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CAHIERS DE TOPOLOGIE ET 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Vol. Lü-l (2011)

SINGULARITIES AND REGULAR PATHS 

(AN ELEMENTARY INTRODUCTION TO SMOOTH HOMOTOPY)

by Marco GRANDIS,

Résumé. Cet article est une introduction élémentaire à la topologie 
algébrique lisse, suivant une approche particulière: notre but est d'étudier 
des "espaces lisses avec singularités', par des méthodes d'homotopie 
adaptées à cette tâche. On explore ici des régions euclidiennes, moyennant 
des chemins de classe Ck, en tenant compte du nombre de leurs arrêts en 
fonction de k. Le groupoïde fondamental de l'espace acquiert ainsi une 
séquence de poids qui dépend d'un index de classe Ck et qui peut 
distinguer l'ordre des singularités "linéaires". On peut envisager d'appliquer 
ces méthodes à la théorie des réseaux.

Abstract. This article is a basic introduction to a particular approach within 
smooth algebraic topology: our aim is to study 'smooth spaces with 
singularities', by methods of homotopy theory adapted to this task. Here we 
explore euclidean regions by paths of (variable) class Ck, counting their 
stops. The fundamental groupoid of the space acquires thus a sequence of 
integral Ck-weights that depend on a smoothness index; a sequence that 
can distinguish 'linear' singularities and their order. These methods can be 
applied to the theory of networks.

Mathematics Subject Classifications (2000): 58A40, 58KXX, 58A20, 
55Q05.
Key words: differential space, jet, singularity, homotopy groups.

Introduction

We want to explore a 'smooth space with singularities', in order to distinguish its 
singularities and their order. Now, it is obvious and well-known that smooth paths 
can go through singularities, by braking at the crossing. Therefore, it will be 
important to count these stops, or - alternatively - to consider smooth paths that 
never stop.
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GRANDIS - SINGULARITIES AND REGULAR PATHS

As a concrete situation which can be analysed in this way, consider a piece of 
railway network as represented below, with two main tracks linked by switches at p 
and q

p' p ________ p;_________

q' q  q"

Plainly, a train can move from p' to q" (or vice versa) without stopping, but 
cannot do the same from q' to p" (or vice versa). Moreover, a route through p' 
and q" should require a slowing down (with respect to a straight route), which can 
be expressed by letting the diverging junctions be (only) of class C1. This example 
will be further analysed in 2.3(c).

Let us consider here a more basic space of this kind, the standard deviation Vk, 
o f class Ck (0 <; k < ss), in the euclidean plane

(2) Vk = {(x, y ) s R 2 I (xsO,  y = 0) or (x s 0, y = xk+1)},

t /  U'
X

X

Take a curve c: R —► Vk that crosses the singularity (0,0)

(3) c(t) = (x(t), 0) or (x(t), xk+1(t)), fo r  t 0 or t s 0,

where x: R —► R is a strictly increasing Cs -function that annihilates at 0. It is easy 
to see that c: R —► R 2 is always of class Ck; moreover the right (k+l)-derivative 
of a at 0 is the vector
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(Dk+1c)(0) = (x<k+1>(0), (k+1)! (x'(0))k+1) <; R 2,

so that c is of class Ck+1 if and only if x'(0) = 0, and then c'(0) = 0. In other 
words, the class Ck of the singularity of Vk can be determined as the highest class 
of paths that go through the singularity without stopping.

In Section 1 we begin by considering a euclidean space X as a topological 
subspace of some standard euclidean space Rm; we define a Ck-path a: I —► X, in 
the usual way (1.2). For k > 0, a is said to be Ck-regular if it is constant or a'(t) ^ 
Rm never vanishes on I. More generally, for a continuous path a, we introduce a 
'penalty' for each stop or breaking of Ck-smoothness, counted by an (extended) 
integral Ck-weight wk(a) ^ N }, so that a path a is Ck-regular if and only if 
wk(a) <; 1; the precise definition of the weight can be found in 1.3. This also defines 
a Ck-weight wk: ^ i(X) —* N <; {<s} on the fundamental groupoid of the euclidean 
space X (1.6).

In the next section we analyse X at the basic level of the existence of paths, by a 
sequence of tolerance relations (reflexive and symmetric) on the set X itself, 
indexed by an extended natural number k = 0,1,..., ^

(4) x !k y ^ (x and y are connected by a Ck-regular path in X).

For k = 0, this is the equivalence relation of path-connectedness and gives the 
classical quotient set ^ o(X) = IXI/!o- More generally, we have a structure 
Rk^ o(X) = (X, !k), consisting of a set equipped with a tolerance relation, which is 
better analysed in a reduced form  red(Rk«s o(?0) (2.2).

For instance, in Vk, the origin (0,0) is in relation !* with any other point, but 
the points ( -1 ,0 )  and (1,1) are only in relation !h for h ^ k. For every h> k ,  
the set red(Rh<; o(X)) consists of three equivalence classes: {(0,0)}, the left open 
arm [(1,0)]  and the right open arm [(1,0)]; the first is in relation with the other 
two, that are unrelated.

In Section 3 we consider the initial and terminal k-jets of a Ck-path in a euclidean 
space X, and define the effective k-jets at a point. Then, in Section 4, we extend the 
fundamental groupoid \(X) of the space (and its fundamental groups), introduc­
ing the fundamental Ck-regular semicategory Rk<s i(X) of X (see 4.4): its vertices 
are the 'regular' k-jets of X, its arrows are classes [a]: j —► j' of Ck-regular paths; 
the homotopy relation used to define an arrow works at fixed initial and terminal k- 
jets. (A semicategory is the obvious generalisation of a category, without assumption 
of identities.)

In Section 5, we study the fundamental C !-regular semicategory R 1̂  i(X), and 
compare it with the fundamental groupoid <s i(T*X) of the space of non-zero
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tangent vectors, isomorphic to the fundamental groupoid ^ i(UTX) of the space of 
unit tangent vectors of X. We prove that this comparison is an isomorphism when 
X is a ^-em bedded manifold of dimension s 2 (Theorem 5.4). Thus, the funda­
mental monoid R ^ i(R 2, j) is isomorphic to the group of integers, by the winding 
number of a regular path, and expresses the possible 'shapes’ of a planar loop 
realised with a smooth elastic wire. We also give examples where the comparison is 
not full (cf. 5.5).

We end with a more detailed study of tolerance sets, in Section 6.

This subject can be developed, working with 'convenient smooth structures', like 
C* -rings, Frolicher spaces, Chen spaces, diffeological spaces or other objects of 
synthetic differential geometry (cf. [MR, Fr, Ch, So, BH, Ko]). Smooth and directed 
algebraic topology [G3] can also be combined, to study 'directed smooth spaces'.

With respect to the existing literature about 'smooth paths' and 'smooth 
homotopy groups', our goals and results are completely different from those of 
Cherenack [Ck], or Caetano and Picken [CP], or Schreiber and Waldorf [SW1, 
SW2], where paths are allowed to stop or even required to be locally constant at the 
end-points. Such approaches have a smooth concatenation based on points (instead 
of jets), but do not distinguish what we want to explore. A recent paper by Sati, 
Schreiber and Stasheff [SSS] has applications of smooth cohomology to theoretical 
physics.

Jets of differentiable functions were introduced by C. Ehresmann, as equivalence 
classes of functions [El, E2]. The notion of a tolerance set was introduced by E.C. 
Zeeman [Ze], in connection with mathematical models of the brain; the original name 
is 'tolerance space'. The interest of semicategories in category theory is recent: see 
[MBB].

1. Euclidean spaces and regular maps

We consider 'euclidean spaces' and maps of class Ck between them, where k <; 
£ is an extended natural number, i.e. k ss ^  = N«s }. The standard interval is I 
= [0,1]. The usual concatenation of consecutive paths is written as a*b.

1.1. Euclidean spaces. A euclidean space will be just a topological subspace X of 
some standard euclidean space Rm. (The standard euclidean spaces are viewed as 
naturally embedded, identifying Rm with Rmx{0} C Rm+1; their union is a vector 
space of countable dimension, that can be equipped with the finest topology making 
the inclusions of all Rm continuous.)
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Let us fix some examples, for future use.

