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CAHIERS DE TOPOLOGIE ET Vol. XLDC-4 (2008) 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES 

ON SYNCHRONIZED RELATIVELY FULL 
EMBEDDINGS AND Q-UNIVERSALITY 

To JifiAdâmek on his 60th birthday 

by V KOUBEKandJ. SICHLER 

Abstract 

M. E. Adams et W. Dziobiak ont démontré que toute quasi-variété ff-
algébrique universelle de systèmes algébriques de signature finie est Q-univer-
selle. Dans cet article on introduit la notion de plongement synchronisé rela­
tivement plein qu'on utilise ensuite afin de modifier leur résultat pour les 
quasi-variétés d'algèbres. 

1 Introduction 

We aim to show a new connection between two algebraic structures associated with 
quasivarieties of algebras. Ail needed définitions are given in the next section. 

First, for any quasivariety Q, the homomorphisms between its members form a 
concrète category. The richness of the categorical structure is reflected in the notion 
of algebraic universality studied in the monograph [18] by A. Pultr and V. Trnkovâ. 

When ordered by inclusion, the subquasivarieties of a given quasivariety <Q> form 
a lattice we dénote QLat(Q). This is the second algebraic structure associated with 
Q. Questions about the size of QLat(Q) or lattice identities satisfied in QLat(Q) 
motivated M. V. Sapir [19] to define and exhibit Q-universal quasivarieties, and 
W. Dziobiak [9, 10] to introduce what is now called an A-D family of objects of Q. 
A survey of thèse notions and results concerning them is given in [2]. M. E. Adams 
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and W. Dziobiak [3] linked the latter two properties by showing that every quasiva­
riety Q containing an A-D family is also Q-universal. The converse implication is 
still an open problem, originally stated by M. E. Adams and W. Dziobiak. 

Problem 1.1. Is there a Q-universal quasivariety containing no A-D family? 

In [4], M. E. Adams and W. Dziobiak proved the following remarkable and quite 
surprising resuit Connecting the two algebraic structures associated with a quasiva­
riety of algebraic Systems. 

Theorem 1.2 [4]. Any finite-to-finits algebraically universal (ff-alg-universal) 
quasivariety of algebraic Systems offinite similarity type contains an A-D family 
and hence it is Q-universal. • 

In [16], the présent authors extended this resuit as follows. 

Theorem 1.3 [16]. Any almost ff-alg-universal quasivariety of algebraic Systems 
offinite similarity type contains an A-D family and hence it is Q-universal. • 

Almost universality is a spécial case of relative universality, see Section 2. Hère 
we aim to modify the latter resuit for quasivarieties of algebras. We assume that 

(*) Q is a quasivariety of finitary algebras and Vi sa proper subvariety of Q such 
that there exists a synchronized J(V)-relatively full embedding F from the 
category of ail undirected graphs into Q such that Ff is surjective for every 
graph quotient homomorphism / and F G is finite for every fînite graph G. 

Theorem 1.4. Any quasivariety Q satisfying (*) contains an A-D family and hence 
it is Q-universal. 

As already noted, ail needed notions are reviewed in Section 2 below, and the 
proof of Theorem 1.4 is given in Section 3. It is based on the fact that any subquasi-
variety M of a quasivariety Q is an epireflective full subcategory of Q. In Section 3, 
it is also shown how Theorem 1.4 incorporâtes earlier results of [6, 7, 8]. 

2 Basic notions and their context 

Alg-universality. A category K is alg-universal if any category of algebras and ail 
homomorphisms between them can be fully embedded into K. This is équivalent to 
the fact that there exists a full embedding from the category GMA of ail undirected 
graphs and ail graph homomorphisms into K. Moreover, if K is a concrète category 
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and there exists a full embedding F : G1RA —• K such that the underlying set of 
FG for every finite graph is finite then we say that F préserves finiteness and that 
K is //-alg-universal. If K is a concrète category then any K-object A with a finite 
underlying set is called finite. Next we give several well-known properties of alg-
universal catégories. To do this, we say that a category K is a monoid universal if 
for every monoid M there exists a K-object A such that the endomorphism monoid 
of A is isomorphic to M. 

Theorem 2.1 [18]. (a) Any concrète alg-universal category K is monoid universal; 
and if K is ff-alg-universal, then for every finite monoid M there exists a finite 
K-object A such that the endomorphism monoid of A is isomorphic to M. 

(b) IfK is alg-universal, then for a proper class I there exists a family {Fj : 
K —» K | i G 1} offull embeddings such that Fi A is not isomorphic to FjBforany 
K-objects A and B and for any distinct z, j G /. For any set I there exists a family 
{Fj : K —> K | i G /} offull embeddings such that there exists no K-morphism 
between FjA and F^B for any K-objects A and B and for any distinct i,j G /. 

( c) If K is ff-alg-universal and I is a countable set, then there exists a family 
{F,- : K —• K | ? G /} offull embeddings Fj preserving finiteness such that there 
exists no K-morphism between FjA and FjB for any K-objects A and B and any 
distinct i,j G /. • 

Theorem 2.1 provides a tool for proving that a given category K is not alg-
universal. For example, if K is a concrète category such that for every set X there 
exists only a set of non-isomorphic K-objects with a given underlying set X and if 
there exists a cardinal a such that every K-object whose underlying set has cardi-
nality greater than a has a non-identity endomorphism, then K is not alg-universal. 

Hence for example the variety of lattices or the variety of monoids or the cate­
gory of topological spaces and continuous mappings are not alg-universal because 
of the existence of constant morphisms. On the other hand, both the variety of 
semigroups [13] and the variety of (0,1 )-lattices ([11] or [12]) are alg-universal. 

Thus we can say that monoids or lattices hâve sufficiently rich structure to be 
'close' to being alg-universal while still permitting constant morphisms, although 
thèse catégories are not alg-universal in the strict sensé. This motivâtes a notion of 
almost alg-universality that ignores the constant morphisms. Next we define a more 
gênerai concept expressing this idea. 

