, transformations, modifications and per­
turbations in a similar spirit.

Theorem  2.4. A weak functor F  : B  —> B f between doubly degenerate 
tricategories is precisely

• a monoidal functor F : B  —► B ';

• a dual pair (X iX \£x^Vx) *71 w^  £x’>r1x both invertible, and 
natural isomorphisms

X <8/ {FX  B' FY) ^  F (X  ® Y )® 'X 
X ®' F (X  H Y) ^  (F X  B' FY) ®' x ‘

subject to diagrams omitted as discussed above,

• and isomorphisms

^([/ B A) 0  (A ® (A B t/))^  ^  A® A

^(Cf H L) <g> (A 0  (fi' B *7))^ £  [/

L 0 Í /  ^  L®  A 

U M R  ^  A®  R'\
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•  a dual pair (¿,¿,£¿,77*,) with eL,rjL both invertible, and natural iso­
morphisms

all subject to axioms omitted as discussed above.

T h e o re m  2.5. A weak transformation a  : F  —► G in the above setting 
is precisely

•  a dual pair (a ^ a \e a,r]a) with ea,r]a both invertible, and natural 
isomorphisms

1 ®' I ' ^  F I  ®' l 
C ®' F I  ^  / '  ®' ¿

subject to diagrams omitted as discussed above,

• and isomorphisms

FA  ®' (x  ®' (x S ' £/')) ^  X ®' ((U ' &  X) ®' A )

F L  ®' (x  <g>' (t W £/')) 3* V  

FR' á X ®' f  (£/' Kl' ¿) ®' (i?')  ̂;

a  ®' (£/' S' F X ) “  (GX B' £/') ®' a 
a' ®' (G X  B' U') ^ ([/' S' FX) ®' a

subject to diagrams omitted as discussed above,

•  and isomorphisms

(Xg ®' U') ®' Í {A 'y ®' ((£/' El' a) ®' (A' ®# (a £/'))) j

â  a <g>' ((£/' B ' x f ) ®' A1)

a ((£/' S ' l f ) ®' ( # ) ')  £* (to S ' [/') ®' (£,')•;

all subject to three axioms omitted as discussed above.
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The analogous result for lax transformations should be obvious, with 
dual pair replaced by distinguished object since in the lax case we have 
a noninvertible morphism instead of an adjoint equivalence.

T h e o re m  2.6. A modification m  : a  => ¡3 is precisely

•  an object m  G B ' and

•  an isomorphism

([/' H m) ®' a  2* (3 <8/ (m H' U') 

subject to two axioms omitted as discussed above.

T h e o re m  2.7. A perturbation a  : m  ^  n is precisely a morphism  
a  : m  —► n m S ' satisfying the single axiom omitted as discussed above.

2 .3  B r a id in g s

In this section we show that the underlying monoidal category of a 
doubly degenerate tricategory does have a braiding on it. To show this, 
we use the fact tha t to give a braiding for a monoidal structure, it suffices 
to give the structure of a multiplication on the monoidal category in 
question. We give the relevant definitions below; for additional details, 
see [14].

D efin itio n  2.8. Let M  be a monoidal category, and equip M  x M  with 
the componentwise monoidal structure. Then a multiplication (p on M  
consists of a monoidal functor tp : M  x M  —> M  and invertible monoidal 
transformations p : (po(idxl) => ¿d, A : ipo(Ix id) => id where I  : 1 —► M  
is the canonical monoidal functor whose value on the single object is the 
unit of M  and whose structure constraints are given by unique coherence 
isomorphisms.

The following result, due to Joyal and Street [14], says tha t a mul­
tiplication naturally gives rise to a braiding.
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P ro p o s itio n  2.9. Let M  be a monoidal category with multiplication <p. 
Then M  is braided with braiding given by the composite below.

ab 0(7, a)0(6, I)  4>{Ib, a l)  0(6, a) 

<Mr~V~1> 0(67, la )  —^  0(6, 7)0(7, a) ba

We will use this construction to provide a braiding for the monoidal 
category associated to a doubly degenerate tricategory. As can be seen 
from the above formula, this braiding is “natural” but not exactly “sim­
ple” .

