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GEOMETRIE DIFFERENTIELLE CATEGORIQUES

ON SYNCHRONIZED RELATIVELY FULL
EMBEDDINGS AND Q-UNIVERSALITY

To Jiri Addmek on his 60th birthday

by V. KOUBEK and J. SICHLER

Abstract

M. E. Adams et W. Dziobiak ont démontré que toute quasi-variété ff-
algébrique universelle de systemes algébriques de signature finie est Q-univer-
selle. Dans cet article on introduit la notion de plongement synchronisé rela-
tivement plein qu’on utilise ensuite afin de modifier leur résultat pour les
quasi-variétés d’algebres.

1 Introduction

We aim to show a new connection between two algebraic structures associated with
quasivarieties of algebras. All needed definitions are given in the next section.
First, for any quasivariety Q, the homomorphisms between its members form a
concrete category. The richness of the categorical structure is reflected in the notion
of algebraic universality studied in the monograph [18] by A. Pultr and V. Trnkova.
When ordered by inclusion, the subquasivarieties of a given quasivariety Q form
a lattice we denote QLat(Q). This is the second algebraic structure associated with
Q. Questions about the size of QLat(Q) or lattice identities satisfied in QLat(Q)
motivated M. V. Sapir [19] to define and exhibit Q-universal quasivarieties, and
W. Dziobiak [9, 10] to introduce what is now called an A-D family of objects of Q.
A survey of these notions and results concerning them is given in [2]. M. E. Adams

1991 Mathematics Subject Classification. 08C15, 18B15.

Key words and phrases. quasivariety, Q-universality, almost full embedding, relatively full em-
bedding, ff-alg-universality.

Both authors gratefully acknowledge the support of the NSERC of Canada and of the project
MSM 0021620838 of the Czach Ministry of Education. The first author also acknowledges the support
of the grant 201/06/0664 provided by the Grant Agency of Czech Republic.

- 289 -



KOUBEK & SICHLER - ON SYNCHRONIZED RELATIVELY FULL EMBEDDINGS;;;

and W. Dziobiak [3] linked the latter two properties by showing that every quasiva-
riety Q containing an A-D family is also @QQ-universal. The converse implication is
still an open problem, originally stated by M. E. Adams and W. Dziobiak.

Problem 1.1. Is there a Q-universal quasivariety containing no A-D family?

In [4], M. E. Adams and W. Dziobiak proved the following remarkable and quite
surprising result connecting the two algebraic structures associated with a quasiva-
riety of algebraic systems.

Theorem 1.2 [4]. Any finite-to-finits algebraically universal ( ff-alg-universal)
quasivariety of algebraic systems of finite similarity type contains an A-D family
and hence it is Q-universal. O

In [16], the present authors extended this result as follows.

Theorem 1.3 [16]. Any almost ff-alg-universal quasivariety of algebraic systems
of finite similarity type contains an A-D family and hence it is Q-universal. O

Almost universality is a special case of relative universality, see Section 2. Here
we aim to modify the latter result for quasivarieties of algebras. We assume that

(%) Qs a quasivariety of finitary algebras and V is a proper subvariety of Q such
that there exists a synchronized Z(V)-relatively full embedding F' from the
category of all undirected graphs into Q such that F'f is surjective for every
graph quotient homomorphism f and F'G is finite for every finite graph G.

Theorem 1.4. Any quasivariety Q satisfying () contains an A-D family and hence
it is Q-universal.

As already noted, all needed notions are reviewed in Section 2 below, and the
proof of Theorem 1.4 is given in Section 3. It is based on the fact that any subquasi-
variety R of a quasivariety Q is an epireflective full subcategory of Q. In Section 3,
it is also shown how Theorem 1.4 incorporates earlier results of [6, 7, 8].

2 Basic notions and their context

Alg-universality. A category K is alg-universal if any category of algebras and all
homomorphisms between them can be fully embedded into K. This is equivalent to
the fact that there exists a full embedding from the category GRA of all undirected
graphs and all graph homomorphisms into K. Moreover, if K is a concrete category
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and there exists a full embedding F' : GRA — K such that the underlying set of
F'G for every finite graph is finite then we say that F* preserves finiteness and that
K is ff-alg-universal. If K is a concrete category then any K-object A with a finite
underlying set is called finite. Next we give several well-known properties of alg-
universal categories. To do this, we say that a category K is a monoid universal if
for every monoid M there exists a K-object A such that the endomorphism monoid
of A is isomorphic to M.

Theorem 2.1 [18]. (a) Any concrete alg-universal category K is monoid universal;
and if K is ff-alg-universal, then for every finite monoid M there exists a finite
K-object A such that the endomorphism monoid of A is isomorphic to M.

(b) If K is alg-universal, then for a proper class I there exists a family {F; :
K — K | i € I} of full embeddings such that F; A is not isomorphic to F;B for any
K-objects A and B and for any distinct i, j € I. For any set I there exists a family
{F; : K — K | i € I} of full embeddings such that there exists no K-morphism
between F; A and F;B for any K-objects A and B and for any distinct i, j € I.