Let K be a category. A class C of K-morphisms is an idéal if / o g G C for 
K-morphisms f : a —> b, g : b —> c whenever / G C or g G C. A faithful functor 
F : L —> K is called C-relatively full embedding if 
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(•) Ff ¢ C for any L-morphism / ; 

(•) if / : Fa —• Fb is a K-morphism for L-objects a and b then either / G C or 
f = Fg for some K-morphism g : a —> 6. 

Thus F is a full embedding exactly when it is C-relatively full embedding for 
C = 0. Observe that, if F : L —• K is a C-relatively full embedding for some 
idéal C then / is an L-isomorphism if and only if Ff is a K-isomorphism. If there 
exists a C-relatively full embedding F : GRA —> K then we say that K is C-
relatively alg-universal. If, moreover, K is concrète and F préserves finiteness, then 
K is called C-relatively //-alg-universal. Clearly, K is C-relatively alg-universal (or 
C-relatively //-alg-universal) for C = 0 just when K is alg-universal (or //-alg-
universal, respectively). If K is conrete category and C is the idéal consisting of ail 
K-morphisms with constant underlying mapping then we say that F : L —• K is 
almost full embedding instead of C-relatively full embedding and that K is almost 
alg-universal or almost //-alg-universal instead of C-relatively alg-universal or C-
relatively //-alg-universal. The variety of lattices [20] and the variety of monoids 
[17] or [15] are almost alg-universal but not alg-universal. A second conséquence of 
Theorem 2.1 is that a category K which is not monoid-universal is not alg-universal. 
This fact was exploited by M. E. Adams and W. Dziobiak in [5], where they proved 
that the variety of monadic Boolean algebras is not alg-universal, yet contains a 
proper class of non-isomorphic algebras whose endomorphism monoids consist of 
the identity map alone. 

Theorem 2.1 naturally leads to the following question. 

Problem 2.2. Is there a variety V of algebras which is monoid universal but not 
alg-universal? 

We shall consider ideals of a spécial type. Let O be a class of K-objects. Then 
T(O) dénotes a class of ail K-morphisms / : a —> b such that there exist K-
morphisms g : a —» c and h : c —» b with c e O and f — h o g. Clearly, 
J(O) is an idéal of K called an object idéal of O. In what follows, we shall consider 
even more spécifie object ideals. 

Q-universality. A class Q of algebraic Systems of a finitary type A is a quasivariety 
if it is closed under ail products, ail ultraproducts, ail subsystems and ail isomorphic 
images. For any class K of algebraic Systems of type A, there exists the least quasi­
variety Q containing K, which we shall dénote Q = Qua(K). Quasivarieties will be 
viewed as catégories whose morphisms are ail homomoiphisms, that is, mappings 
preserving ail opérations and relations. 

-292 



KOUBEK & SICHLER - ON SYNCHRONIZED RELATIVELY FULL EMBEDDINGS;;; 

M. V. Sapir [19] defined a quasivariety Q of finite type A as Q-universal if for 
every quasivariety E of finite type the lattice QLat(R) is a homomorphic image of 
a sublattice of QLat(Q). 

Let V(UJO) be the set of ail finite subsets of natural numbers and V{uo) = V(LJO)\ 

{0} the set of ail finite non-empty subsets of natural numbers. W. Dziobiak [9, 10] 
studied families {S^ | A G V(UJO)} of finite algebraic Systems of a given type 
A we now call Adams-Dziobiak families (or A-D families) defined by thèse four 
conditions: 

(pi) S0 is the terminal algebraic System; 

(p2) if A = B U C for A. B, C G V{UJ0), then SA G Qua({SB , S c }) ; 

(p3) if A G V{u) and B G V{UJ0) with S.4 G Qua({SB}), then A = B; 

(p4) if U, V G Qua({S,4 | A G V}) are finite algebraic Systems for some finite 
V C V(LJ) and if there exists an injective homomorphism / : S ,4 —> U x V 
for some A G V(u), then there exists an injective homomorphism g : S^ —> 
U or there exists an injective homomorphism g : SA —* V or there exist 
B,C G V(u) and injective homomorphisms gs : S# —» U and pc : Se —> 
V with ,4 = B U C. 

We recall some known results. 

Theorem 2.3. (a) / /Q w a Q-universal quasivariety then QLat(Q) has cardinality 
2H° and thefree lattice over a countable set can be embedded into QLat(Q). Thus 
QLat(Q) satisfies no non-trivial lattice identity [2]. 

(b) lf a quasivariety Q contains an A-D family, then the lattice of ail ideals of 
thefree lattice over a countable set can be embedded into QLat(Q) [3]. • 

Thus to prove that a quasivariety Q of finite type is Q-universal, it suffices to 
prove that Q has an A-D family. We shall study only quasivarieties Q of algebras. 

In Section 3 we give certain conditions sufficient for the existence of an A-D 
family in a quasivariety of algebras of finite type. For this we use factorization 
Systems and epireflection. 

Factorization Systems and epireflections. For a category K, let £ be a class of 
K-epimorphisms and let AI be a class of K-monomorphisms. We say that (£, M) 
is a factorization svstem of K if £ and M are closed under composition, / G £C\M 
if and only if / is a K-isomorphism, and for every IK-morphism / : a -> b there 
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exist unique, up to a commuting isomorphism, g : o'. —• c G £ and h : c -^ b e M 
with / = h o g, see [1]. Any factorization System has the diagonalization property. 
We formulate it for catégories with products. If K is a category with products and 
an (£, A^)-factorization System, then we write {/z; : a —• b{ \ i G / } G M if the 
morphism / : a —> Yliei h SUCn t r i a t / = TT{ O / for ail i G / where 7rz : I l je / ^ ~~* 
6i is the z'-th projection belongs to M. Then the diagonalization property say s: if 
9i° f = h° h for ail z G / where / : a —• b G £, {̂ ; : fc -* c\ \ i G / } is a family 
of K-morphisms, h : a —• d is a K-morphism and {fc2 : d —> c* | i G / } G AI then 
there exists a K-morphism l : b —> d such that h = lof and ^ = fc7; o / for ail z G / . 
If /z G f then / G £, and if {# | i G / } G .M then / G M . 