T h e o re m  2.10. Let B  be a doubly degenerate tricategory, and also 
denote by B  the monoidal category associated to the single (degenerate) 
hom-bicategory. Then there is a multiplication on B  with

<p(X, Y ) = R ® ( ( X ® Y ) ®  L ) .

This result is a lengthy but routine 2-dimensional diagram chase 
tha t requires repeated use of the coherence theorm for tricategories as 
well as coherence for bicategories and functors. We thus omit it, and 
only record the following crucial corollary.

C o ro lla ry  2.11. Let B  be a doubly degenerate tricategory, and also 
denote by B  the monoidal category associated to the single (degenerate) 
hom-bicategory. Then B  is a braided monoidal category.

The situation for functors is similar, with braided monoidal functors 
arising from “multiplicative” functors as follows.

D efin itio n  2.12. Let (M, tp) and ( N ^ )  be monoidal categories equip­
ped with multiplications. A multiplicative functor F  : (M, (p) —► (TV, tf;) 
consists of a monoidal functor F  : M  N  and an invertible monoidal 
transformation x : ^ o ( F x F ) = > F o ^  satisfying unit axioms.

P ro p o s itio n  2.13. Let (M, <p) and (TV, ip) be monoidal categories equipped 
with multiplications, and let F  : (M, <p) —* be a multiplica­
tive functor between them. Then the underlying monoidal functor F  
is braided when M  and N  are equipped with the braidings induced by 
their respective multiplications.
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The following theorem says tha t functors between doubly degenerate 
tricategories do give rise to multiplicative functors, and as a corollary, 
braided monoidal functors. The proof of the theorem is another long 
but routine calculation involving coherence.

T h e o re m  2.14. Let B  and B 7 be doubly degenerate tricategories, and 
let F  : B  —> B ' be a functor between them. Then the monoidal functor F  
between the monoidal categories B  and B f can be given the structure of 
a multiplicative functor when we equip B  and B f with the multiplications 
of Theorem 2.10.

C o ro lla ry  2.15. Let B  and B ' be doubly degenerate tricategories, and 
let F  : B  —► B r be a functor between them. Then the monoidal functor 
F  is braided with respect to the braided monoidal categories B  and B f 
as in Corollary 2.11.

The situation for transformations does not lend itself to the same 
sort of analysis: a transformation of doubly degenerate tricategories is 
rather different from a monoidal transformation. This also occurs in the 
study of degenerate bicategories, where transformations of degenerate 
bicategories are rather different from monoidal transformations. Thus, 
as discussed in the introduction, the best approach is to iterate the icon 
construction. We defer the details of this to the sequel; here we will 
just include a brief discussion to show how problematic a more naive 
approach would be.

An ad hoc or “naive” approach would be to strictify the doubly 
degenerate tricategories a little in order to make the “extra structure” 
on the associated braided monoidal category trivial. This may seem 
like a straightforward case of insisting tha t some coherence constraints 
are identities, but in order to organise the resulting tricategories into 
a bicategory we quickly see tha t we must make at least the following 
restrictions.

1. Restrict to those transformations whose component is 7,

2. To ensure closure under composition, restrict to those tricategories 
in which I o l  = I  with li = rj = 1, and those functors F  satisfying 
F I  = I  and coherence constraint = 1.
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We must then check tha t the resulting structure is a bicategory.
There are various ways in which this approach is unsatisfactory; its 

ad hoc nature means tha t it does not generalise easily to higher di­
mensions, nor does it provide any insight into the relationships between 
degenerate structures and predictions of the periodic table. However, 
the most compelling way in which it is unsatisfactory is tha t a much 
more elegant approach exists, th a t is, the iterated icon approach.

In the iterated icon approach the correct totality of degenerate struc­
tures arises naturally, with no contrived restrictions necessary. Further­
more, it is clear how to generalise this to higher dimensions. Finally, we 
observe a further benefit in th a t the icon approach enables us to deal 
with fully lax situations, which we cannot otherwise do.