(c) If K is ff-alg-universal and I is a countable set, then there exists a family
{Fi : K — K | i € I} of full embeddings F; preserving finiteness such that there
exists no K-morphism between F; A and F;B for any K-objects A and B and any
distincti,j € I. O

Theorem 2.1 provides a tool for proving that a given category K is not alg-
universal. For example, if K is a concrete category such that for every set X there
exists only a set of non-isomorphic K-objects with a given underlying set X and if
there exists a cardinal « such that every K-object whose underlying set has cardi-
nality greater than o has a non-identity endomorphism, then K is not alg-universal.

Hence for example the variety of lattices or the variety of monoids or the cate-
gory of topological spaces and continuous mappings are not alg-universal because
of the existence of constant morphisms. On the other hand, both the variety of
semigroups [13] and the variety of (0,1)-lattices ([11] or [12]) are alg-universal.

Thus we can say that monoids or lattices have sufficiently rich structure to be
‘close’ to being alg-universal while still permitting constant morphisms, although
these categories are not alg-universal in the strict sense. This motivates a notion of
almost alg-universality that ignores the constant morphisms. Next we define a more
general concept expressing this idea.

Let K be a category. A class C of K-morphisms is an ideal if f o g € C for
K-morphisms f : a — b, g : b — ¢ whenever f € C or g € C. A faithful functor
F : L — Kis called C-relatively full embedding if
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(e) Ff ¢ C for any L-morphism f;

(o) if f: Fa — Fbis a K-morphism for L-objects a and b then either f € C or
f = Fg for some K-morphism g : a — b.

Thus F is a full embedding exactly when it is C-relatively full embedding for
C = 0. Observe that, if FF : L — K is a C-relatively full embedding for some
ideal C then f is an L-isomorphism if and only if F' f is a K-isomorphism. If there
exists a C-relatively full embedding F' : GRA — K then we say that K is C-
relatively alg-universal. If, moreover, K is concrete and F’ preserves finiteness, then
K is called C-relatively ff-alg-universal. Clearly, K is C-relatively alg-universal (or
C-relatively ff-alg-universal) for C = 0 just when K is alg-universal (or ff-alg-
universal, respectively). If K is conrete category and C is the ideal consisting of all
K-morphisms with constant underlying mapping then we say that F : L — K is
almost full embedding instead of C-relatively full embedding and that K is almost
alg-universal or almost ff-alg-universal instead of C-relatively alg-universal or C-
relatively ff-alg-universal. The variety of lattices [20] and the variety of monoids
[17] or [15] are almost alg-universal but not alg-universal. A second consequence of
Theorem 2.1 is that a category K which is not monoid-universal is not alg-universal.
This fact was exploited by M. E. Adams and W. Dziobiak in [5], where they proved
that the variety of monadic Boolean algebras is not alg-universal, yet contains a
proper class of non-isomorphic algebras whose endomorphism monoids consist of
the identity map alone.

Theorem 2.1 naturally leads to the following question.

Problem 2.2. Is there a variety V of algebras which is monoid universal but not
alg-universal?

We shall consider ideals of a special type. Let O be a class of K-objects. Then
Z(0) denotes a class of all K-morphisms f : a — b such that there exist K-
morphisms g : @ — cand h : ¢ — bwithc € O and f = hog. Clearly,
Z(0) is an ideal of K called an object ideal of O. In what follows, we shall consider
even more specific object ideals.

Q-universality. A class Q of algebraic systems of a finitary type A is a quasivariety
if it is closed under all products, all ultraproducts, all subsystems and all isomorphic
images. For any class K of algebraic systems of type A, there exists the least quasi-
variety Q containing K, which we shall denote Q = Qua(K). Quasivarieties will be
viewed as categories whose morphisms are all homomorphisms, that is, mappings
preserving all operations and relations.
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M. V. Sapir [19] defined a quasivariety Q of finite type A as (Q-universal if for
every quasivariety R of finite type the lattice QLat(R) is a homomorphic image of
a sublattice of QLat(Q).

Let P(wp) be the set of all finite subsets of natural numbers and P (w) = P(wo)\
{0} the set of all finite non-empty subsets of natural numbers. W. Dziobiak [9, 10]
studied families {S4 | A € P(wp)} of finite algebraic systems of a given type
A we now call Adams-Dziobiak families (or A-D families) defined by these four
conditions:

(pl) Sy is the terminal algebraic system;
(p2) if A= BUC for A. B,C € P(wp), then S 4 € Qua({Sg,Sc});
(p3) if A € P(w) and B € P(wp) with S 4 € Qua({Sg}), then A = B;

(p4) if U,V € Qua({S4 | A € P}) are finite algebraic systems for some finite
P C P(w) and if there exists an injective homomorphism f : S4 — U x V
for some A € P(w), then there exists an injective homomorphism g : S4 —
U or there exists an injective homomorphism g : S4 — V or there exist
B, C € P(w) and injective homomorphisms gg : Sg — U and g¢ : S¢ —
VwithA=BUC.

We recall some known results.

Theorem 2.3. (a) If Q is a Q-universal quasivariety then QLat(Q) has cardinality
280 and the free lattice over a countable set can be embedded into QLat(Q). Thus
QLat(Q) satisfies no non-trivial lattice identity [2].

(b) If a quasivariety Q contains an A-D family, then the lattice of all ideals of
the free lattice over a countable set can be embedded into QLat(Q) [3]. O

Thus to prove that a quasivariety Q of finite type is Q-universal, it suffices to
prove that Q has an A-D family. We shall study only quasivarieties Q of algebras.