We say that a family {/* : A —> ^ | i G /} is separating if for distinct 
a,b e A there exists i G / with fj(a) ^ / ( 6 ) . If K is a concrète category then 
a family {/* : a —> 6* | ï £ / } of K-morphisms is separating if the family of 
underlying mapping is separating. For concrète catégories K and L we say that a 
functor F : K —> L préserves separating families if {Ffi : Fa —> Fbj | i £ / } is a 
separating family in L whenever {/* : a —• 6j | z G /} is a separating family in K. 

For a concrète category K, let InjK consist of ail K-homomorphisms such that 
the underlying mapping is injective and SurjK consist of ail K-morphisms such 
that the underlying mapping is surjective. Clearly, every morphism from InjK is 
a monomorphism of K and every morphism from SurjK is an epimorphism of 
K. If (SurjK,InjK) is a factorization System of K then we say K has a concrète 
factorization System and (SurjK,InjK) is a concrète factorization System of K. 
Clearly, for every quasivariety Q of algebras (SurJQ,InjQ) is a concrète factor­
ization System of Q (because every bijective homomorphism is an isomorphism). 
Observe that a family {f : A —• Bz \ i e 1} of Q-homomorphisms is separating 
if and only if it belongs to InjQ, i.e. if the homomorphism / : A —• YlieI B^ with 
fi — f ° TTZ has an injective underlying mapping where TTI : Y\jei ^j ~^ ^ ls 

the z-th projection for ail i G / . Thus for a concrète category K we shall say that 
a family {f; : A —> Bj \ i G /} of K-morphisms belong to InjK just when its 
corresponding family of underlying mappings is separating. A functor F : Q —> R 
between quasivarieties Q and R préserves surjectivitv if F(SurJQ) C SurjR. 

If Q is a quasivariety of algebraic Systems and R is a subquasivariety of Q (of 
the same type) then, by Theorem 10.1.2 from [14], R is an epireflective subcategory 
of Q. This means that for every algebraic System A G Q there exists a surjective 
homomorphism pA : A —> RA where RA G R such that for every homomorphism 
/ : A —> C where C G R there exists exactly one homomorphism /* : RA —• C 
with / = /* o pA. Since R is a full subcategory of Q then PA is the identity 
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morphism exactly when A G R. Then R : Q -> R such that Rf = {pB o / ) * 
for every homomorphism / : A —> B in Q is a functor which is a left adjoint to 
the inclusion functor from R to Q. We say that R is an epireflection. Observe that 
i?(SurjQ) Ç SurjR. 

A quasivariety Q of algebras closed under homomorphic images is a variety. If 
Q is a quasivariety of algebras and V is a subvariety of Q then a homomorphism 
/ : A -> B G Q belongs to the idéal I (V) if and only if Im(/) G V. 

3 Sufficient conditions for Q-universality 

Définition. Let Q be a quasivariety of finitary algebraic Systems, let V be a proper 
subvariety of Q and let R : Q —> V be the corresponding epireflection. For any 
object A G Q, let A dénote the underlying set of A and let p\ : A —> RA 
dénote the surjective Q-morphism from the epitransformation p. Let F : K —• Q 
be a J(V)-relatively full embedding. Let S G V be an algebraic System with the 
underlying set S. We say that F is S-synchronized and call S its synchronizer if for 
every K-object k there exists an injective mapping pk from S to the underlying set of 
RFk such that Im(^jt) is an induced subobject of RFk and pk is an isomorphism 
of S onto the subobject of RFk on the set lm(pk), and for every K-morphism 
/ : k\ —• &2 we hâve 

(si) if Ff is injective on (pFkl)~
l(lm(pkl)), then F / i s injective; 

(s2) RFf o pkl =//]t2; 

(s3) if Ff G SurjQ and Ai is the underlying set of RFkj for i = 1,2, then every 
mapping h : A2 —> A\ such that RFf o h = 1A2 is a homomorphism from 
#F/c2toi?FA:i; 

(s4) for every K-object fc, if s is an élément of the underlying set of RFk such 
that s ¢ lm(pk) then ppl

k{s} is a singleton. 

Next we interpret the condition (s3) for algebras. 

Proposition 3.1. Let Qbea quasivariety of algebras of a finitary similarity type A, 
let V be a proper subvariety ofQ and let F : K —> Q be a functor. Then (s3) holds 
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exactly when 

(•) ifFf is surjective and for every s € A2 with \RFf~1{s}\ > 1, 

if °RFk2{
aii a2, • • • ? an) = s for an n-ary opération a and 

ai,a-2,.. • ,an G A2, then s = aZo for some z'o G { l , 2 , . . . , n } 
and k(s) = <JRFki(k{a>i), k(a>2 ),-••> H^n)) for every mapping k : 
{ai, «2, • • • ,fln} —> A\ such that RFf o kiai) = â  /or a// i G 
{ l , 2 , . . . , n } . 