2 .4  S t r i c t i f i c a t io n

While it is beyond the scope of this work to treat the totalities of struc­
tures in full, it is useful to consider the following “local” results.

T h e o re m  2.16.

1. Given a braided monoidal category B , we can construct a doubly 
degenerate tricategory E 2jB such that applying the construction in 
Corollary 2.11 returns the braided monoidal category B .

2. Every doubly degenerate tricategory T  is triequivalent to one ob­
tained from a braided monoidal category in the above way.

Proof.

1. First choose E3 to be the tensor product of B\ this is a monoidal 
functor since B  is braided. Now choose all the dual pairs to 
be given by the unit, and all isomorphisms to be coherence iso­
morphisms. The axioms all follow from coherence for braided 
monoidal categories.

2. Let T  be a doubly degenerate tricategory. Recall from [11] that 
there is a Gray-category G rT  and a functor e : G rT  — ► T  with 
the following properties.

-110-



CHENG & GURSKI - THE PERIODICAL TABLE OF n-CATEGORIES

•  The 0-cells of G rT  are just the 0-cells of T.

•  The 1-cells of G rT  are formal strings of 1-cells in T.

•  e is a triequivalence of tricategories.

Consider the full sub-Gray-category T ' G rT  with a single 0- 
cell and single 1-cell given by the identity in G rT . We show that 
T ' comes from a braided monoidal category as in (1) and tha t the 
inclusion is a triequivalence.

First observe tha t strict braided monoidal categories give rise to 
doubly degenerate Gray categories by the construction in (1), and 
th a t every doubly degenerate Gray category arises in this way. 
Thus since T ' is constructed as a doubly degenerate Gray-category, 
we know it must come from a braided monoidal category.

Now consider the inclusion T ' c—> G rT . It is trivially surjective on 
0-cells so we only need to show tha t it is locally a biequivalence 
of bicategories.

To show tha t the map on hom-bicategories is locally an equiv­
alence of categories we note tha t it is actually the identity by 
construction, since T ' is a full sub-Gray-category of T.

To show tha t the map on hom-bicategories is bi-essentially surjec­
tive, we must show tha t every 1-cell in G rT  is equivalent to the 
identity G rT . Since T  only has a single 1-cell, namely the identity 
/ ,  every 1-cell in G rT  is a formal string of / ’s; the string of length 
0 is the identity in G rT . Any string of / ’s in G rT  is sent by e to 
an actual composite of / ’s in T, and these are all equivalent in T  
via left or right unit constraints; in particular, the string of length
0 is sent to I. Now e is a triequivalence, so 1-cells in G rT  are 
equivalent if and only if they are equivalent in T  after applying e, 
hence all 1-cells in G rT  are equivalent. This shows th a t the map 
on hom-bicategories is bi-essentially surjective.

This completes the proof th a t the inclusion T ' + G rT  is a 
triequivalence; finally we conclude th a t the composite map

T  ^  G rT  - U  T

exhibits the triequivalence required.
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3  D e g e n e r a t e  t r i c a t e g o r i e s

We now study degenerate tricategories, and use them to make a defini­
tion of monoidal bicategory. The difference between these structures be­
comes more significant at the level of transformation, where we take an 
“iconic” approach in order to obtain monoidal transformations between 
monoidal bicategories. Since we will define monoidal bicategories to 
be degenerate tricategories, a process of “comparison” would be rather 
circular. We just observe tha t our definition of transformation is signif­
icantly different from that inherited from T rica t, just as in the case of 
transformations between degenerate bicategories [5].

First we characterise degenerate tricategories and functors between 
them; this is straightforward, as we can simply rewrite the appropriate 
definitions using the results of [5]. Our definitions differ from existing 
definitions [9, 20] only in tha t they are fully algebraic. As with degen­
erate bicategories, we only need to modify the structures at the level of 
transformations and above.