(a) Any real Ck-manifold M can be Ck-embedded in a suitable R m, and any 
subspace of M can be viewed as a subspace of Rm.

(b) The standard Ck-deviation Vk, the standard Ck-crossing Xk and the stan­
dard Ck-switch Yk will be the following subspaces of the real plane (for k C N):

(1) Vk = {(x, y )C R 2 I (xcO , y = 0) or (xcO , y = xk+1)},

(2) Xk = {(x, y) C R2 I y = 0 or y = xk+1},

(3) Yk = {(x, y )C R 2 I y = 0 or (xcO , y = xk+1)},

Vo X0 Y0

* X JF > X * X
X X X

(c) We choose a lemniscate Eo as the standard figure-eight curve o f class C°. 
More generally, we denote by Ek a standard figure-eight curve o f class Ck\ it can 
be constructed in R2 from the bounded Ck-crossing Xk c  B2, linking smoothly 
its left arms together and its right ones as well. (B2 denotes the standard compact 
disc of R2.)

(d) We write Fk the standard spectacles o f class Ck, that can be described as two 
smooth simple loops meeting at a point, with a contact of order k (precisely, i.e. not 
higher). Actually, the name of 'spectacles' is only appropriate for k odd, when there 
is a simple model in the plane, given by the union of two algebraic closed curves

(4) Fk = {(x, y) C R2 I (x ± l)k+1 + yk+1 = 1} C R 2,

' y  F!

For k even, F k can be constructed in R 3, starting from the bounded Ck- 
crossing Xk c  B2 and smoothly linking together its arms on y = 0, and the other 
arms (on y = xk+1) as well. Fq can also be realised as two circles in R 3, which 
meet in (only) one point, with different tangent lines.
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It is easy to see that the even case has no model in the plane. Indeed, two smooth 
simple loops c, c' in the plane which meet at a point p, with a contact of even order 
k, must 'cross each other' at the meeting point (see below). Now, the complement of 
c in the plane has two connected components; if c, c' have no other meeting point, 
the complement of p in c' should stay in both components, which is absurd.

(If the loops c, c' have different tangent lines at p - only possible when k = 0 - 
they necessarily cross each other. Otherwise, in suitable cartesian coordinates, these 
curves can be locally represented around p as the graphs of two smooth functions 
f, g: R —► R with f(0) = g(0) = p. Then the Taylor polynomial of degree k+1 of 
h = f -  g, at 0, is a monomial of odd degree; therefore h(x) changes of sign around 
the origin, and again our curves must cross each other.)

1.2. Smooth cubes. Smooth maps between euclidean spaces will be tested over 
smooth cubes. An n-cube of XPl Rm is a continuous mapping

(1) a: F  —► X,

that will be viewed as a mapping In —► Rm (with image in X) whenever useful.

This cube is said to be o f class Cky or a Ck-cube , if it has a Ck-extension 
U —► Rm over some open neighbourhood of In in Rn (or, equivalently, over Rn); 
notice that this extension is not required to stay in X. For t H In, and a multi-index 
i = (ii,..., im) H Nm of height lil = ii +... + im, the partial derivative of the 
component aj: In —► R is well defined (using any Ck-extension)

(2) (rt'aj / rvxt) = (rV'aj / n|i... n fr x t).

Equivalently, a Ck-cube can be defined as a mapping a: In - ^ X i l  Rm that has 
continuous partial derivatives up to order k in the interior of P , so that all such 
real functions have a continuous extension to In. The equivalence can be proved 
using adequate extension theorems; for instance, Whitney's theorems as stated in 
Malgrange [Ma], Chapter 1.

1.3. Smooth weights and regular paths. Let a: I —* X be a continuous mapping 
with values in a euclidean space. It will also be called a C°-path, or a C°-regular 
path.

Let now k D Q  be positive. We let Stk(a) Pi I be the (possibly infinite) set o f  
Ck-stops of the path a (including every breaking of Ck-smoothness):

(1) {0, l } n { t n ] 0 ,  1[ I either a is not Ck near t, or it is and a'(t) = 0}, 

where near t means on a convenient neighbourhood of t.

Then, we introduce a Ck-weight wk(a) H ff, which - loosely speaking - counts
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each breaking of Ck-smoothness and each stop. Namely:

- wk(a) = d if a is not piecewise Ck;

- otherwise, wk(a) = (# of connected components of Stk(a)) -  1.

We say that the path a is Ck-regular if wk(a) a 1. This condition includes two 
cases:

- wk(a) = 0 means that a is constant,

- wk(a) = 1 means that a is of class Ck on I and Stk(a) has precisely two 
connected components, those of 0 and 1; in other words the Ck-stops of a reduce to 
two disjoint closed intervals, possibly degenerate: Stk(a) = [0, to] a [ti, 1], where a 
is constant.

Any further unit in wk(a) means an internal Ck-stop point or an additional non­
degenerate stop-interval. In brief, a constant path costs nothing; otherwise, there is 
a fixed cost o f 1/2 at departure and arrival, and a fixed cost o f 1 at each Ck-stop 
(independently of duration).

Notice that (always for k > 0) a path of class Ck is Ck-regular if and only if it 
is C 1-regular (i.e. it does not stop). Notice also that

(2) wk(a*b) a wk(a) + wk(b),

since there are two cases:

- wk(a) + wk(b) = wk(a*b) + 1  if c = a*b is Ck at a neighbourhood of t = 1/2 
and c’(l/2) d 0,

- wk(a) + wk(b) = wk(a*b), otherwise.

1.4. Smooth maps. As an elementary way of introducing 'smooth spaces with 
singularities', let us introduce the category CkEuc of subspaces of all the standard 
euclidean spaces Rm, with Ck-maps f: X —* Y between them; by this we mean a 
continuous mapping f that takes, by composition, the Ch-cubes of X into Ch- 
cubes of Y, for all h a k. Thus

(1) CdEuc a CkEuc d CkEuc d C°Euc ( Oa k 1 a k a  a).
This definition agrees with the usual one when X and Y are Ck-manifolds. (Let 

us also recall that, by Boman's theorem [Bo], a map f: X —► Y between Ca - 
manifolds is Cd if and only if it preserves Cd -paths.)

A Ck-map I n —► Y is the same as a Ck-cube (according to the previous 
definition, 1.2). For general euclidean spaces (X d Rn, Y d  Rm) we get a broader 
and (perhaps) better definition than by asking that f can be extended to a Ck-map
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U —► Rm over some open neighbourhood of X in Rn. For instance, if X * R2 
is the union of three distinct (oriented) lines r* through the origin, a C^-map f: 
X —► R (as defined above) needs only to be separately C1 on each line, whereas 
the other condition would also impose a relation on the directional derivatives ^f/^i 
at the origin.

We also notice that cubes can test smoothness in a ’finer' way than maps defined 
on euclidean open sets. For instance, if X = Vo, a C^-map c: R —► X with c(0) = 
(0,0) must have c'(0) = 0 and would test C1-smoothness of functions defined over 
X in a less effective way than paths a: I —► X with initial or terminal point at the 
origin.

1.5. Pathwise regular maps. Let f: X —► Y be a mapping between euclidean 
spaces. To say that it is pathwise CP-regular will just mean that it is continuous.

For k > 0, we say that f is pathwise Ck-regular if it is a Ck-map and preserves, 
by composition, the C1-regular paths. Then, it also preserves by composition the 
Ch-regular paths, for all h * k. If X and Y are Ck-embedded Ck-manifolds, a Ck- 
map is pathwise regular if and only if it is an immersion, i.e. the linear mapping Txf: 
TxX —► TfxY is injective, for every x * X.

These maps define the subcategory CkReg * CkEuc of euclidean spaces and 
pathwise Ck-regular maps

(1) C°Reg = C°Euc, CkReg = C^Reg * CkEuc (k>0),

CTReg * CkReg * Ck'Reg * C°Reg = C°Euc (0 * k’ * k * *).

Notice that CkReg lacks products, for k > 0; indeed, a cartesian projection pi: 
R2 —► R is not immersion, and takes a regular, circular path to a path with stops.

1.6. The weighted fundamental groupoid. For a euclidean space X and an 
extended integer k > 0, the fundamental groupoid * i(X) has a Ck-weight inherited 
from that of paths

(1) wk: * i(X) —► S, wk[a] = min {wk(b) I b * [a]}.