fVcw/ Assume (s3). Let s = VRFk2{a\,a2, • • • ->an) for some a G A, let 
ai , a2, .. •, a^,s G ^ a n d | i ? F / - 1 { s } | > 1. Let/z : .4o —> Ai be a mapping such 
that RFf oh is the identity mapping. Then h(s) = (jRFki (Mai)> /1(02),..., h(an)). 
If s £ {ai, 0 2 , . . . , an} then there exists a mapping h' : A2 —> Ai with RFf o h = 
RFf o h', h{s) ï h'(s) and ft(t) = h'(t) for ail t G i 2 \ {s}. Hence fc'(s) ^ 
tfflFfci (h'(a\), h'{a2),..., h!(an)) and this contradicts the fact that h' : i îFfo —> 
RFki is a homomorphism. Thus there exists z'o G {1 ,2 , . . . ,rc} with ai0 = s. If 
fc : {ai, 0 2 , . . . , an} —> Ai is a mapping such that RFf o k(aj) = a* for every 
z G {1 ,2 , . . . , n} then there exists a mapping h : A2 —• -Ai such that RFf o h 
is the identity mapping of A2 and /z(a2) = fc(aj) for ail z = {1 ,2 , . . . , n}. But 
/1 : iîFfc2 —> iZFfei is a homomorphism, by (s3), and hence fc(s) = 
(jRFki (^(ai)? ^(02)? • • • - k(an)) because s = ai0. Whence the condition (•) holds. 

For the converse, assume (•) and let h : A2 —> A\ be a mapping such that 
i î F / o /i is the identity of A2. Choose an rz-ary opération a of type A and 
ai ,a2, . . . , f ln £ ^2- Write 5 = ORFk2{ai,a>2, ••• ,ûn)- First we assume that 
| i ? F / - 1 ( s ) | > 1. Then (•) gives an zo G {1,2 , . . . ,77,} with s = aj0 and /i(s) = 
GRFki(h{ai),h(a2),... ,h(an)), as required. From F / G SurJQ we infer that 
RFf G SurJQ, and hence \RFf~l{s}\ = 1 is the only remaining case. If 

* = 0RFki(Wai)i hfa), • •, h{an)) 

then 

i îF/(*) = aRFk2(RFf(h(ai)), RFf(h(a2)),..., RFf(h(an))) 

= VRFk2(
a\ia2,' . . , a „ ) = s 

and hence i = /i(s). Thus /z is a homomorphism, and the proof is complète. • 

Remark. Observe that if F : K —> Q is an almost full embedding then F is synchro-
nized X(T)-relatively full embedding for the trivial variety T. Indeed, its synchro-
nizer S is a singleton algebra and pk is the identity automorphism of S for every 
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K-object k. Clearly, the conditions (sl)-(s4) are satisfied. And F : K —• Q is a full 
embedding exactly when F is an almost full embedding and for every K-object k 
there exists no Q-morphism from the terminal object of Q into Fk. 

Let No be a poset viewed as a category whose objects are sets from the set 
V(UJO) of ail finite subsets of u; and there exists an No-morphism from A G ^(CJO) 

into B G P(a;o) if and only if B C A. Let N be the full subcategory of No whose 
objects belong to the set V(u) = V{u>0) \ {0} of ail non-void subsets of u. For 
.4, B G V{UJ) with B C A, let TJA,B dénote the unique N-morphism from A to B. 

Theorem 3.2. Let Q be a quasivariety of finitary algebras and let V be a subvariety 
ofQ. If there exists a synchronizedl(V)-relativelyfull embedding F : N —» Q such 
that 

(1) FA is a finite algebra for every A G V(LJ); 

(2) Fr)A,B £ SurjQ/or every A,B G V(u>) with B C A (then RFrjA,B is a 
retract); 

(3) if A = B U C for A,B,C G V(v) then {Fr}A,B,Fr)A<c} is a separating 
family. 

Then {SA \ A G V(uoo)} is an A-D family where S® is a singleton algebra in Q and 
SA = FAforallAeV{uj). 

Proofi We need to prove (pl)-(p4). Clearly, (pi) is satisfied. To prove (p2), con­
sider sets A,B,C G V{v) with A = B U C. By (3), {Fr)A,B,FriA,c} is a 
separating family and thus FA is a subobject of FB x FC. Hence we obtain 
FA G Qua{F£, FC} and the proof of (p2) is complète. 

For every A G .F(u;), let PA : FA —• RFA dénote the epireflection homomor­
phism of FA into V. Then PA G SurJQ. 

To prove (p3), let A,B e V(u) be such that FA G Qua{F£} . By the hy-
pothesis, FB is finite, so that the family of ail homomorphisms from FA to FB is 
separating. Since F is J(V)-relatively full embedding we infer that if B g A then 
every homomorphism from FA into FB factorizes through PA- Since FA ¢ V and 
RFA G V, the mapping PA is not injective and thus FA ¢ Qua{ F.B} - a contra­
diction. Thus we can assume that B C A. If / : FA —• FB is a homomorphism 
then either h = FrjA,B or h factorizes through pA because F is J(V)-relatively full 
embedding. Since the family of ail homomorphisms from FA to FB is separating, 
the pair {FTJA^B, PA} must be a separating family. We claim that this is impossible 
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when B ^ A. Indeed, if B ^ A then FT]A,B is not injective; this is because from 
(2) it would follow that FTJA,B is an isomorphism, contrary to the relative fulness 
of F . But then FTJA,B is not injective on (p^)-1(Im(/i,4)) by (si) and hence, by 
(s2), for some s e S there are distinct a,b e p^1{s} with FÏ]A,B{O) — FrjA,B{b). 
Hence {FÏ]A,B,PA} is not a separating family, a contradiction. Thus A = B, and 
(p3) follows. 

To prove (p4), let T ç V(u>) be a finite set and let B, C G Qua{FX \ X e P} 
be finite algebras such that there exist A G V(u) and an injective homomorphism 
/ : FA —» B x C. Hence there exist finite separating families {gi : B —> FX{ \ 
i G / } and {hj : C -> FYj \ j G J } such that X i? l j G 7>(u;) for ail i G J and 
j G J. Let 7ri : B x C —> B, 7T2 : B x C —> C be projections. 