T h e o re m  3.1. A degenerate tricategory B  is precisely

•  a single hom-bicategory which we will also call B ;

•  a functor ® : B  x B  —» B;

• a functor I  : 1 —► B;

•  adjoint equivalence a , I , and r as in the definition of a tricategory; 
and

•  invertible modifications 7r, À, and p as in the definition of a tri­
category

all subject to the tricategory axioms.

T h e o re m  3.2. A weak functor F  : B  —» B ' between degenerate tricat­
egories is precisely
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• a weak functor F  : B  —► B' ;

• adjoint equivalences x  and t  as in the definition of weak functor 
between tricategories; and

• invertible modifications u, 5, and 7  as in the definition of weak 
functor, as shown below

all subject to axioms which are identical to the functor axioms aside 
from source and target considerations.

We use the above as definitions of monoidal bicategory and monoidal 
functor, and we now show how to organise the totality of these into a 
tricategory. As in the case of degenerate bicategories, we cannot sim­
ply take the full sub-tetracategory of T ricat; instead, we must per­
form an icon-like construction to ensure that we get the correct notions 
of monoidal transformation and modification. This is an immediate 
generalisation of the 2-dimensional version in which the bicategory of 
monoidal categories, monoidal functors and monoidal transformations 
can be found as a full sub-bicategory of the bicategory of icons. For de­
tails of the icon construction see [16]. In this case the idea is to construct 
a tricategory of tricategories with restricted versions of transformations 
and modifications as the 2-cells and 3-cells. In the present work we only 
give the degenerate case i.e. monoidal bicategories.

Thus we define monoidal transformations as a special case of lax 
transformations where the single object component is the identity, the 
lax transformation a  is actually weak, and the two modifications II and 
M  are invertible. The data and axioms presented here use collapsed 
versions of the transformation diagrams, making use of the left and 
right unit adjoint equivalences to simplify the diagrams involved.

D efinition  3.3. Let B , B ' be monoidal bicategories and F,G : B  B' 
be monoidal functors between them. A monoidal transformation a : 
F => G consists of

• a weak transformation a : F  => G between the underlying weak 
functors,



•  an invertible modification as displayed below,

FxF FxF
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FxF FxF

B  x  B  Jk*xa B ' X B ' B  X B  x

® VŜ G ^ G ^  ®' n ~> ® '̂ ,

B  ¿ ¿ ^  B ' B  4a £ '

G GG G

•  and an invertible modification as displayed below,

1 ----------------  ̂B ' 1  ------- ►  B '
\  /  ... — - — > \  X '

i \  a j  1X
B — > g ß

all subject to the following three axioms.
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(GxGy)Gz ^  G(xy)Gz 

{GxGy)Fz—̂ G {x y )F z /  |H  G(fa)*)

i tm  \

{FxFy)Fz -* F{xy)Fz--------- *F({xy)z) = G(x(yz))

•]!• Cü F1 ✓
Fx(FyFz) F(x(yz))

FxF(yz)

{GxGy)Gz ?-*- G(xy)Gz
(11)0 ^ *  / ' ' \X

I a
{GxGy)Fz — Gx(GyGz) i G((xy)z)
(aot)l/f \ A l(la) / “ ■—Ï--- S\sG?A

/  \  / ~ ‘M  4). in ia^GxG(yz) X
(.FxFy)Fz = Gx(GyF z)~ u^GxF(yz) S Gizÿz))

\  t Gx(FyFz) f /  ^
> \ “(al) /  ~ I/ a(ll) — al/ *<*

Fx(FyFz) / F(x{yz))

^l5T^ / /
FxF(yz)

-115-



CHENG & GURSKI - THE PERIODICAL TABLE OF n-CATEGORIES

GIFx —  GIGx 

FIFx /  / G{Ix)

a / *  - M J K  ^  /  Jj. 7G \ gj

/'Fa; Grr

/'G x V

GIFx GIGx 

F IF x zz zZ ^ J * *  ^ G(Jx)

/  T  ■ -
/ 'F z  -   ̂F x --------  Gx

VGx
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F x G I G xG I

F x F I  /  /  G {xl)
^  /  jj. <5g

F x  J ' Gx

G x l'

F x G I  —  G xG /Xa^r ^

F x F I  z= zzyj*“ ^

/  * * '  ^  “ “  \ r
F x / ' ^ ----------- F x -----------  Gx

=  ^ ----
G x/'

Note th a t in the previous diagram we have written Sf and Sg when in 
fact their mates are used.