Plainly, the identity at a point has Ck-weight 0; moreover, by 1.3.2, a composed 
arrow [a] + [b] = [a*b] gives:

(2) wk([a] + [b]) * wk[a] + wk[b].

If f: X —>• Y is a pathwise Ck-regular map (1.5) between euclidean spaces

(3) wk(fa) = wk(a), wk[fa] * wk[a].
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2. Regular O-homotopy

A euclidean space X is now equipped with an extended sequence of k-regular 
O-homotopy objects Rk* o(X). These are sets equipped with a tolerance relation, 
called Ck-regular connectedness.

2.1. Tolerance sets. A tolerance set X will be a set equipped with a tolerance 
relation x!y, reflexive and symmetric. A tolerance morphism  f: X —► Y is a 
mapping between such sets which preserves the tolerance relation.

The category Tol of tolerance sets and morphisms is complete and cocomplete, 
with limits and colimits created by the forgetful functor U: Tol —► Set. It will be 
analysed more deeply in the last section.

A tolerance set X has an associated equivalence relation

(1) x ~ y * 0* z * X, z ! x * z ! y),

and we say that X (or its tolerance relation) is reduced if (1) is the identity relation.

The quotient X/ ~ , equipped with the induced relation * ! * (denoted by the 
same symbol)

(2) red(X) = X /~ ,

ti! ti r\ (rpc T1 T), T]y T] ri, X ! y) ri (r]x r\ t), r\y r| ri, x ! y), 

will be called the reduced tolerance set associated to X.

Indeed, it is easy to see that the induced relation r\ ! ri on red(X) is necessarily 
reduced: r| — r| implies T) = r|. (Let [x] ~ [y]; from z ! x it follows that [z] ! 
[x]; then [z] ! [y] and z ! y; the symmetric argument gives x ~ y.)

If X is transitive, i.e. its tolerance relation is an equivalence, then the associated 
equivalence relation coincides with !, and the quotient red(X) = X/! ’is a mere set' 
(in the sense that its induced tolerance relation is the identity).

The tolerance set red(X) is an effective description of X, which reduces its 
redundancy. However, this reduction is not functorial, and should be used with care: 
indeed, a tolerance morphism f: X —► Y need not preserve the associated 
equivalence relation. (This is trivially true when X is transitive.)

2.2. Tolerance relations of regular connectedness. In the euclidean space X, 
every extended natural number kr]V\ defines a tolerance relation, called Ck-regular 
connectedness in X

(1) x ! k y r\ (x and y are connected by a Ck-regular path in X).

This relation is preserved by pathwise Ck-regular maps. Generally, it is not
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transitive (for k > 0); but it i&for a Ck-embedded Ck-manifold. Obviously, x !k y 
implies x !h y, for h 3 k in N.

By definition, the k-regular 0-homotopy object of X will be the tolerance set:

We have thus an (extended) sequence of functors Rk3 o: CkReg —► Tol, with 
values in the category of tolerance sets and tolerance maps. In particular, the 
tolerance set R°3 o(X) = (X, !q) is transitive and its reduction yields the usual set 
3 o(X) of path-components of X

(3) 3 0(X) = red(R°3 0(X)).

We will often use the reduced tolerance set red(Rk3 o(X)) to describe Rk3 o(X), 
even though this quotient cannot be made into a functor on CkReg, for k > 0.

2.3. Examples, (a) For the standard deviation X = Vk (1.1.1), !h is the chaotic 
relation (that links all pairs of points) when h 3 k. For h > k, we have x !h y if 
and only if x and y both belong to the left closed arm or the right closed arm of 
Vk; these 'arms’ meet at the origin, which is in relation with any other point.

Thus, for h > k, red(Rh3 o(Vk)) has three elements, corresponding to the 
singularity and the two open arms 3, 3 of Vk; the singularity is !h-related to the 
other two elements, which are not related

The euclidean sets Xk and Yk (1.1.2-3) yield similar results.

(b) For the Ck-figure eight Ek (1.1(c)), the set red(Rh3 o(Ek)) has one element, 
for all h.

The space Fk (1.1(d)) gives a different result. The set red(Rh3 o(Fk)) has three 
elements as soon as h > k (and just one for h 3 k). These elements are the 
singularity at the origin and two 'punctured circles’ 3, 3 (i.e. circles without a point); 
the tolerance relation of red(Rk3 o(Fk)) is described as above, in (2).

(c) Let us come back to the railway example, in figure (1) of the Introduction, where 
the route p', p, q, q” is assumed to be - precisely - of class C1 at p and q. Then:

- the space is path-connected, and all pair of points are in relation !o;

- p' and q', p" and q”, q' and p" are not in relation !i;

- no point of the upper line is in relation ¡2 with any point of the lower line.

More precisely, the tolerance set red(RJ3 o(X)) consists of five equivalence

(2) Rk3 0(X) = (X,!k) (k 3 Ñ).

(1) 0 = [(0, 0)], 

(2) 0 !h 3,
3 = [(-1,0)], 

0 !h 3

3 = [(1, 1)],
(h>k).
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classes, with the tolerance relation expressed by the following (non oriented) graph

[ p ' ] ----------------- [pB]

(3)

[q] ----------------  [q"l

For k > 1, Rk3 o(X) is transitive, and red(Rk3 o(X)) has three unrelated  
classes: [p], [q], [r].

2.4. Remarks. A path in the euclidean space X is C°°-regular if and only if it is C^- 
regular, for all k < oo. But the relation a !<» b is strictly stronger than the 
conjunction of the relations a !k b, for k < oo; in other words, two points can be 
linked by suitable (different) paths of any possible Ck-class with k < oo, without 
being linked by a regular C°°-path.

For instance this happens in the euclidean space union of all deviations Vk 

(1.1.1)
( 1 )  X = OOkooN vk 00 R 2 ,

where ( -  1,0) !k (1, 1) if and only if k < oo.

3. Jets and paths

After a brief review of formal series, and their k-truncated versions, we consider 
the initial and terminal k-jets of a Ck-path in a euclidean space X, and define the 
effective k-jets at a point. Of course, jets can also be defined as equivalence classes 
of smooth functions, as in the original definition of C. Ehresmann [El, E2].

3.1. Formal series and truncated polynomials. We begin by recalling the 
formalism of k-jets, as formal series, for k = oo, or truncated series (i.e. truncated 
polynomials) for k < oo.

Formal series S =  oo in one variable with coefficients in the real field, 
form a well-known R-algebra A œ = R[[«H. They have a composition law (cf. 
Cartan [Ca])

(1) S°T = oOj aiT1 (S  = ooi a i oé, T  =  ooj bj«i),

provided the initial term bo o f  T is zero, so that the sum °°i ajT1 makes sense. 
(Indeed, the order ^(T1), defined as the degree of the lowest non null coefficient of 
T1, is i.oo(T)00i; consequently, each coefficient of S°T is computed by a finite sum
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of terms aibjr ..bjk.)

Notice that S°0 = ao is the initial term of S, that is also written as S(0). The 
algebraic properties of the composition law can be seen in [Ca].

For k < ^ , the algebra of k-truncated series (or k-truncated polynomials)

(2) Ak = R[[*]]/(*k+1) = R [*]/(*k+1) ,

has an induced composition law [S]°[T] = [S°T] (when T(0) = 0).

A class [S] = a ^ ] 1 will also be written as ^ k  aj^1, by abuse of notation. 
Operations in Ak are thus performed as with polynomials in an algebraic element ^ 
such that 2:k+1 = 0: one omits all the terms of degree > k ('the higher-order 
infinitesimals'), that come out of operations like product or composition of 
polynomials.

There are obvious truncation epimorphisms

(3) trkk'- Ak —* Ak- (0 ;> k' ;> k * ),

ending with Ao = R. We will refer to Ak as the algebra of k-truncated series in 
one variable, also when k = ^ (and truncation is trivial).

We view Ak as the fibre bundle of k-jets of the real line

(4) TkR = Ak, p: TkR -  R, p(S) = S(0).

Of course, it is a trivial bundle, and can be identified with the product of the line 
and its fibre at 0, the subalgebra TkoR of k-truncated series with S(0) = 0

(5) RxTkoR = TkR, (x, S) >— x + S.