In Section 3 we give certain conditions sufficient for the existence of an A-D
family in a quasivariety of algebras of finite type. For this we use factorization
systems and epireflection.

Factorization systems and epireflections. For a category K, let £ be a class of
K-epimorphisms and let M be a class of K-monomorphisms. We say that (£, M)
is a factorization system of K if £ and M are closed under composition, f € £ENM
if and only if f is a K-isomorphism, and for every K-morphism f : a — b there
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exist unique, up to a commuting isomorphism,g:a - c€ fandh:c—be M
with f = h o g, see [1]. Any factorization system has the diagonalization property.
We formulate it for categories with products. If K is a category with products and
an (€, M)-factorization system, then we write {f; : a — b; | i € I} € M if the
morphism f : a — [[;c; b; such that f; = ;0 f forall i € I where 7; : Hjel b; —
b; is the i-th projection belongs to M. Then the diagonalization property says: if
giof=kiohforalli € I where f:a—b€E&, {gi:b— c;|i€ I}isafamily
of K-morphisms, h : a — d is a K-morphism and {k; : d — ¢; | i € I} € M then
there exists a K-morphism [ : b — dsuchthath = lo fand g; = k;ol foralli € I.
Ifhe&thenle & andif {g; |i€ [} € Mthenl € M.

We say that a family {f; : A — A; | i € I} is separating if for distinct
a,b € Athere exists i € I with fi(a) # fi(b). If K is a concrete category then
a family {f; : @ — b; | i € I} of K-morphisms is separating if the family of
underlying mapping is separating. For concrete categories K and L we say that a
functor F' : K — IL preserves separating families if {F' f; : Fa — Fb; |i € I} isa
separating family in L. whenever {f; : a — b; | ¢ € I'} is a separating family in K.

For a concrete category K, let Injk consist of all K-homomorphisms such that
the underlying mapping is injective and Surjg consist of all K-morphisms such
that the underlying mapping is surjective. Clearly, every morphism from Injg is
a monomorphism of K and every morphism from Surjk is an epimorphism of
K. If (Surjgk.Injk) is a factorization system of K then we say K has a concrete
factorization system and (Surjg, Injgk) is a concrete factorization system of K.
Clearly, for every quasivariety Q of algebras (Surjg, Injg) is a concrete factor-
ization system of Q (because every bijective homomorphism is an isomorphism).
Observe that a family {f; : A — B; | i € I} of Q-homomorphisms is separating
if and only if it belongs to Injg, i.e. if the homomorphism f : A — [],c; B; with
fi = f om has an injective underlying mapping where m; : Hje ;B; — B;is
the i-th projection for all ¢ € I. Thus for a concrete category K we shall say that
a family {f; : A — B; | i € I} of K-morphisms belong to Injk just when its
corresponding family of underlying mappings is separating. A functor F : Q — R
between quasivarieties Q and R preserves surjectivity if F/(Surjg) C Surjg.

If Q is a quasivariety of algebraic systems and R is a subquasivariety of Q (of
the same type) then, by Theorem 10.1.2 from [14], R is an epireflective subcategory
of Q. This means that for every algebraic system A € Q there exists a surjective
homomorphism p4 : A — RA where RA € R such that for every homomorphism
f A — C where C € R there exists exactly one homomorphism f* : RA — C
with f = f* o ps. Since R is a full subcategory of Q then p4 is the identity
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morphism exactly when A € R. Then R : Q — R such that Rf = (pp o f)*
for every homomorphism f : A — B in Q is a functor which is a left adjoint to
the inclusion functor from R to Q. We say that R is an epireflection. Observe that
R(Surjg) C Surjg.

A quasivariety Q of algebras closed under homomorphic images is a variety. If
Q is a quasivariety of algebras and V is a subvariety of Q then a homomorphism
f: A — B € Q belongs to the ideal Z(V) if and only if Im(f) € V.

3 Sufficient conditions for ()-universality

Definition. Let Q be a quasivariety of finitary algebraic systems, let V be a proper
subvariety of Q and let R : Q — V be the corresponding epirefiection. For any
object A € Q, let A denote the underlying set of A and let po : A — RA
denote the surjective Q-morphism from the epitransformation p. Let F : K — Q
be a Z(V)-relatively full embedding. Let S € V be an algebraic system with the
underlying set S. We say that F' is S-synchronized and call S its synchronizer if for
every K-object k there exists an injective mapping p from S to the underlying set of
RFk such that Im(uy) is an induced subobject of RF'k and . is an isomorphism
of S onto the subobject of RF'k on the set Im(yx), and for every K-morphism
f: k1 — ko we have

(s1) if Ff is injective on (prk, ) "1 (Im(pk, ), then F f is injective;
(s2) REfopy, = Hkgs

(s3) if F'f € Surjg and A; is the underlying set of RFk; for i = 1,2, then every
mapping h : Ao — A; such that RFf o h = 1,4, is a homomorphism from
RFksto RFky;

(s4) for every K-object k, if s is an element of the underlying set of RF'k such
that s ¢ Im(uy) then ppi {s} is a singleton.

Next we interpret the condition (s3) for algebras.