First we prove that we can assume that TTI O / , ir2 o / G Surj^. So assume that 
(p4) is satisfied if TTI O / , 7r2 O / G Surj^. By the factorization property, there exist 
homomorphisms 

f[:FA^B'e SurJQ,/!' : B7 - B G InjQ, 
/ 2 : ^ - C G SUTJQ, /^ : C - C G InjQ 

with TTI o f = f" o f[ and 7T2 o / = / ^ o /£. Since / is injective we infer that 
{TTI ° /,7T2 ° / } is separating and hence {/{,/2} is also separating. Thus there 
exists an injective homomorphism / 7 : FA —> B ' x C with TT[ ° f = f[ and 
^2° f = /2 where 7^ : B7 x C -> B ' and ÏÏJ : B ' x C -> C7 are projections. 
Then {# o /{7 : B7 -+ FX2 | i G / } and {hj o /77 : C7 -> FYJ | j G J } are 
separating families and, by the assumption, the condition (p4) is satisfied for /7, B7 

and C7 because TT[ O f, -K'2 O f G SurjQ . Then (p4) is also satisfied for / , B and C 
because f" : B7 -> B, f<[ : C7 —• C G InJQ. Thus with no loss of generality we 
can assume that ni o / , 7r2 O / G SurJQ. 

Let us define I' = {i G / | gi o m o / = FrjA,Xi} and J7 = {j G J | 
gj o 7T2 o f = FrjA,Yj}- Then X* Ç 4̂ and l j Ç A for ail z G / and j G J . 
Observe that ^ o m o / and #j 0 7 ^ 0 / factorize through p^ for alH G / \ V and 
j e J\J' because F is J(V)-relatively full embedding. Hence V ^ 0 or J7 ^ 0. 
Set C/ = U i €// ^z and F = \JjeJ, Yj. Then Î / U 7 Ç A and ^ 0 ^ 0 / factorizes 
through F(rjA,u) for ail z G /7 and #j 0 7 ^ 0 / factorizes through F ^ ^ y ) for ail 
j G J7. Since {^ o TTI O / | i G 7} U {̂ - o TT2 O / | j G J } G InjQ we infer, by (p3), 
that if J7 = 0 then U = A, if i7 = 0 then V = A, if J7 ^ 0 ^ J7 then A = t/ U V. 
Assume that V ^ 0. Since ni o / G SurjQ, {Frft/.x, | i G /7} G InjQ by (3) and 
gi o 7Ti o / = Fr)u,Xi ° FÏ]A,U for ail z G 7, by the diagonalization property there 
exists a homomorphism ^ : B —> FC/ with ipomof = FT]A,U and Frju^Xi °^ = 9i 
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for ail z G I'. From FÏ)A,U £ Surj^ it follows that -0 G SurJQ. 
Since {gi | i G 1} is a separating family, for distinct u,v G F^4 we hâve 

^1 ° / ( w ) 7̂  ^1 ° / ( u ) if a nd only if there exists z G 7 with gi o ni o f(u) ^ 
gionio f(v). If z G / ' then gx o m o / = F ^ , x î = Fr}u,Xi ° F ^ t / . Thus if 
Fr}A,u{u) T̂  FrjA,u(v) foru,v G FA then 7ri o/(it) ^ niof(v). If z G J \ J 7 then 
gi o m o f = h o pA for some homomorphism /i and thus 7Ti O f(u) ^ 7ri O / ( V ) 
implies that p^(iO ^ pA(v) or Fr)A,u{u) ^ Fr)A,u{v) because {Fr^x* | «̂  G I'} 
is a separating family. 

Let S be a synchronizer of F . Consider t G p ^ I r r ^ p ^ ) ) and u G FA \ 
p ^ I r r ^ p ^ ) ) . Then pA{t) = AM(S) for some s G 5. By (s2), pu oipomo f(t) = 
pu o FrjA,u{t) = pu(s) and pu ° il) ° ni o f(u) = pu o Fr)A,u{u) ¢ Im(/xt/). 
Hence ^~1(p^1(Im(/i(;)) = ni o f(p'^1(lm.(pA))- If we combine this fact with 
the foregoing argument we conclude that for u,v G p~^(lm(pA)) we hâve ni o 
f(u) = 7Ti o /(z;) if and only if FrjA,u{u) = FT]A,U(V). From (s2) it follows that 
(RFT]A,U)-1(»U{S)) = { /MOO} for ail 5 G 5. Thus ( i ^ ) " 1 ^ * ) ) = {R{*i O 

/( / i^(s))} for every s G 5 because ip o m o / = FrjA,u- Since F ^ t / is surjective, 
by (s3), every mapping 1/ from the underlying set of RFU into the underlying set 
of RFA such that RFTJA.U ° ^' is the identity mapping is a homomorphism from 
RFU into RF A. Fromipomof = FTJA,U we conclude Rfyoniof) = RFTJA.U-

For a homomorphism 1/ : RFU —> i?F^4 such that RFTJA,U ° V' is the identity 
automorphism of RFU we set v = R(n\ o f) o v' and hence v : RFU —» i2B is 
a homomorphism such that Ri\) o j / is the identity homomorphism of RFU. Since 
z/7 exists by (s3), we can assume that we hâve a homomorphism v : RFU —> RB 
such that i??/> o v is the identity homomorphism of RFU. 