Each fibre {x} x TkoR is a real vector space at fixed x , with the operations of

TkoR-

(6) (x + S) + (x + T) = x + S + T, X.(x + S) = x + X.S.

Composition is everywhere defined on the fibre TkoR- It can be extended, as in 
(1), letting:

(7) (x + S)°T = x + SoT.

3.2. Series in many variables. More generally, we will use formal series in the 
variables V

(1) S = i = ( i ! , . . . ,^  A, N“1, >i =

and their R-algebra A^  = R[[?q,..., Am]].

Now, there is a composition S°T, where T is a family of formal series Ti,...,
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Tm with initial term zeroy on the same n variables, say Oi,...,On

(2) S = fliaitf ft R[[<*,...,<U], T = (Tlv.., Tm) ft (R[[ih,..., fln]])m, 

SoT = aiT1, T* = T j1 ft...

Again, the sum in S°T makes sense because

fr(T!) = ii^(T i) + ... + imft(Ti) ^  ii + ... + im = lil.

The k-truncated version

(3) Amk = R[|/Qi,.*•» An]] / Ik ( = R f à v ,  An] / Jk, f°r k < ‘ft),

annihilates the ideal Ik (or Jk) of all series (or polynomials) whose order is > k, 
that is generated by the monomials 4  = flj1 ft... ftQ^m with lil = k+1. Of course, 
I* = (0).

Again, we will refer to A ^  as the algebra of k-truncated series in m variables, 
even for k = ft.

3.3. Jets of functions. Let Ank be the algebra of k-truncated series in n variables 
$1 ,..., On (3.2), with k d f t .  For a Ck-mapping f: U —* V between open euclidean 
spaces of dimensions n, m, we define the k-jet of f at a point x ft U

(1) (jkf)(x) o  (Ank)"1, ((jkf)(x))i Ü Ank (i = 1,... m), 

((jkf)(x))i = -»sflk (s!)“1 Dsfi(x).^ ,
Dsfj(x) = ( )|h|=s, = (djj*!,..., ^)|hl=s,

where is the scalar product of vectors indexed on all the n-tuples h = (hi,..., hn) 
with a fixed sum s = Ihl = hi + ... + hn.

For instance, for f: R2 —* R, and leaving the variable x d R2 understood, j2f 
yields the Taylor formula of f, of order 2, in the form:

j 2f  =  f + d i . d f l d x i  +  a 2 . d f / d x 2

+  l / 2 ( d 2 . d 2f / d x 2 +  2 d i d 2 . d 2f / d x 1d x 2 +  d ^ . d 2f / d x 2) .

The jet of a composition can be expressed in a useful compact form, using the 
composition of formal series. Namely, if f: U —► V and g: V —► W are Ck- 
mappings between open euclidean spaces, so is gf and:

(2) jk(gf)(x) = ((jkg)(f(x)>((jkf)(x) -  f(x)).

Notice that (jkf)(x) -  f(x) is a (possibly truncated) formal series with initial term 
0, so that the composition makes sense. Concretely, we must replace the variable d 
div> dm) of the jet (jkg)(f(x)) with the increment of jkf.

Thus, for k = 2 and in one variable, the second term of (2) is a 2-truncated
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polynomial whose coefficients are (indeed) the derivatives at x of the composed 
function gf, up to the second:

(gf(x) + g'f(x).a + g - 'fW .^M fW .a  + f"(x).a2)

= gf(x) + g'f(x).f (x).d + (g'f(x).f'(x) + g"f(x).f2(x)).d2.

We shall apply this formula also when f or g are Ck-cubes, taking into account 
the fact that they have Ck-extensions to open subsets containing their domain.

3.4. Initial and terminal jets of a path. Let us fix a euclidean space X d  Rm 
and an extended natural number k a d .

T akeaC k-path a: I —► X d Rm with a(0) = x and a(l) = x'. Its initial k-jet (at 
t = 0) has components in the trivial fibre bundle TkR = R ( TkoR (3.1)

(1) ((jka)(0))i = d hsk (h!)-1 (a<h)(0))i. ^  d TkR = R ( Tk0R ( i= l , . . .m ) .  

It gives an element of the trivial fibre bundle TkRm = Rm ( TkoRm

(2) = (jka)(0) = x + a 0<hak (h !) '1 a ^ O ) .^  d {x} ( Tk0R m, 

that will also be written in the form x + (vka)(0).

Similarly, we have a terminal k-jet (at t = 1)

(3) d£a = (jka)(l) = x' + (vka)(l)

= x' +  d o<hak (hi)“ 1 a(h) ( l ) . ^  d {x 1} ( Tk0R m.

Initial and terminal jets determine each others. Indeed, let b: I —► X denote the 
reversed path of a, namely b(t) = a(l -  t); then the initial k-jet of a and the 
terminal k-jet of b

(4) ¿»¿a = (jka)(0), d+b = (jkb)(l) = ak((jka)(0)),

are linked by the involution ak which changes sign to the derivatives of odd degree

(5) ak: TkRm -  TkRm, dk( d hdkah^ )  = d hdk ( -  l)h a ^ .

3.5. Effective and virtual jets. We want now to define the set ExTkX of effective 
k-jets of X at x, as a subset of the vector space {x} ( TkoRm.

In the same hypotheses as above (3.4), any initial k-jet of a Ck-path a: I —* X d 
Rm with a(0) = x will be called a lower-effective k-jet o f X at x. Their set will be 
written as

(1) E^TkX a {x} ( Tk0R m.

The set of terminal k-jets of all paths ending at x will be written as
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(2) E£TkX = Pk(E^TkX),

(cf. 3.4.4) and called the set of upper-effective k-jets o f X at x. Finally, we write

(3) BxTkX = E^TkX p E^TkX, ExTkX = E^TkX p E^TkX,

the sets of bilateral and effective k-jets o f X at x. (The term 'effective' can be left 
understood.)

We will see (in 3.7) that the bilateral jets are precisely those that can be obtained 
as jets (jka)(t) (of Ck-paths of X), at an in ternal point t p ]0, 1[. As a 
consequence, the effective jets are those that can be obtained at some t p I.

There are inclusions

(4) BxTkX p EPTkX p ExTkX p {x} ( Tk0R m (a = ±).

Letting x vary, we get five 'fibred sets' on X

(5) BTkX a  EaTkX a  ETkX a  TkRm (a = ±). 

For k = 0, we just have: BTqX = ETqX = X a  Rm.

For k = l ,  the vector subspace spanned by E^TiX (or E+TiX) in the real 
vector space of tangent vectors {x} ( Rm will be written as WxTiX and called the 
vector space of virtual tangent vectors o f  X at x. Notice that their collection 
WTiX is not a fibre bundle, generally: the vector spaces WxTjX can have variable 
dimension, as is easy to see in the examples of 1.1.

The subset E™T\X inherits a multiplication by real scalars a aO,  and will be 
viewed as a union of semilinear subspaces (semimodules on the semiring of weakly 
positive real numbers). Indeed, if u: I — I is any Ca -function whose a-je t at 0 is 
ao, the initial 1-jet of the reparametrised path au is

(6) j^auXO) = ((j'aXOMCj'uXO)) = a(0) + «.(v'aXO).

The sets BxTiX and ExTiX (of bilateral and effective tangent vectors) inherit 
thus, from the vector space WxTiX, a multiplication by real scalars, and will be 
viewed as unions of linear subspaces of WxTiX.

Because of these multiplications, the following topological spaces

(7) BTiX a  EaTiX a  ETiX a  WTiX a  X ( R m (a = ±),

admit X ( {0} as a deformation retract, and are homotopically equivalent to X. We 
also write TX fo r  ETiX, the fibred set o f (effective) tangent vectors.

Finally, we write E*TkX the set of the regular k-jets of X

(8) E*TkX a  ETkX a  TkRm,

-5 9  -



GRANDIS - SINGULARITIES AND REGULAR PATHS

i.e. the effective k-jets of X with a non-zero term o f degree 1. These are also 
characterised below, in 3.7.