Proposition 3.1. Let Q be a quasivariety of algebras of a finitary similarity type A,
let YV be a proper subvariety of Q and let F : K — Q be a functor. Then (s3) holds
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exactly when

(o) if Ff is surjective and for every s € A with |RFf~*{s}| > 1,
if oprk,(a1,a2,...,an) = s for an mn-ary operation o and
a1,a,...,an, € Ay, then s = a;, for some iy € {1,2,...,n}
and k(s) = ogrk,(k(ar),k(az2),...,k(ay)) for every mapping k :
{a1,a9,...,an} — A; such that RFf o k(a;) = a; for all i €
{1,2,...,n}.

Proof. Assume (s3). Let s = ogrpr,(a1,a2,...,a,) for some o € A, let
ai, g, ..., an,s € Agand |[RF f~1{s}| > 1. Leth : Ay — A; be amapping such
that RF foh is the identity mapping. Then h(s) = orrk, (h(a1), h(az),. .., h(ay)).
If s ¢ {a1,a9,...,a,} then there exists a mapping h’' : A» — A; with RFfoh =
RFf oM, h(s) # h'(s) and h(t) = K/(t) forall t € Ay \ {s}. Hence h'(s) #
orFk, (W' (a1),h'(az), ..., (ay,)) and this contradicts the fact that b’ : RFky —
RFk; is a homomorphism. Thus there exists i € {1,2,...,n} with a;, = s. If
k : {a1,a2,...,an} — A; is a mapping such that RFf o k(a;) = a; for every
i € {1,2,...,n} then there exists a mapping h : Ay — A; such that RFfoh
is the identity mapping of Az and h(a;) = k(a;) for all i = {1,2,...,n}. But
h : RFky — RFk; is a homomorphism, by (s3), and hence k(s) =
ORFk, (k(a1), k(az2),....k(ay)) because s = a;,. Whence the condition (e) holds.

For the converse, assume (o) and let h : A2 — A; be a mapping such that
RF f o h is the identity of Ay. Choose an n-ary operation o of type A and
a1,a2,...,an, € Ay. Write s = ogpi,(ai,az,...,an). First we assume that
|[RFf~1(s)| > 1. Then (e) gives an ig € {1,2,...,n} with s = a;, and h(s) =
orFk, (h(a1),h(az),...,h(an)), as required. From Ff € Surjg we infer that
RFf € Surjg, and hence |[RF f~!{s}| = 1 is the only remaining case. If

t = oprk, (h(a1). h(az),. .., h(a,))

then
RF f(t) = orrk,(RF f(h(a1)), RF f(h(a2)), ..., RF f(h(an)))
= ORFky(Q1,02,...,an) =8
and hence ¢t = h(s). Thus h is a homomorphism, and the proof is complete. O

Remark. Observe that if F' : K — Q is an almost full embedding then F is synchro-
nized Z(T)-relatively full embedding for the trivial variety T. Indeed, its synchro-
nizer S is a singleton algebra and yy is the identity automorphism of S for every
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K-object k. Clearly, the conditions (s1)-(s4) are satisfied. And F' : K — Q s a full
embedding exactly when F is an almost full embedding and for every K-object k
there exists no Q-morphism from the terminal object of Q into F'k.

Let Ng be a poset viewed as a category whose objects are sets from the set
P(wp) of all finite subsets of w and there exists an No-morphism from A € P(wp)
into B € P(wp) if and only if B C A. Let N be the full subcategory of No whose
objects belong to the set P(w) = P(wp) \ {0} of all non-void subsets of w. For
A, B € P(w) with B C A, let n4 g denote the unique N-morphism from A to B.

Theorem 3.2. Let Q be a quasivariety of finitary algebras and letV be a subvariety
of Q. If there exists a synchronized T(V)-relatively full embedding F : N — Q such
that

(1) FAis a finite algebra for every A € P(w);

(2) Fna,p € Surjg for every A,B € P(w) with B C A (then RFnap is a
retract);

3) if A= BUC for A,B,C € P(w) then {Fna,g,Fnac} is a separating
Sfamily.

Then {S4 | A € P(wo)} is an A-D family where Sy is a singleton algebra in Q and
Sa=FAforall A€ P(w).

Proof. We need to prove (pl)—(p4). Clearly, (pl) is satisfied. To prove (p2), con-
sider sets A, B,C € P(w) with A = BUC. By (3), {Fnap,Fnac}isa
separating family and thus F'A is a subobject of FB x FC. Hence we obtain
FA € Qua{FB, FC} and the proof of (p2) is complete.

For every A € F(w), let p4 : FA — RF A denote the epireflection homomor-
phism of F'Ainto V. Then p4 € Surjg.

To prove (p3), let A, B € P(w) be such that FA € Qua{FB}. By the hy-
pothesis, F'B is finite, so that the family of all homomorphisms from F'A to FB is
separating. Since F is Z(V)-relatively full embedding we infer that if B A then
every homomorphism from F'A into F B factorizes through p 4. Since A ¢ V and
RF A €V, the mapping p4 is not injective and thus F'A ¢ Qua{FB} - a contra-
diction. Thus we can assume that B C A. If f : FA — FB is a homomorphism
then either h = Fn,4 p or h factorizes through p 4 because F' is Z(V)-relatively full
embedding. Since the family of all homomorphisms from F'A to F'B is separating,
the pair {Fn4. g, pa} must be a separating family. We claim that this is impossible
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when B # A. Indeed, if B # A then F'n4 p is not injective; this is because from
(2) it would follow that F'n4 p is an isomorphism, contrary to the relative fulness
of F. But then Fna p is not injective on (p4)~!(Im(p4)) by (s1) and hence, by
(s2), for some s € S there are distinct a,b € pzl{s} with Fng g(a) = Fna,p(b).
Hence {Fna,B,pa} is not a separating family, a contradiction. Thus A = B, and
(p3) follows.