For every z G l\V there exists a homomorphism gi : RFA —> FXj with^o7rio 
f — 9i° PA> By the properties of factorization system, there exist homomorphisms 
a : RFA —• D G SurJQ and c^ : D -» FX7; for z G / \ T7 such that # o 7ri O / = 
<7i o a o p 4 for ail z G J \ J7 and {<72 | z G / \ l7} G InJQ. By the diagonalization 
property, there exists a homomorphism 07 : B —• D such that 07 o m o / = a o pA 

and <r2 o $' = gi for ail z G I \ I'. From p^, cr G SurJQ it follows that 07 G SurJQ. 
From #F ,4 G V and a : RFA -> D G SurjQ it follows that D G V and if 
PB : B —> i?B is the epireflection morphism of B into V, then there exists a 
homomorphism 0 : i?B —» D G SurJQ with 07 = 0 o p B . Then 

<7Opy4 = 0 7 O 7 r i o / = 0Op£O7Tl 0 / = (/)0 i2(7Tl O f)o pA 

and cr = 0 o i?(7ri o / ) follows because p,4 G Surj^. Since {^ | z G / } G Inj^ 
we infer that the family {^, p#} is separating. Hence there exists a homomorphism 

-299 



KOUBEK & SICHLER - ON SYNCHRONIZED RELATIVELY FULL EMBEDDINGS;; 

UJ : B —> FU x RB G InjQ such that ri ou; = ^ and T200J = ps where ri : Ff/ x 
i£B —> FC/andr2 : FUxRB —> flB are projections. Thenriocjo7rio/ = jpomo 
f = FÏ]A,U andr2 0u;o7rio/ = pB°^i°f = R{^\°f)°PA- Hence for every 6 G B 
and a G FA with 7ri o / (a ) = 6we hâve a;(6) = (Fr]A,u(a), R(m 0 / ) 0 p ^ a ) ) . 
By the property of products, there exists a homomorphism À : FU —> FC/ x i?B 
such that ri o À is the identity morphism of FC/ and T2 o A = v o pu, hence À G 
InjQ. Select u G FC/. If pt/(îx) G lm(pv) then, by (s2), ^ ^ ( ( ¾ ^ - 1 ^ ) ) = 
(RFr)A,u)~l(pu{u)) is a singleton and hence for every a G FA with Fr)A,u{a) = 
u we hâve {i?(?ri 0 / ) 0 pA(a)} = (Ril>)-l(pu(u)) = {v(pu(u))}. Thus \{u) = 
(FriA,u(à),R(iri 0 / ) 0 pA(a)) G Im(o;). If pt/(u) ¢. lm(pu), then there exists 
a G FA such that p B o 7Ti O / (a ) = v(pu{u)) because p B , 7Ti O / G SurjQ. Then 

ifr/> o P B o 7Ti o f(a) = Rip o v{pu{u) = pt/(w). 

Since 
Ripo pB omo f = pu oipomo f = p{j o Frju,A 

we conclude that pt/(u) = pu(FrjA,u{a)) and, by (s4), u = F^4 , t /(a). Thus 
A(u) = (FrjA,u(a>), R(niof)opA(a)) G Im(u;) because R(niof)opA = P B ° 7 T I 0 / . 

Thus Im(À) Ç Im(u;), so that there exists an injective homomorphism from FU to 
B. 

If J7 ^ 0 then the same proof gives the existence of an injective v : FV —> C, 
and (p4) follows. D 

The technical statement below enables us to prove a generalized version of 
Theorem 3.2. We say that a surjective homomorphism / : A —* B of algebraic 
Systems of similarity type A is a quotient if for every relation r G A we hâve 
that (6 0 , 61 , . . . , bfc) G TB if and only if there exists (a0, a i , . . . , a*) G TA with 
f(ai) = bi for ail z = 0 , 1 , . . . , k. A quasivariety Q is closed under quotients if al­
gebraic System A G Q whenever there exist an algebraic System B G Q and a quo­
tient / : B —> A. Let Quot^ dénote the class of ail quotients of Q. It is well-known 
[1] that (QuotQ, IITJQ) is a factorization System in Q, and that SurjQ = QuotQ if Q 
is a quasivariety of algebras. If Q is clear from the context, we write Quot instead 
of QuotQ. 

Proposition 3.3. Let Qbea quasivariety of algebraic Systems and let Rbea proper 
subquasivariety ofQ closed under quotients. If there exists an l(R)-relativelyfull 
embedding F : N -* Q such that FA is finite for ail A G V(u) and FTJA^B € 
Quotq for ail A,B G V(u) with B Ç A, then there exists an I(R)-relativelyfull 
embedding G : N —• Q such that 
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(1) G A is finite for ail A G V(u); 

(2) if A, S , C G V(u) satisfy BuC Ç A, then {GÏ)A,B, GÏ)A,C} is a separating 
family if and only ifA = B\J C; 

(3) GT)A,B ^ QuotQ for ail A,B G V(v) with B C A. 

Moreover, ifQ is a quasivariety of algebras and F is synchronized then G is syn-
chronized. 

The fairly technical proof of this Proposition can be found in the Appendix. 

Proof of Theorem 1.4 completed. Let GRA dénote the (concrète) category of ail 
undirected graphs and compatible mappings. We recall that there exists a full 
embedding $ of N into GRA such that $A is a finite graph of every A G N 
and $T)A,B £ QuotGMA for every A, B G V(w) with B Ç A, see [7]. Let 
F : GRA —» Q satisfy the hypothesis of Theorem 1.4. Then the composite 
F o $ : N —> Q satisfies the hypothesis of Proposition 3.3, and hence Q contains an 
A-D family, by Theorem 3.2. This concludes the proof of Theorem 1.4. D 

Remark. The embeddings from GRA into the variety of semigroups generated by 
M2 or M3 or M3 or M4 or M4 constructed in [6, 7, 8] are synchronized (hère for 
a semigroup S = (S, •), its dual is defined as Sd = (S ,0) with s 0 t = t • s for 
ail s,t £ S) and constitute spécial cases of Theorem 3.2. The semigroups M2, M3 
and M4 are defined in Table 1. 