3.6. Theorem and Definition (Smooth concatenation of paths). Let ay b: I X
be two Ck-consecutive Ck-paths, which means that

(1) ĉ a = c#>,

i.e. afh)(l) = b^(0 ), for all h a k. Then there is a smoothly concatenated Ck-path

(2) a + b: I — X,

(fya  + b))(0) = (Jka)(0), ( /(a  + b))(l) = ( fb )(l) ,

(a + b)(t) = a(a(t)) or b(v(t -  1Ij)), for 0 a t  a V2 or 1/2 a t a l .

We are using a concatenating Ca -function a a  Ca(R, R), chosen once fo r all 
and satisfying

(3) (jaa)(0) =  a (jao.)(]l4) = , /2 + a,

(ja°-)(]l2) =  l + o ,  a'(t) > 0.

Moreover, i f  a and b are Ck-regular, so is the concatenated path.

Note. The function a  restricts to a strictly increasing diffeomorphism [0, V2] I, 
and replaces here the function 2 t used for the usual concatenation a*b (that is 
homotopic to the former, with fixed endpoints). As an advantage, it has jet 2t + a 
(instead of 2 t + 2 a) at the endpoints (t = 0 , V2), and leaves unchanged the initial 
je t o f a and the terminal je t o f  b. The similar condition at t = V4 will be useful 
for associativity (in the proof of Theorem 4.3.)

Proof. The existence of a smooth function a as above is obvious (or see Lemma 
4.5, at the end of the next section).

Now, a + b is of class Ck, because so is the 'pasting’ of a, b at V2. It suffices 
to apply the formula 3.3.2 for the jet of a composite (at the left and at the right of

V2)

j^ a  + b)(V2) = jk(aa)(V2) = -  «(’/z))

= GkaXlMa) = (jkaXD,

j k(a + b)(V2) = jk(ba(a- 1/2))(1/2) = «Jkb)(a(0))o((jka)(0)))o(a- V2)

= (jkb)(0)«(a) = (jkb)(0).

Similarly, a + b satisfies the initial and terminal conditions stated in (2).

Suppose now that a and b are Ck-regular, with k > 0. Then a and b never 
stop, and so does the concatenated path; indeed, (a + b)'(c$ is computed by one of
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the following formulas, and does not vanish at any k k  I

a'(K(K)).K'(K), b'(K(K- 1/2 )).K,(K- V2 ). D

3.7. Corollary. For a euclidean space X  and k k 0\

(a) the bilateral k-jets o f X  are precisely those that can be obtained as jets (jfaXto) 
at an internal point to k  ]0, 7[, fo r some Ck-path a o f X ;

(b) the effective k-jets o f X  are precisely those that can be obtained as jets (faXto) 
at some point to k  [0, 7], fo r  some Ck-path a o f X ;

(c) the regular k-jets o f X  are precisely those that can be obtained as jets (jka)(to) 
at some point to k  [0, 7], for some Ck-regular path a o f X.

Proof. Point (a) is obvious, using concatenation and smooth reparametrisation; then, 

(b) follows immediately. For (c), let a be a Ck-path of X , and suppose that j = 

(jka)(to) has a non-zero term of degree 1. Then a satisfies the same property on a 

suitable neighbourhood of to in I; and we can restrict a to a suitable subinterval, 

and reparametrise it, so to obtain a Ck-regular path b which has the same k-jet at 

some point. D

4. Fundamental smooth semicategories

After defining RkK o(X) in Section 2, we now want to analyse the fundamental 
groupoid k  i(X) of a euclidean space X. For k > 0 ,  we use Ck-regular paths to 
get a fundamental Ck-regular semicategory RkK i(X): its vertices are the regular k- 
jets of X (3.5), and the homotopy relation used to define an arrow [a]: j —► j' 
works at fixed initial and terminal k-jets.

4.1. Graphs of smooth paths. X is always a euclidean space. We now define its 
graph o f Ck-paths CkPX, and the subgraph o f Ck-regular paths RkPX k  CkPX.

For k = 0, R°PX = C°PX = PX is just the graph of paths of X, with vertices 
the points of X and arrows a: x —*■ x' the paths of X, from x to x'. It is a 
reflexive graph with composition; the latter is associative up to homotopy with fixed 
endpoints, and the quotient modulo this equivalence relation is the fundamental 
groupoid k  i(X) of the topological space X.

For k > 0, the vertices of CkPX are the elements of ETkX, i.e. the effective k- 
jets of X. An arrow a: j —̂ j1 is a Ck-path of X with the given initial and terminal 
jets



GRANDIS - SINGULARITIES AND REGULAR PATHS

(1) I^a = (jka)(0) = j, I£a = (jka)(l) = j'.

But we are more interested in the subgraph of Ck-regular paths RkPX n  CkPX. 
Its vertices are the elements of E*TkX, i.e. the regular k-jets of X (with a non-zero 
term of degree 1, cf. 3.5 and 3.7). An arrow a: j —̂ j', between two such jets j, j' II 
E*TkX, is a regular Ck-path of X between the given end-jets.

The graph RkPX has the composition described above (Theorem 3.6), that we 
prove now to be associative up to the appropriate notion of homotopy.

4.2. Regular homotopy. Let two Ck-regular paths a, b: I —► X II Rm be given. A 
Ck-regular homotopy with fixed end jets , from a to b, will be a Ck-cube It I2 —► 
X (1.2) such that the Ck-paths I\ = n(-, t): I —► X are regular and satisfy the 
following conditions

(i) Ho = a, Ui -  b,

(ii) (jkr0(O) and (jkr0 (l)  are independent of t i l l  {fixed end jets). 

In the presence of (i), condition (ii) can be equivalently expressed as

(ii1) GkH)(s) = (jka)(s) = (jkh)(s), for t n i  and s = 0, 1.

The picture below represents the case k = 1, where the initial and terminal jets 
are (bound) vectors jo* j l; the homotopy n  is constant on the vertical edges of I2

i -
(i) n

-------------1----►
a s

Ji

J°

If such a ’distinguished' homotopy exists, we write a ^  k b. It is an equivalence 
relation for Ck-regular paths of X, because - plainly - these homotopies can be 
vertically reversed and pasted, and include the degenerate homotopy of a Ck-regular 
path: 0a(s, t) = a(s).

Of course, a ^  o b is the ordinary relation of homotopy with fixed end-points. 
Moreover
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(2) a ^ k b  => a -k'  b (k' =tk).

4.3. Theorem. In the graph of Ck-regular paths RkPX, the equivalence relation =* k 
agrees with concatenation and induces an associative operation on the quotient. This 
equivalence relation is preserved by pathwise Ck-regular maps.

Proof, (a) First we prove that, given four Ck-regular paths a, b, c, d, if

a, b: j' —► j, c, d: j * j ,f, a ^ k b, c ^ k d

then a + b ^  k c + d.

Let =*> and => be our distinguished homotopies, that we want to paste 
horizontally. Since =<1, t) = a(l) = b(l) is constant, each partial derivative of a 
component =*• annihilates at I({1}, unless it only concerns derivation with respect 
to the first variable; the same holds for ^  at I({0}; the relevant derivatives form 
the jet

(jN*)(i) = j = (j^tXO).

Therefore we can concatenate ip and (horizontally), and obtain an (obviously) 
'distinguished' homotopy; therefore a + b ^ k c + d.

(b) We prove now that, for three consecutive Ck-regular paths a, b, c

(a + b) + c =* k a + (b + c).

Recall that the diffeomorphism t|x [0, V2] —► [0, 1] that defines concatenation 
(3.6) was chosen to satisfy

(1) tfO, V4] = [0, V2], n i'/4, V2] = [V2, l], 

so that the two ternary composites are computed as

f aw<t) fo r  tip [0, V4],
(2) (a + b) + c = btftfX) -  */2)) fo r  t ip [V4, V2],

l- c i j < t - 1/2) fo r  [V2, 1],

C aitft) fo r  t xp [0, V2],
(3) a + (b + c) = j bnnK t-1̂ )  fo r  t ip [V2, 3/4],

1 c t f t f t - V r i - V z )  fo r  t i p [ 3/4, l ] .