To prove (p4), let F C P(w) be a finite set and let B, C € Qua{F X | X € F}
be finite algebras such that there exist A € P(w) and an injective homomorphism
f: FA — B x C. Hence there exist finite separating families {g; : B — FX; |
i€ I}and {h; : C — FY; | j € J} such that X;,Y; € P(w) foralli € I and
jeJ.Letm; : Bx C— B, m: B x C — C be projections.

First we prove that we can assume that m; o f,m3 o f € Surjg. So assume that
(p4) is satisfied if 71 o f,m2 o f € Surjg. By the factorization property, there exist
homomorphisms

fi : FA — B’ € Surjg, f{ : B’ = B € Injg,
fz: FA— C' € Surjg, fy : C' = C € Injg

with o f = f{'o f{ and may 0 f = f o f;. Since f is injective we infer that
{m o f,ma o f} is separating and hence {f1, f3} is also separating. Thus there
exists an injective homomorphism f’ : FA — B’ x C' with 7] o f' = f{ and
mho f' = f5 where 7] : B’ x C' — B’ and 7}, : B’ x C' — C’ are projections.
Then {gio f{ : B — FX; | i € I} and {hjo fy : C' — FY; | j € J} are
separating families and, by the assumption, the condition (p4) is satisfied for f’, B’
and C' because 7 o f, m) o f’ € Surjg . Then (p4) is also satisfied for f, B and C
because fi : B' — B, fy : C' — C € Injg. Thus with no loss of generality we
can assume that 73 o f, 72 o f € Surjg.

Letus define I' = {i € I | ggomof = Fnax,tand J' = {j € J |
giomo f = FnA,yj}. Then X; C AandY; C Aforalli € Iand j € J.
Observe that g; o m, o f and g; o g o f factorize through p4 forall ¢ € I\ I’ and
j € J\ J' because F is Z(V)-relatively full embedding. Hence I’ # () or J' # 0.
SetU = J;ep Xiand V = UjeJ' Y;. ThenU UV C A, and g; o m; o f factorizes
through F(na,u) for all i € I’ and g; o my o f factorizes through F(n4,y) for all
j€J'". Since {giomof|icI}U{gjomof|je€ J} € Injg we infer, by (p3),
thatif J/ =0 thenU = A,ifI' =0thenV = A,ifI' #0 # J' then A=UUV.
Assume that I’ # (. Since 71 o f € Surjg, {Fnu.x; | ¢ € I'} € Injg by (3) and
giom o f = Fnyx, oFnay forall i € I, by the diagonalization property there
exists a homomorphism ¢ : B — FU with¢pomiof = Fnapy and Fry x, 09 = g;
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foralli € I'. From Fnay € Surjg it follows that ¢ € Surjg.

Since {g; | i € I} is a separating family, for distinct u,v € FA we have
m o f(u) # m o f(v) if and only if there exists i € I with g; o my o f(u) #
giomo f(v). Ifi € I'then g; om o f = Fnax, = Fnux, o Fnay. Thus if
Fnau(u) # Fnay(v) foru,v € FAthen m o f(u) # myo f(v). If i € I'\ I' then
giom o f = ho py for some homomorphism h and thus 71 o f(u) # m o f(v)
implies that pa(u) # pa(v) or Fnay(u) # Fnay(v) because {Fnu,x, | i € I'}
is a separating family.

Let S be a synchronizer of F. Consider t € p,'(Im(ua)) and u € FA \
pzl(lm(uf;)). Then pa(t) = pa(s) forsome s € S. By (s2), py opom o f(t) =
pu © Fnay(t) = pu(s) and py o P om o f(u) = py o Fnau(u) ¢ Im(uy).
Hence 1/)_1(p61(1m(p,u)) =m0 f(p;l(lm(pA)). If we combine this fact with
the foregoing argument we conclude that for u,v € pzl(Im(,uA)) we have 7 o
f(u) = m o f(v) if and only if Fnau(u) = Fnay(v). From (s2) it follows that
(RFnau)~ ' (pu(s)) = {pa(s)} forall s € S. Thus (R) " (pu(s)) = {R(m o
f(ua(s))} forevery s € S because pomi o f = Fnay. Since Fny y is surjective,
by (s3), every mapping v’ from the underlying set of RF'U into the underlying set
of RF A such that RFna y o v/ is the identity mapping is a homomorphism from
RFU into RFA. Fromyom o f = Fngay we conclude R(yom o f) = RFnay.
For a homomorphism ' : RFU — RF A such that RFnay o v/ is the identity
automorphism of RFU we set v = R(my o f) o/ and hence v : RFU — RB is
a homomorphism such that Ry o v is the identity homomorphism of REF'U. Since
V' exists by (s3), we can assume that we have a homomorphism v : RFU — RB
such that Ry o v is the identity homomorphism of RF'U.