M 2 

a 
b 
c 
0 

a 
0 
c 
0 
0 

b 
c 
0 
0 
0 

c 
0 
0 
0 
0 

0 
0 
0 
0 
0 

M 3 

d 
a 
b 
c 

d 
a 
a 
b 
c 

a 
a 
a 
b 
c 

b 
a 
a 
b 
c 

c 
b 
a 
b 
c 

M 4 

t 
u 

t 
t 
t 

u 
u 
u 

V 

s 
0 

s 
s 
s 

0 
0 
0 

Table 1: The semigroups M2, M3 and M4 

Finally, we show that for quasivarieties of algebras Theorem 1.4 generalizes 
Theorem 1.3 of [16]. So let Q be a quasivariety of algebras and let V be a proper 
subvariety of Q. We say that an epireflection R : Q —> V is constant on a functor 
F : N —» Q if the composite R o F is a constant functor. It is then clear that if 
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the epireflection R is constant on an Z(V)-relatively full embedding F , then F is 
synchronized. Thus we immediately obtain 

Corollary 3.4. Let Qbea quasivariety of algebras and let V be a proper subvariety 
°fQ- IfF:N—+Qisan T(V)-relatively full embedding such that the epireflection 
ofQ into V is constant on F, FÏ]A,B G Smiqfor ail A,B G V(w) with B Ç A 
and FA is finite for ail A G V(u) then there exists an A-D family in Q, and thus Q 
is Q-universal. D 

Thus, in particular, the object idéal J(V) associated with such an I(V)-relatively 
full embedding F is principal in the sensé that it is determined by a single object 
of V and includes the case when the synchronizer is a singleton algebra, that is, the 
case of an almost full embedding. 

Appendix 

Proof of Proposition 3.3. Consider a functor H : No —> N defined by # 0 = {0} 
and HA = {0} U {n + 1 | n G A} for ail A G V{u) and HTJAIB = rjHA,HB for 
A,B G V(uo) with B ç A. Then if is a full embedding (since A ç B if and 
only if HA Ç HB for A, B G P(u;o), it is correctly defined). Thus the composite 
F' = F o H : N0 -> Q is an J(R)-relatively full embedding such that F'A is finite 
for ail A G P(o;) and F'rç^s = FÏ)HA,HB G QuotQ for ail A, 5 G P(a;o) with 

Since F' is an J(R)-relatively full embedding, F'A ¢ R for ail A G P(w0). 
For neu, set G{n} = F'{n}. For A G P(c;), define U{A) = UaeA F'{a} and 
let na : n(A) —» F'{a} be the a-th projection for each a G A. By the universal 
property of products, there exists a unique homomorphism r^ : F'A —> Tl(A) such 
that FfrjA,{a} = ^a ° ^ for every a G A. Factorizing T4 in Q in the factorization 
System (QuotQ, IIIJQ), we obtain homomorphisms (unique up to an isomorphism) 
XA '• F'A —> G A G QuotQ and PA '• G A -» II(-A) G InjQ such that r^ = PA °XA-
Since the underlying set of F'A is finite and since \A is a quotient, the underlying 
set of G A is finite for ail A G P(u;). This proves (1). 

Consider A, B G P(o;) with B Ç A. By the universal property of products, 
there exists a unique homomorphism T[(TIA,B) ' R(A) —> 11(13) such that 7¾ = 
«6 o 11(77,4,3) for ail 6 G B Ç A, where /¾ : U(B) —> F'{&} is the b-th projection 
for 6 G 5 . Then for every b G B we hâve 

^6 o n(r/A,JB) oTA = nborA = F'r)A,{b} = F ' r7B i W o F'Ï]A,B 
= Kb°TB° F'r)A,B 
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because ^ 0 7 5 = F'r)B{h}, and hence 

n(iM,fl) °HA°XA= ÏÏ{VA,B) oTA=rBo F'r)A,B = P>B°XB° F'r]A,B 

because the family {Kb \ b G B} of projections is separating. 
By the diagonalization property, there exists a homomorphism GÏ]A,B '• G A —• 

GB with GÏ)A,B ° XA = XB ° F ' T ^ B and I I ^ B ) o pA = pB ° G ? K B because 
//5 G Inj and XA G Quot. FromxfîoF'r^B G Quot it follows that XB°F'rjA,B £ 
Quot and GÏ)A,B € Quot, and (3) is proved. Note the diagram below, commuting 
for every b e B Ç A. 

F'A - ^ - + GA - ^ - > n ( ^ ) - ^ — ^{6} = F'{b} 

F'r)A,B GVA, n(^,fl)J 
F / B _XS_^ G B _ ^ j - J ( B ) _^6_^ çyy = p^y 

To prove that G is a functor, let A,B,C G P(u;) satisfy G ç B Ç A. Then 

GTJB.C ° G^4,£ ° XA = ^775,0 °XB° F'TJA.B 

= Xc ° F'T/B.C o F ' T ^ B 

= Xc o F ' T ^ C = G ^ , c ° XA 

and because XA G Quot we conclude that Gr}B,c0GrjA,B = GÏ)A,C- Since F'Ï}A,A 

is the identity homomorphism, from GÏJA,A °XA = XA° F'TJA.A = XA £ Quot it 
follows that GÏ)A,A is also the identity homomorphism. Altogether, G is a functor. 

We turn to (2). Note that F'774 {a} = naorA = 7raopA°XA a n d G r ^ ^ o x A = 
F'r}A,{a] f° r every a G A because X{a)1S the identity morphism of F'{a} = G{a}. 
From XA G Quot we then obtain Gr)A,{a} = ^a° P>A for every a e A. But then 
{GrjA,{a} \ a e A} isa separating family because PA € Inj and the family {na \ 
a e A} of projections is separating. Hence {GÏ]A,B, GTJA,C} is a separating family 
for any A,B,C G P(u) with A = BUC. Conversely, assume that B U G Ç A and 
{Gr]A,B,Gr)A,c} is a separating family. Then {Gr)A,{a} | a G B U C} is clearly 
a separating family. Set A' = B U G. Then Gr)A,A' £ Inj and thus from the 
already proved (3) it follows that GÏ]A,A' is an isomorphism. Choose a G A \ A'. 
Since Gr)A,{a} ° XA = ^A,{a} € Quot, we hâve Gr/,4i{a} = na o pA e Quot. 
But then 7ra o pA o ( G r ç ^ / ) - 1 o XA' •' F'A' —> F'{a} is a quotient because 
(G774,A')_1> XA' € Quot. This is a contradiction because F ' is an J(R)-relatively 
full embedding, F'{a} does not belong to K and {a} % A'. Hence (2) follows. 