We now define monoidal modifications between monoidal bicate­
gories in a similar fashion, as a special case of lax modifications with 
the component at the single object being given by an identity. Using 
the left and right unit adjoint equivalences, we are then able-to simplify 
the diagrams to those given below.

D efin itio n  3.4. Let a, (3 : F  => G be monoidal transformations between 
monoidal functors. A monoidal modification m  : a  ^  (3 consists of a 
modification m  : a  ^  (3 between the underlying transformations such
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la

G xF y  -Ij- 1 m_ G xGy  
^  ' ' \ x

/  -U-
F x F y  _ _ — " ^ 3  G (xy)

^  - F{xy)

G xF y  — *Q-^  G xGy

F x F y  ^  G (xy)
~x~~ * F (xy) " T

F I ---- F I
i s' ^SvU' "K __ L s' OL

/  JJ . Mp p K ^ \  - - - -  JJ- M a

r -------------z---------- *" g i  r -------------z---------- *-g i
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The rest of this section will be devoted to defining the structure of the 
tricategory M o n B ic a t whose 0-cells are monoidal bicategories, 1-cells 
are monoidal functors, 2-cells are monoidal transformations, and 3-cells 
are monoidal modifications. We begin by defining the hom-bicategories 
for this tricategory; note th a t composition is not inherited directly from 
T ric a t but can be thought of as a “hybrid” of the respective structures 
of T r ic a t and B ica t.

For 1-cell composition, consider monoidal transformations a  : F  => 
G and (3 : G => H. We define a monoidal transform ation [3a as follows:

•  its underlying transformation is the composite /?a,

•  the invertible modification Hpa has component at (X, Y )  given by
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the diagram below,

(/3ot)<g>((3a)
FX&FY------------------------>- HX&HY

X
— y/

s'

X.F GXf&GY ~X.H.
4- n Q

xa

F(X®Y) G(X®Y) H{X®Y)

•  and the invertible modification Mpa is given by the diagram below.

F I  —̂  G I
if ft

----------- - H I

The three axioms are easily checked by a simple diagram chase.
For identity 1-cells, consider a monoidal functor F. Then the iden­

tity  transformation u : F  => F  can be equipped with the structure of a 
monoidal transformation with both Ilw and M u being given by unique 
coherence isomorphisms. The axioms follow immediately from the co­
herence theorem for tricategories.

For vertical 2-cell composition, consider monoidal modifications m  : 
a  =£> (3 and n : /3 ^  7. Then we can check th a t the composite nm  : 
a  ^  7 in B ic a t is in fact monoidal, and likewise the identity.

For horizontal 2-cell composition, consider monoidal modifications
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as displayed below.

F

/  a ff  — J\ß \

X ----—  ■°— ^

H

Then we can check th a t the composite n  * m  : 7 a  ^  5(3 in B ic a t is in 
fact monoidal, and th a t this composition is functorial.

For coherence isomorphisms in the hom-bicategories, consider monoi- 
dal transformations a  : F  => G, f3 : G =>* H , and 7 : H  => J.

•  Let r : aup ^  a  be the modification with component at X  the 
right unit isomorphism ra x . It follows from coherence for tricate­
gories th a t r and r~ l are monoidal.

•  Let I : uqol ^  a  be the modification with component at X  the 
left unit isomorphism la x . Observe as above th a t this modification 
and its inverse l~l are monoidal.

•  Let a : (7(3) a  ^  7 {(3a) be the modification with component a t X  
the associativity isomorphism alx px ax monoidal. Observe as 
above tha t this modification and its inverse a -1 are monoidal.

T h e o re m  3.5. The above structure defines a bicategory

M o n B ic a t (X ,Y ) .