Forevery i € I\I' there exists ahomomorphism g; : RFA — FX; with g;om;0
f = i o pa. By the properties of factorization system, there exist homomorphisms
0:RFA— D € Surjgando; : D — FX;fori € I\ I'suchthatg;om o f =
o;ocopyforalli € I\ I'and {o; | i € I\ I'} € Injg. By the diagonalization
property, there exists a homomorphism ¢’ : B — D such that ¢’ om0 f =0 0 pg
and 0; 0 ¢’ = g; foralli € I'\ I'. From py, o € Surjg it follows that ¢’ € Surjg.
From RFA € Vand o : RFA — D € Surjg it follows that D € V and if
pB : B — RB is the epireflection morphism of B into V, then there exists a
homomorphism ¢ : RB — D € Surjg with ¢’ = ¢ o pg. Then

cgopa=¢omof=¢opgomof=g¢oR(mof)opa

and 0 = ¢ o R(m; o f) follows because pa € Surjq. Since {g; | i € I} € Injq
we infer that the family {1, pp} is separating. Hence there exists a homomorphism
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w:B— FUxXxRB ¢ Injg such that 7y ow = ¢ and Ty ow = pp where 71 : FU x
RB — FU and 13 : FU x RB — RB are projections. Then 73 owomjof = tpomo
f =Fnay and powomof = pgomof = R(mof)ops. Hence forevery b € B
and a € FA with m; o f(a) = b we have w(b) = (Fna,uy(a), R(m1 o f) o pa(a)).
By the property of products, there exists a homomorphism A : FU — FU x RB
such that 71 o A is the identity morphism of FU and 75 o A\ = v o py, hence )\ €
Injg. Select u € FU. If py(u) € Im(uy) then, by (s2), pa((Fnay)~t(u)) =
(RFnau)~Y(pu(u)) is a singleton and hence for every ¢ € F A with Fnau(a) =
u we have {R(m1 0 f) 0 pa(a)} = (R¥) ™ (pu(u)) = {v(py(u))}. Thus A(v) =
(Fnau(a),R(my o f) o pa(a)) € Im(w). If py(u) ¢ Im(uy), then there exists
a € FAsuch that pg o m o f(a) = v(py(u)) because pg, 7 o f € Surjg. Then

Ry o ppom o f(a) = Ry ov(pu(u) = py(u).
Since
Ryopgomof=pyopomof=pyoFnya
we conclude that py(u) = py(Fnay(a)) and, by (s4), w = Fnay(a). Thus
Au) = (Fnau(a), R(miof)opa(a)) € Im(w) because R(mi0f)ops = pgomiof.
Thus Im()) € Im(w), so that there exists an injective homomorphism from FU to
B.

If J' # 0 then the same proof gives the existence of an injective v : FV — C,
and (p4) follows. O

The technical statement below enables us to prove a generalized version of
Theorem 3.2. We say that a surjective homomorphism f : A — B of algebraic
systems of similarity type A is a quotient if for every relation r € A we have
that (b, b1,...,bx) € rg if and only if there exists (ag,a1,...,ar) € ra with
f(a;) = bjforalli =0,1,...,k. A quasivariety Q is closed under quotients if al-
gebraic system A € QQ whenever there exist an algebraic system B € Q and a quo-
tient f : B — A. Let Quotg denote the class of all quotients of Q. It is well-known
[1] that (Quotg, Injg) is a factorization system in Q, and that Surjg = Quotg if Q
is a quasivariety of algebras. If Q is clear from the context, we write Quot instead
of Quotg.

Proposition 3.3. Let Q be a quasivariety of algebraic systems and let R be a proper
subquasivariety of Q closed under quotients. If there exists an Z(R)-relatively full
embedding F : N — Q such that F A is finite for all A € P(w) and Fnap €
Quotgq for all A, B € P(w) with B C A, then there exists an I(R)-relatively full
embedding G : N — Q such that
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(1) GA is finite for all A € P(w);

(2) ifA,B,C € P(w) satisfy BUC C A, then {Gna,g,Gna,c} is a separating
SJamily ifand only if A= BUC;

(3) Gna,B € Quotg forall A, B € P(w) with B C A.

Moreover, if Q is a quasivariety of algebras and F is synchronized then G is syn-
chronized.

The fairly technical proof of this Proposition can be found in the Appendix.

Proof of Theorem 1.4 completed. Let GRA denote the (concrete) category of all
undirected graphs and compatible mappings. We recall that there exists a full
embedding ® of N into GRA such that ®A is a finite graph of every A € N
and ®na B € Quotggy for every A,B € P(w) with B C A, see [7]. Let
F : GRA — Q satisfy the hypothesis of Theorem 1.4. Then the composite
Fo® : N — Q satisfies the hypothesis of Proposition 3.3, and hence Q contains an
A-D family, by Theorem 3.2. This concludes the proof of Theorem 1.4. O

Remark. The embeddings from GRA into the variety of semigroups generated by
M, or M3 or Mg or My or Mﬁ constructed in [6, 7, 8] are synchronized (here for
a semigroup S = (S, ), its dual is defined as 8¢ = (S,®) with s ©t =t - s for
all s,t € S) and constitute special cases of Theorem 3.2. The semigroups My, M3
and My are defined in Table 1.