To prove that G is an J(M)-relatively full embedding consider A, B G V(w) 
with B Ç A. Then 774^ is a morphism of N and we must prove that Im(Gr]A,B) ¢ 
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R. For every b G B, GrjB^ G Quot and G{b} £ R. Since R is closed under Quot 
we infer that GB £ R and because GÏ)A,B G Quot we conclude that I I Ï ^ G T ^ B ) ¢ 
R. Conversely, let / : G A -> GB for 4 , S G P(u;) be a homomorphism such that 
Im(/) ¢ R. To complète the proof it suffices to prove that B Ç A and / = GT]A,B-

Let f : A -+ C € Quot and f" : C -* B e Inj be homomorphisms with 
/ = / " ° / ' then G is isomorphic to Im(/) . Since { G r ^ t y | b G 5 } is a separating 
family, we infer that {Gr/B{fe} o f" \ b G B} is a separating family and, by the 
universal property of products, the morphism h : C -> H&eB Im(G^B,{6} ° / " ) £ 
Inj. Since Im(/) ^ R w e conclude that UbeB lm(GrjB,{b} o / " ) £ R, and thus 
there exists b e B such that Im(GrfBW o f") = lm{Gr)B{b} o / ) ^ R . Thus 
GrjB^b}of £ X(R). Since XA G Quot we conclude that Gr)B^ ofoXA - F'A -» 
F'{b} ¢ J(R) and thus b G A and Gr/fîi{6} o / o XA = Ffï]A^b} because F ' is an 
X(R)-relatively full embedding. Then 

F'r]{b},<d ° GrjBAb} o / o XA = F'rj{b}3 o F'rjA,{b} = F'r)A$-

Since for every b' G B we hâve 

^7{6'},0 ° GrjBi{b,} OXB = F'ri{b,}$ o F'r)B{b,} 

= F ^ = Ffr]{b]3 o F'B{h} 

= Ffrj{b}3oGrjB^{b] o XB 

we infer that F'r){b,}$ o GrjB,{b,} = F'r){b}$ o GrjB^{b} for ail bf e B because 
XB £ Quot. From this it follows that 

F'riA# = F'r){b]$ o GrjB,{b} o f o XA = F'ri{bl}% o Gr]B^} O f OXA 

for ail 6' G B. Since F ' r ç ^ £ I (R) we conclude that Gr}B^{b/] o / o ^ ^ I (R) 
for ail b' e B because F'r}^^ G Quot and R is closed under Quot. Hence b' G A 
and GrjB^b,} o f OXA = F'r)A,{b'} for ail &' G J9 because F' is an I(R)-relatively 
full embedding. Thus B Ç A and 

GriB,{b'} ° GT7,4,£ O XA = GrjB^b^ o ^ o F ' ^ s 

= F'riB,{b'} ° F'T/A.B 

= F'f7A,{&'} = Gr/Bi{6/} o / o XA 

for ail &' G S. By (2), { G T / B , ^ } | b' G B} G Inj and thus GIM,B O XA = f o XA-

But XA ^ Quot, and this complètes the proof that / = GÎ]A,B-

It remains to prove that if Q is a quasivariety of algebras and F is synchronized 
then also G is synchronized. First observe that F' is also synchronized. For A G 
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^(u;) let ppt A and PGA he the respective epireflection morphisms of F' A and G A. 
Let S be an algebra and for A G V{u>) let vA : S -> RF'A witness the fact that 
F' is synchronized. Since for every a G Av/e hâve Ff7jA,{a} = ^7/4 {aj o XA we 
conclude that RFfr)A,{a} = #(Gfy4,{a} ° XA). Set £4 = i?XA ° ^A : S -> #G,4, 
then the property that for every s G S and A, B G V(w) with B Ç A we hâve 
RF'T)A,B{VA{S)) = i/fl(s) implies RGY]AM^A(S)) = ÇB(S) and the fact that 1/4 
is injective for every A G P(^ ) and X{a}

 1S the identity mapping for every a G u; 
imply that C4 is injective for ail A G P(o;). The validity of (si) and (s2) for F' 
implies that G also satisfies (si) and (s2). From the facts that F' satisfies (s4) 
and Qa} = ^{a} f o r a11 ci G 00 and {Gr)A,{a} \ a G A} \s a separating family 
for ail A G V(UJ) it follows that (s4) holds for G. Indeed, if u and v are distinct 
éléments of RGA with PGA{U),PGA(V) ¢ IHI(ÇA) then there exists a G A with 
^7A.{a}(u) 7e F'VA,{a}(v) and hence PG{a} °^A,{a}(^) 7̂  PG{a} °^A,{a}(^)-
T h e n p c ^ j o F ' ^ ^ } = i î F ' ^ a j o p c ^ implies that PGA{U) ^ PGA{V). If u and 
1; are éléments of i?G,4 with PGA(^) ¢- IHI(CA) and v G IIII(ÇA) then, by the same 
argument, we obtain that PGA(U) ¥" PGA{V) and hence G A satisfies (s4). To prove 
(s3) consider A, B G V(v) with B Ç A. Choose b G B. Since F' satisfies (s3), 
the condition (•) from Proposition 3.1 is satisfied for F'TJA^B and FfrjB{by Since 
X is a surjective natural transformation from F ' onto G and since F'{b} = G{b} 
we conclude, by Proposition 3.1, that every mapping h from the underlying set of 
RGB into RGA such that RGTJA,B ° h is the identity mapping is a homomorphism 
from RGA into RGB. Thus G satisfies (s3) and whence G is synchronized. D 
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