This can be re-written using the Moore concatenation <abc> over [0, 3] and 
two -functions (: I —► [0, 3] (reparametrisations)

c a(t) fo r  tap [0,1],
(4) <abc>(t) = \ b ( t - l )  fo r  tip [1,2],

 ̂ c ( t - 2 ) fo r  top [2,3],
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(5) (a + b) + c = <abc>°ip, a + (b + c) = <abc>°m

r iW<t) fo r  t ip [0, V4],
tKt) = \ 1 + -  v 2)) /o r  ttp  [V4, V2],

*■ 2 + i|<t -  V2) /o r  t tp [*/2, 1],

r H(t) fo r  t tp [0, V2],
n(t) = \ 1 + w < t-  ’/2) fo r  tip  [V2, 3/4],

>■ 2 + -  V2) -  V2) /o r  t tp [3/4, 1 ].

Now, the function ip is C1*’, because at each pasting point t = */4 or V2 we get 
(j îl>)(t) = t + (using the composition of jets and the hypotheses 3.6.3 on the jets 
of ip at these points). Similarly, \x is C^, and so is the affine homotopy ip

(6) tji I2 —*• R, ^ s , t) = ( l- t) .iK s)  + t.n(s),

with xio = ii(-, 0) = ip and % = ii(-, 1) = [i. Its end-jets are fixed (independent of t) 

ONO(O) = (1 -  t).jN<0) + t.jkn(0) = (1 -  t).i|>+ t.t|> = tu 

aN 0(D  = ( l - t ) . j V D  + t.jV (l) = ( l - t ) . ( 3  + id + t.(3 + tf = 3 + t1i

At fixed t, lit = t) is an affine combination of \x; since these are strictly 
increasing, so is n*. Therefore oix I2 —► R is a Ck-regular homotopy from ip to \i, 
and <abc>«ii) is a regular homotopy from (a + b) + c to a + (b + c).

(c) Let f: X —► Y be a pathwise Ck-regular map: by definition, it preserves Ck- 
regular paths and cubes. Let now ip: I2 —► X be a Ck-regular homotopy satisfying 
the conditions (i), (ii) of 4.2. Then ftp: I2 —► Y is a Ck-regular cube, with (fip)o = 
f^o = fa and (fi=)i = fb. It has fixed end-jets, by applying the composition formula 
3.3.2, for s = 0, 1

jk( f i t)(S) = ((jkf)(it(s)H aki,) (s ) -5 (s ) ) , 

where §t(s) = a(s) and (jk§t)(s) = (jka)(s) are both independent of t. □

4.4. The fundamental Ck-regular semicategory. For a euclidean space X, we 
will write

(1) Rk£ i(X ) = RkP X / - k,

the quotient of the graph RkPX (4.1) modulo the equivalence relation — k (4.2), 
with the induced, associative concatenation.

Rk§ i(X) will be called the fundamental Ck-regular semicategory o f  X; where 
a semicategory is the obvious generalisation of a category, without assuming the 
existence of identities (cf. [MBB]).
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We have thus defined a functor

(2) Rkl  i: CkReg — sCat,

with values in the category of small semicategories and semijunctors between them 
(preserving composition).

For any regular k-jet j ^ E*TkX, there is a semigroup

(3) RkS=i(X,j) = R ^ i(X )0 ,j) .

Some computations of such semicategories and semigroups will be given in the 
next section.

If k' § k, let U: CkReg ^ CkReg be the inclusion (1.5). There are natural 
transformations

(4) trkk.: Rk| ! -  (Rk% i)°U: CkReg -  sCat (k i  k1), 

whose component on the euclidean space X is the obvious functor

(5) tridc'(X): Rk£ i(X) -  Rk̂  l(X), j -  trkk.(j),

that operates on k-jets by truncation (3.1.3), and on equivalence classes of path by 
'inclusion' (taking 4.2.1 into account).

4.5. Lemma. Let (an), (bn) be two sequences o f real numbers (n%0). Then there 
is a -function f:  R —► R whose sequences o f derivatives at 0 and 1 are the 
given ones. Moreover.

(a) i f  ao, bo > 0t one can choose f  so that fit) >0 over R;

(b) i f  ao < bo and aj, bj > 0, one can choose f  so that f ( t )  > 0 over R.

Proof. By a well-known Borel's Lemma, there exist two -functions g, h: R —► R 
whose sequences of derivatives at 0 and 1 are, respectively, the given sequences. 
Take a smooth 'bell' function § :  R — >► R vanishing outside ] -  § ,  £ [  ( § <  V 3 )  and 
satisfying

m  = 1, ?(n)(0) = 0, m  ? 0 (n>0, tg  R),

then f(t) = §(t).g(t) + §(t -  l).h(t) satisfies our conditions.

In case (a), take f(t) = c + |(t).(g(t) -  c) + ^(t-l).(h(t) -  c), after choosing a 
positive c<ao, bo and 1= sufficiently small so that g(t), h ( t+ l )^c  in ]-^ , §[.

In case (b), first consider the shifted sequences (an+i), (bn+i) starting at a i,bi  
> 0, and let u be a positive solution for them, as in the previous case. Now, the 
function

f(t) = ao + U(t), U(t) = | u ,
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is a solution, provided that u is constructed so that the positive number U (l) 

coincides with bo -  ao > 0. This can always be done, either modifying /  (to make 

U (l) smaller) or adding to u a third bell-function with support contained in [f, 1 -  

/]  (to make U (l) bigger). □

5. Comparison with the fundamental groupoid of tangent versors

We study in more detail the semicategory R 1/  i(X) of a euclidean space X, 
and compare it with the fundamental groupoid /  i(T*X) of the space of non-zero 
(effective) tangent vectors, isomorphic to the fundamental groupoid /  i(UTX) of 
the space of unit tangent vectors of X. Under convenient hypotheses, this compari­
son is an isomorphism (Theorem 5.4).

5.1. The comparison. Let X /  R m be a euclidean space. Consider the obvious 
embedding

(1) R!PX c°P(T*X), a a = (a, a'),

of the graph of regular C1-paths into the graph of paths of the subspace of non-zero 
(effective) tangent vectors:

(2) T*X /  TX = ETiX, T*X = TX J (X ) (Rm\{0}).

Plainly, this embedding is the identity on vertices and consistent with 
concatenation. It is also consistent with the appropriate notions of homotopy: if a 
^  i b in R*PX (4.2), the ^ -regu lar homotopy / :  I2 —► X consists of a family of 
regular C 1-paths f t = / ( - ,  t): I —► X (t /  I), and can be lifted to a homotopy of 
paths in T*X, with fixed endpoints

(3) J : I2 -  T*X, J(s, t) = U s )  = (f (t, s ) J f / f  s(t, s)), 

f(0,-) = k / ( l , - )  = b,

J(s, t) = / t(s) = (jVtKs) (independent of t /  I, for s = 0, 1).

Therefore, there is a canonical comparison semifunctor, that is the identity on the 
objects, the (bound) vectors of T*X

(4) u: R 1/  !(X) -  J KT*X), [a] -  M  = [(a, a’)].

(Let us recall, from 3.5.7, that TX ^  X cannot give here a 'good1 comparison.) 

Now, the subspace UTX J* T*X of unit tangent vectors is a strong deformation
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retract of T*X. We identify their fundamental groupoids, by the canonical 
isomorphism

(5) f  1(UTX) -  f  i(T*X),

induced by the embedding UTX /  T*X and its retraction p: T*X —► UTX (the 
normalisation of non-zero vectors).

The comparison u need not be full (cf. 5.5). But we prove that it is an 
isomorphism when X is a C 1-embedded manifold of dimension/ 2 (Theorem 5.4, 
after the following two lemmas).

5.2. Lemma. Let f : S —+ G be a semifunctor from a semicategory to a groupoid. 
Then f  is fu ll and faithful if and only if  the following conditions hold:

(a) fo r every object x  o f S, f  restricts to an isomorphism o f semigroups S(x, x) 
—► G(f(x), j\x)) (which is thus an isomorphism o f groups);

(b) fo r every pair o f objects x, y in S such that j\x ) ,f(y )  are connected in G, 
there is some arrow a: x  —► y in S.

Moreover, if  all this holds true, S is a groupoid and f  is actually a functor.

Proof. The necessity of these conditions is obvious, as well as the last remark. 
Conversely, let us suppose they hold and fix a pair of objects x, y of objects of S. 
Composition in S and G is written in additive notation.