Myla|b|c|O Mg|d|al|b]|c
a [0|lc|0]|O0 d lalal|la|b Myjt|iu 0
b |c|0]0]|0 a |alala|a t |t|lul|s 0
c [0]0|0]0O b |b|b|b|b u |[t|lu]|0 0
0 |0(0;0]0 c |[clclc]|c

Table 1: The semigroups Ma, M3 and My

Finally, we show that for quasivarieties of algebras Theorem 1.4 generalizes
Theorem 1.3 of [16]. So let Q be a quasivariety of algebras and let V be a proper
subvariety of (9. We say that an epireflection R : Q@ — V is constant on a functor
F : N — Q if the composite R o F is a constant functor. It is then clear that if
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the epireflection R is constant on an Z(V)-relatively full embedding F, then F is
synchronized. Thus we immediately obtain

Corollary 3.4. Let Q be a quasivariety of algebras and let V be a proper subvariety
of Q. If F : N — Q is an Z(V)-relatively full embedding such that the epireflection
of Q into V is constant on F, Fnap € Surjg for all A,B € P(w) with B C A
and F A is finite for all A € P(w) then there exists an A-D family in Q, and thus Q
is Q-universal. O

Thus, in particular, the object ideal Z(V) associated with such an Z(V)-relatively
full embedding F is principal in the sense that it is determined by a single object
of V and includes the case when the synchronizer is a singleton algebra, that is, the
case of an almost full embedding.

Appendix

Proof of Proposition 3.3. Consider a functor H : Ny — N defined by H) = {0}
and HA = {0} U{n+1|n € A} forall A € P(w) and Hna g = nua,np for
A,B € P(wp) with B C A. Then H is a full embedding (since A C B if and
only if HA C HB for A, B € P(wy), it is correctly defined). Thus the composite
F' = F o H : Ng — Qs an Z(R)-relatively full embedding such that F’A is finite
forall A € P(w) and F'nap = Fnuaus € Quotg for all A, B € P(wp) with
BC A.

Since F' is an Z(R)-relatively full embedding, F'A ¢ R for all A € P(wp).
Forn € w, set G{n} = F'{n}. For A € P(w), define I1(A) = [[,c4 F'{a} and
let 7, : II(A) — F'{a} be the a-th projection for each a € A. By the universal
property of products, there exists a unique homomorphism 74 : F’A — TI(A) such
that F’ NA{a} = Ta © 74 for every a € A. Factorizing 74 in Q in the factorization
system (Quotg, Injg), we obtain homomorphisms (unique up to an isomorphism)
xa:F'A— GA€ Quotgand iy : GA — II(A) € Injg such that 74 = pgoxa.
Since the underlying set of F’A is finite and since x 4 is a quotient, the underlying
set of GA is finite for all A € P(w). This proves (1).

Consider A, B € P(w) with B C A. By the universal property of products,
there exists a unique homomorphism II(n4,5) : II(A) — II(B) such that m, =
kp o II(na,p) forall b € B C A, where «; : II(B) — F’{b} is the b-th projection
for b € B. Then for every b € B we have

Ky OH(T]A,B) OTA =TpOTYy = FInA,{b} = F,nB,{b} o FIT]A,B
=rpoTpo F'nap

-302 -



KOUBEK & SICHLER - ON SYNCHRONIZED RELATIVELY FULL EMBEDDINGS;;;

because kp o Tg = F’ , and hence
7B, {b}

II(na,B) o paoxa =I(nap)oTa=ToF'nap=ppoxsoFnas

because the family {x; | b € B} of projections is separating.

By the diagonalization property, there exists a homomorphism Gna g : GA —
GB with GT]A,B OXA = XBP©° F,TIA,B and H(WA,B) OlLA = UB O G"]A,B because
pB € Injand x4 € Quot. From xgoF'na g € Quot it follows that xgo F'ng g €
Quot and Gna g € Quot, and (3) is proved. Note the diagram below, commuting
forevery b € B C A.

F'A XA, gA 24, T(A) —2— G{b} = F'{b}
F’m,sl G"A'Bl H("?A,B)l “
F'B X2, GB —£2. [[(B) —2— G{b} = F'{b}
To prove that G is a functor, let A, B,C € P(w) satisfy C C B C A. Then

GnecoGnapoxa=GnegcoxpoF'nap
=xco F'ngcoF'nap
=xc o F'nac =Gnacoxa

and because x4 € Quot we conclude that Gng c o Gna,p = Gnac. Since F'na a
is the identity homomorphism, from Gna 4 o xa = x4 © F'na,a = xa € Quot it
follows that G4, 4 is also the identity homomorphism. Altogether, G is a functor.

We turn to (2). Note that F'ng (g} = Ta07Ta = Taopaoxa and Gy (q)0XA =
F'n4 (q) forevery a € Abecause x{q is the identity morphism of F'{a} = G{a}.
From x4 € Quot we then obtain Gny (4} = ma © pa for every a € A. But then
{Gna,{a} | @ € A} is a separating family because 14 € Inj and the family {, |
a € A} of projections is separating. Hence {Gn4,8, Gna,c} is a separating family
forany A, B,C € P(w) with A = BUC. Conversely, assume that BUC C A and
{Gna,B,Gnac} is a separating family. Then {Gn4 (o} | @ € B U C} is clearly
a separating family. Set A" = B U C. Then Gng 4 € Inj and thus from the
already proved (3) it follows that Gn4 4’ is an isomorphism. Choose a € A\ A’
Since Gna (a} © X4 = F'Naja) € Quot, we have Gy (o) = T 0 pa € Quot.
But then 7, 0 g o (Gnaa)~t o xa : F'A" — F'{a} is a quotient because
(Gna,a)~!, xa € Quot. This is a contradiction because F”’ is an Z(R)-relatively
full embedding, F'{a} does not belong to R and {a} Z A’. Hence (2) follows.