Proof The axioms follow from the bicategory axioms in Y . □

We next define composition along bounding 0-cells for the tricate­
gory M o n B ic a t, which we will denote IS; we simply extend the def­
inition of composition in the tricategory B ic a t which we now recall.
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Consider functors, transformations, and modifications as below.

F GF G

X  Y  / 3 ( ^ = ^ ^ / 3 '  Z

F' G'

Then we have the following formulae in B ica t, where <g> is horizontal 
composition.

G <g> F  := G F  

(3 <g> a  :=  (G' * a) o ((3 * F)

(A ® 1% := G T X * A Fx 

Now suppose all of the above data  are monoidal.

1. The composite G K F  is the composite of the functors of the un­
derlying degenerate tricategories.

2. The composite f3Ma has underlying transformation /3®a as above 
together with

•  invertible modification II given by the diagram below, and

(/?ISb)<g>(/3iaa)(/3Ba)®(j0Ba)

G F X  ® G F Y  G 'F X  ® G "Fy  G'a®G'% Q 'F 'X  ® G 'F 'Y

*G *G' =

G (F X  ® F Y ) G '(F X  ® F F )  G,(a$?a)> G '{F 'X  ® F 'F )  

Gxf s* g'xf ^ G 'I I q g 'Xf, 

G F (X  ® Y ) — £ +  G 'F {X  ® y ) ----- -- --  -^ G 'F 'p f  ® Y )  

• -------------------------------------------------- invertible modification M  given by the diagram below.

/ ' --------GV G F I G'FI G'F'I

‘o'"— ~ — ►  G T -------— g v
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3. The modification A<g>r is a monoidal modification, so we can put
a  s r = a  ® r.

T h e o re m  3.6. The assignments above extend to a functor

H : M o n B ica t(F , Z) x M o n B ica t(X , Y )  -*• M o n B ic a t(X ,Z ) .

Proof. The constraint modifications are the same as those given in [11]; 
we need only check th a t they are monoidal modifications, which is ac­
complished by a lengthy, but routine, diagram chase. The functor ax­
ioms follow from coherence and the transformation axioms. □

We now define units for the composition S .

P ro p o s it io n  3.7. Let X  be a monoidal bicategory. There is a functor 
I x  ■ 1 —» M o n B ica t(X , X )  whose value on the single object is the 
identity monoidal functor and whose value on the single 1-cell is the 
identity monoidal transformation.

Proof Functoriality determines th a t the value on the single 2-cell is 
the identity. The unit constraint is the identity, and the composition 
constraint is given by the left (or right) unit isomorphism in X , which 
we have already determined is a monoidal modification. The axioms 
then follow from coherence. □

We now define the adjoint equivalences

a  : B o (El x 1) => Kl o (1 x El)
1: B o  (/j^ x 1) => 1 

r : B o ( l x  Ix ) => 1.

The underlying adjoint equivalences of transformations are all the same 
as the relevant adjoint equivalences in B ica t. It remains to provide the 
component modifications, check th a t these choices give monoidal trans­
formations, check th a t the unit and counit modifications are monoidal, 
and check the triangle identities. All the cells involved are coherence 
cells, and we can use coherence for tricategories to check th a t all neces­
sary diagrams commute.
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T h e o re m  3.8. There is a tricategory M o n B ic a t with

•  0-cells monoidal bicategories;

•  hom-bicategories given by the bicategories M o n B ica t(X , Y ) de­
fined above;

•  composition functor given by 1X1 ;

•  unit given by the functor I x  : 1 —> M o n B ica t(X , X );

•  adjoint equivalences a, 1, r  as above; and

•  invertible modifications 7r, À, p, /i with each modification having com­
ponents given by unique coherence cells in the target bicategory.

Furthermore, the obvious forgetful functor M o n B ic a t —> B ic a t is a 
strict functor between tricategories.

Proof. The tricategory axioms follow from coherence for bicategories. 
The fact th a t the modifications above are monoidal follows from coher­
ence for tricategories. □
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