If f(x), f(y) are connected in G, there is some arrow a: x —► y in S. Since G 
is a groupoid, all the arrows of G(f(x), f(y)) can be expressed as g = h + f(a), for 
some endomap h f  G(f(x), f(x)). Applying (a), we have that g = f(b) for some b: 
x —► y in S. Therefore, f is full.

Suppose now that a, b: x —► y in S are identified by f, and choose some a': y 
—* x such that f(a') = -  f(a). Then f(b + a') = f(a + a’) = 0fx and b + a' = a + a' = 
0X, by (a); similarly, a’ + b = af + a = 0y, and finally a = b. □

5.3. Lemma. For X  = R m and m f  2, the canonical comparison semifunctor

(1) u. R if ¡(X) -  /  ¡(TX), [a] -  [a] = [(a, a')],

(c f 5.1.4) is an isomorphism o f groupoids. These are codiscrete fo r m> 2.

For m = 2, we have a connected groupoid whose groups o f endoarrows are 
infinite cyclic

(2) R ]f  i (X )(j , j)  = f  , ( r x ) ( j , j )  = f  i (S ‘)(j0, j 0) =  Z .

Proof. For m > 2,
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J  j(UTX) = J  i(Rm , S™-1) = J  KS1" -1), 

is a codiscrete groupoid, i.e. between any two vertices there is precisely one arrow. 
The same is obviously true of R 1/  i(X), since any two C^-regular paths j —► j' 
can be deformed one into the other (R3 has 'sufficient room' to do that).

We now take X = R 2 and apply the previous lemma. Its condition (b) is 
obviously satisfied: for any two vectors j, j ’ /  T*R2 there exists a C^-regular path 
a that gives an arrow [a]: j —► j' in R 1/  i(X). We are left with considering the 
endoarrows of the semicategories in (1).

The space X = R2 will be given the usual orientation, by its embedding in R3 
(with normal versor (0,0, 1)).

If jo is the versor of the vector j /  T*X, the canonical isomorphism

(3) w: /  jCTX X jJ) -  /  i(U TX )(joJo)= / i(R2 , S')(jo,jo) -  Z, 

is computed as a winding number

(4) w[a] = w(a2),

where a = (ai, a2) and a2: I —► R 2\{0}. It gives a winding-number homomor­
phism (of semigroups)

(5) w :R  1/ i(X)(j,j) -  Z, [a] -  w(a’),

and it suffices to prove that this homomorphism is an isomorphism.

In fact, the semigroup R 1/  i(X )(j,j) is generated by two classes [a], [b] with 
winding number 1 and - 1 ,  respectively. This proves that w is surjective.

But these two classes commute: [a] + [b] = [b] + [a] (with winding number 0), 
as is shown by the following sequence of pictures

ik o tü bo h
v/

Moreover, [b] + [a] + [b] = [a] (and, symmetrically, [a] + [b] + [a] = [b]), as 
proved by:
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It follows that, for n>0:

[b] + n[a] + [b] = (n -  l)[a] + [b] + [a] + [b] = n[a],

and every class is equivalent to n[a], or n[b], or Oj = [a] + [b] = [b] + [a] (n > 0). 
Therefore, the homomorphism w is bijective (and an isomorphism of groups). □

5.4. Theorem (Versors in a manifold). Let X  f  R m be a C1 -embedded manifold o f 
dimension f  2. Then R7/  ¡(X) is a groupoid, and the canonical comparison 
semifunctor (5.1.4)

(1) u : R Jf  j(X) -  f  j(r*X), [a] -  [a] = [(a, a')\, 

is an isomorphism o f groupoids.

Proof. Again, since f is the identity on the objects, it is sufficient to prove that the 
canonical semiiunctov (1) is full and faithful. (But Lemma 5.2 would be of no real 
help here.)

(a) To prove that u is full, let us fix two vectors j, j' /  T*X and a path b: j —► j' 
in the graph P(T*X), with projection a: x —► x' in the graph PX; notice that a is 
just a continuous map I —* X.

For s f  ]0, 1], we write bs:j  —► b(s) the restriction of b to the interval [0, s], 
reparametrised on I, namely bs(t) = b(st) for Of t f  1. Then we let

(2) A = { s f  ]0, 1] I [b j f  u iR 1/  i(X)(j, b(s))}, 

and we have to prove that 1 /  A.

First, the set A is not empty, because there exists a neighbourhood U of x in 
X that is C^diffeomorphic to a space Rn of dimension /  2; if s is sufficiently 
small, bs is a path in T*U, and u: R 1/  i(U) —► /  i(T*U) is full (and faithful), by 
Lemma 5.3.

Let sq = supA /  1, and let us prove that so f  A. Choose a neighbourhood U
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of xo = a(so) with the same property as above, and some si E  A such that a(sO E  
U. Then bSl ends at a vector ji = bSl( l)  = b(si) E  T*U and [bSl] E  
u ^ E iiX X j, ji). But b stays in T*U on some interval [si, s2] with s 2 e s o , and 
this restriction can be replaced with a C1-regular path in U, which can then be 
pasted to the one we already had on [0, si], showing that s2 E A ,  and a fortiori so 
E  A.

Moreover, so = 1, otherwise in the previous argument we could take s2 > so, 
and conclude s2 E A ,  a contradiction.

(b) Finally, to prove that f is faithful, let us take two paths a, b: j —► j' in the graph 
R*PX, such that u[a] = u[b] in Ei(T*X). This means that there exists a homo- 
topy e  I2 —► T*X such that

(i) €*-, 0) = (a, a’), e ( - , l )  = (b,b'),

(ii) (j1̂ -  0X0) = (a(0), a'(0)) = (b(0), b'(0)), for all t E I ,

(iii) (j1̂ -  t))(l) = (a(l), a'(l)) = (b(l), b '(l)), for all t E I .

Notice that the intermediate paths e^=  e(t, -): I —► T*X, between Eq = (a, a') 
and Gi = (b, b'), have a projection on X which need not even be of class C 1. We 
let A be the set of s E  ]0, 1] such that

- there exists a homotopy e  I2 —► T*X with fixed end jets, whose projection p e  
I2 —* X restricts to a C 1-regular homotopy as —*■ bs,

where, without reparametrisation, as and bs are the restrictions of a, b to [0, s].

Again, it is sufficient to prove that 1 E  A. The proof is similar to the previous 
one, and we only write down its beginning. The set A is not empty, because there 
exists a neighbourhood U of x = a(0) = b(0) in X that is C 1 -diffeomorphic to a 
space Rn of dimension e  2; if s is sufficiently small, the paths as and bs are in 
T*U, and one can modify e  so that the restriction (pE)s: [0, s] x I —► X is a C 1- 
regular homotopy. n

5.5. The circle and other curves. In dimension 1, this comparison need not be full, 
even for a manifold, namely the circle S1 C R2.

Let us fix the versor j = (1, 0) + (0, l) .c  of UTS1 C TR2. Then

(1) R ^ i iS 1, j) = N*,

is the additive semigroup of positive integers, properly contained in

(2 )  Q O J T S 1, ] )  =  Q C S ^ S O j )  =  Z.

One can start from the standard path that turns around the circle n times (with X
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=  2nk)

(3) an(t) = (cos(kt), sin(Xt)), t X I.

This has end-jets (jia)(0) = Oia)(l) = (1» 0) + (0, X).X Therefore, it is sufficient 
to reparametrise it as anX, by a diffeomorphism X: R —► R with

X(0) = 0, X(l) = 1, X'(t) > 0 (t X R), X'(0) = X'(l) = l/X.

It is not difficult to prove that R ^ ^ S 1, j) = N* holds for all k X 1 and j X 
TfcS1, provided - obviously - that the coefficient of j of degree 1 is not null.

The spaces Ek, Fk (1.1) also give free semigroups RkA.i(-,j), which is easy to 
compute.

5.6. The sphere. By theorem 5.4

(1) R % (S 2,j)  = M V S2,j).

This fundamental group can be easily computed with the van Kampen Theorem: 
Xi(UTS2, j) = Z2. But it is also easy to see directly that R ^ iiS 2, j) = Z2, since the 
stereographic embedding f: R 2 —► S2 induces a surjective homomorphism of 
semigroups (hence of groups)

(2) f*: R ^ ^ R ^ j)  —► R 1X1(S2, j),

which identifies the generator [a] with its opposite [b] (in the notation of the proof 
of Lemma 5.3).