To prove that G is an Z(R)-relatively full embedding consider A, B € P(w)
with B C A. Then n4 g is a morphism of N and we must prove that Im(Gna g) ¢
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R. Forevery b € B, Gnpg (3} € Quot and G{b} ¢ R. Since R is closed under Quot
we infer that GB ¢ R and because Gna g € Quot we conclude that Im(Gna ) ¢
R. Conversely, let f : GA — GB for A, B € P(w) be a homomorphism such that
Im(f) ¢ R. To complete the proof it suffices to prove that B C A and f = Gna p.
Let f/: A — C € Quot and f” : C — B € Inj be homomorphisms with
f = f"o f' then C is isomorphic to Im( f). Since {Gnp s} | b € B} is a separating
family, we infer that {Gnp 5y o f” | b € B} is a separating family and, by the
universal property of products, the morphism h : C' — [],cp Im(Gnpg vy o f") €
Inj. Since Im(f) ¢ R we conclude that [],c g Im(Gnp () © f”) ¢ R, and thus
there exists b € B such that Im(Gnp (5 © ") = Im(Gnp 5y © f) ¢ R. Thus
Gng,pyo f ¢ I(R). Since x4 € Quot we conclude that Gnp,pyofoxa: F'A—
F'{b} ¢ Z(R) and thus b € A and Gnp (b} © f © x4 = F'ny () because F” is an
I(R)-relatively full embedding. Then

F'nieyp 0 Gnp,y o foxa=Fnpypo F'nagmy = Fnag.

Since for every ' € B we have

F'niwyo 0 G,y © XB = F'igyy 0 © F'ng (v
= F'ngg = F'npyp 0 Fp 4,
= F'ny 0 © Gnp vy © XB

we infer that F'ngyy 9 0 Gnp vy = F'ngpyg © Gnp.y for all ' € B because
XxB € Quot. From this it follows that

F'nap = Fngpyo0Gnp ey o foxa=FngypoGnpwyofoxa

forall b’ € B. Since F'n4p ¢ I(R) we conclude that Gngy o foxa ¢ I(R)
forall b’ € B because F'g;,3 g € Quot and R is closed under Quot. Hence b € A
and Gnp ('} © f o xa = F'ny () forall b’ € B because F’ is an Z(R)-relatively
full embedding. Thus B C A and

GnpwyoGnagoxa =GngwyoxsoFnas
= F'ng gy o F'nap
=F'nagy =Gnp vy o foxa

forall b’ € B. By (2), {G’I]B’{bl} ' v S B} € Inj and thus Gnapoxa= foxa.
But x4 € Quot, and this completes the proof that f = Gy .

It remains to prove that if Q is a quasivariety of algebras and F is synchronized
then also G is synchronized. First observe that F’ is also synchronized. For A €
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P(w) let ppr 4 and pg 4 be the respective epireflection morphisms of F’A and GA.
Let S be an algebra and for A € P(w) let v4 : S — RF’A witness the fact that
F’ is synchronized. Since for every a € A we have F'ny (4} = GNa4 (a) © X4 WE
conclude that RF'n4 (4} = R(Gn4 {a) © X4)- Set (a4 = Rxaova: S — RGA,
then the property that for every s € S and A, B € P(w) with B C A we have
RF'na p(va(s)) = vp(s) implies RGna g(Ca(s)) = (p(s) and the fact that v4
is injective for every A € P(w) and x4} is the identity mapping for every a € w
imply that (4 is injective for all A € P(w). The validity of (s1) and (s2) for F’
implies that G also satisfies (s1) and (s2). From the facts that F' satisfies (s4)
and ({5} = V{q) for all a € wand {Gny(q) | @ € A} is a separating family
for all A € P(w) it follows that (s4) holds for G. Indeed, if u and v are distinct
elements of RGA with pga(u), pca(v) ¢ Im(C4) then there exists a € A with
F'na{a}(4) # F'na (q}(v) and hence pgiay © F'n4 fa} (4) # Peiay © F'Na fa} ()
Then pg(a} © F'Nafa) = RF'NA{a} © PG4 implies that pga(u) # pga(v). If uand
v are elements of RG A with pg4(u) ¢ Im(C4) and v € Im((4) then, by the same
argument, we obtain that pg(u) # pca(v) and hence G A satisfies (s4). To prove
(s3) consider A, B € P(w) with B C A. Choose b € B. Since F’ satisfies (s3),
the condition (e) from Proposition 3.1 is satisfied for F'ns.p and F'ng (). Since
X is a surjective natural transformation from F’ onto G and since F'{b} = G{b}
we conclude, by Proposition 3.1, that every mapping h from the underlying set of
RGB into RG A such that RGna_g o h is the identity mapping is a homomorphism
from RGA into RGB. Thus G satisfies (s3) and whence G is synchronized. O
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