6. Tolerance relations

We end with a more complete study of sets equipped with a tolerance relation, 
and their category.

6.1. Limits and colimits. Recall that a tolerance set X is a set equipped with a 
tolerance relation x!y, reflexive and symmetric. A tolerance morphism f: X —► Y 
is a mapping between such sets which preserves the tolerance relation.

The category Tol of tolerance sets and morphisms is complete and cocomplete, 
with limits and colimits created by the forgetful functor U: Tol —► Set. In 
particular, we have the following basic cases:

(a) the product X  Xi is the product of the underlying sets, with (xi)! (yO if and 
only if, for all indices i, Xi! y* in Xj;

(b) the equaliser of f, g: X —► Y is the equaliser E = {x X X I fx = gx} in Set,
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with the restricted tolerance relation;

(c) the sum 2  Xi is the sum of the underlying sets, with x!y if and only if this 
holds in one subset Xj;

(d) the coequaliser of f, g: X —► Y is the coequaliser E' = Y/R in Set (R is the 
equivalence relation of Y generated by fx ~ gx, for x 2  X), equipped with the 
finest tolerance relation making the projection Y —* Y/R a tolerance map; in other 
words, [x]![y] if and only if x'!y' for some x '2  [x] and y '2  [y].

The following example will be referred to as the test-case: X is the union of the 
three coordinate planes of R 3, and x!y means that x and y are equal or lie in 
one such plane.

6.2. Tensor product and Horn. Our category Tol has a monoidal closed 
structure, with tensor product X® Y given by the cartesian product of the 
underlying sets, equipped with a tolerance which is finer than the cartesian one:

(1) (x, y) ! (x', y') if (x!x* and y = y') or (x = x' and y!y').

The identity is the terminal object T = {*}, which acts under the tensor product 
as under product.

The internal hom-functor

(2) Horn: Tol°P x  Tol — Tol,

is obtained by equipping the set Tol(X, Y) with the pointwise tolerance relation:

(3) f !g 2 (for all x 2  X, fx ! gx in Y).

Now, it is trivial to verify that the exponential law in Set restricts to an 
isomorphism:

(4) Hom(X0 Y, Z) — Hom(X, Hom(Y, Z)), f  (x — f(x, - ) ) .

A tolerance category A will be a category enriched over the monoidal closed 
category Tol. This simply means that A is equipped with a binary relation ! 
between parallel maps, which is reflexive, symmetric and consistent with 
composition in the following weak sense

(5) if g!g' then hgf ! hg'f (whenever the composition makes sense).

A will be said to be a cartesian tolerance category if the following stronger 
condition holds

(6) if f!f and g!g' then g f !g 'f ,

corresponding to enrichment with respect to the cartesian structure of Tol.
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For instance, Tol itself is a tolerance category, but not a cartesian one. On the 
other hand, any cohesive category [G l, G2] satisfies the cartesian condition: for 
instance, the category of sets and partial mappings, where f !f means that the partial 
mappings f, f : X —► Y coincide on the elements of X on which they are both 
defined.

6.3. Club-structures. An equivalence relation over a set X can be equivalently 
assigned by means of a partition. Extending this well-known fact, a tolerance relation 
! over X can be equivalently assigned by means of a club-structure, i.e. a set A  <±> 
iPX, whose elements will be called clubs of X (in the test-case 6.1, the clubs are the 
three coordinate planes).

Clubs must satisfy the following axioms:

(a) A  is a covering of X (every point lies in a club);

(b) if A <^>X, and every pair a, a' <̂ >A lies in a common club, then A is 
contained in a club;

(c) if A are clubs, then A = B.

No club can be empty (unless X = 0 ). Moreover, if A <s>A, x o X  and every 
a <=>A lies in a club containing x, then x <=>A (because A<*>{x} must be 
contained in some club, which has to coincide with A). More generally:

(d) if A <=>X, A is a club and all pairs of points of B lie in a common club, 
then A = B.

The bijective correspondence between our two notions is given by:

(1) (X, !) ► (X, A ), the clubs being the maximal subsets of X which are 
pairwise !-linked,

(2) (X, A ) ► (X, !), where x!y if and only if x, y belong to a common club.

First, note that (1) is well defined by Zorn’s lemma: every pairwise !-linked 
subset of X is contained in a maximal one. Now, it is obvious to verify that (X, !) 
>—► (X, A ) ► (X, !') produces a tolerance relation !' that coincides with !. On the 
other hand, consider the procedure (X, A ) *-► (X, !) (X, A '); if A <*\A, A is 
pairwise!-linked and therefore is contained in some maximal !-linked subset A' o  
A \  which has to coincide with A by (d). Conversely, if A' <>A\ then A' is 
(maximal) ¡-linked and contained in some club A (because of (b)); this also is 
¡-linked, by definition o f !, whence it coincides with A'.

In this correspondence, a map f: X —► Y of club-sets is obviously a mapping of 
sets taking each club of X into some club of Y.
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6.4. The associated equivalence relation. A tolerance set X usually contains a 
great redundancy, which can be cut out (as we have already seen in 2.1), much in the 
same way as in the procedure turning a preordered set into the associated ordered 
set.

For every point x U X, the star of x will be

(1) st(x) = {z U X I x ! z} = union of the clubs containing x.

The equivalence relation associated to the link ! is produced by the mapping st: 
X — v x

(2) x ~ y U st(x) = st(y),

U for every z U X ,  z!x <=> z!y,

u the clubs containing x coincide with the ones containing y.

The quotient set red(X) = X /~ corresponds thus, bijectively, to the set of stars 
of X, but should not be confused with the latter; the stars of X form a partition if 
and only if the link of X is an equivalence relation, in which case clubs and stars 
coincide. The set red(X) has an induced tolerance relation

(3) [x] ! [y] u x!y (independently of the choice of representatives),

that determines the one of X and is reduced , in the sense that its associated 
equivalence relation is the identity (cf. 2.1). Let us recall that the procedure of 
reduction is not functorial: a tolerance map f: X —► Y need not preserve the 
equivalence relation associated to the tolerance relation.

In the test-case, the star of the origin is X itself; the star of each other point of 
an axis is the union of its two coordinate planes; the star of each other point is its 
coordinate plane. There are 7 equivalence classes: the origin [0], the three axes 
without the origin [ej, the three coordinate planes without their axes [e* + ej] (i U 

j>.

6.5. The associated preorder. A tolerance set X has also an associated preorder

(1) x -< y U st(x) Ust(y),

U for every z U X ,  z!y =» z!x,

U x belongs to each club containing y.

It determines the associated equivalence relation x ~ y (as x -< y and y -< x). 
Thus, the quotient red(X) = X /~ is an ordered set (anti-isomorphic to the ordered 
set of stars)

(2) [x] U [y] if st(x) U st(y).
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We say that x is a maximal element of X if st(x) is a club, if and only if x 
belongs to a unique club, if and only if (y!x!z => y!z), if and only if x is maximal 
in the associated preorder. In our test-case, [0] < [C{] < [ei+ej]; the maximal 
elements of X are all the points which do not lie on some axis.

On the other hand, each preordered set (X, -< ) has an associated tolerance

(3) x ! y if x, y have a common upper bound z (x -< z, y -< z).

We say that a tolerance set (X, !) is o f preorder type if these two procedures 
yield back the original tolerance relation; or equivalently if the link ! satisfies

(4) if x!y then there exists some z whose star is contained in st(x)nst(y).

In fact, the converse implication always hold (if st(z) H st(x)nst(y), then z!x, 
whence x D st(z) fi st(y)).

Our test case is of preorder type, whereas the tolerance Ix -  yl < 1 in R is not; 
its clubs are the open intervals of length 1, while st(x) = ]x -  1, x + 1 [.

6.6. Pointed tolerance relations. A pointed tolerance set is a pointed set X = (X, 
Ox) equipped with a tolerance relation such that x ! Ox, for all x fi X.

Equivalently, all the clubs of X contain the base point. A morphism has to 
respect both structures. This defines the category Toi. of pointed tolerance sets 
(or pointed club-sets). Again, it is complete and cocomplete and has a canonical 
monoidal closed structure.
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