
CAHIERS DE
TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

HORST HERRLICH

KYRIAKOS KEREMEDIS

ELEFTHERIOS TACHTSIS
Tychonoff products of super second countable
and super separable metric spaces
Cahiers de topologie et géométrie différentielle catégoriques, tome
49, no 4 (2008), p. 267-279
<http://www.numdam.org/item?id=CTGDC_2008__49_4_267_0>

© Andrée C. Ehresmann et les auteurs, 2008, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_2008__49_4_267_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


CAHIERS DE TOPOLOGIE ET Vol. XLIX-4 (2008) 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES 

TYCHONOFF PRODUCTS OF SUPER SECOND COUNTABLE 
AND SUPER SEPARABLE METRIC SPACES 

Dedicated to Jifi Adâmek on the occasion ofhis 60th birthday 

by Horst HERRLICH, Kyriakos KEREMEDIS, and Eleftherios TACHTSIS 

Abstract 

Nous montrons que dans ZF, i.e. la théorie des ensembles de Zermelo-
Fraenkel sans l'axiome du choix, les conditions suivantes sont équivalentes. 

1. CAC(R), i.e. V axiome du choix restreint aux familles dénombrables de 
sous-ensembles non vides des réels. 

2. Le produit de Tychonoffd'un nombre fini d'espaces métriques à bases 
super-dénombrables est encore à bases super-dénombrables. 

Donc, la condition 2. n'est pas un théorème de la thorie ZF des ensembles. 
Nous montrons aussi que l'énoncé: Le produit de Tychonoff de deux es­

paces métriques Cantor-complets super-séparables (héréditairement séparables) 
est super-séparable (resp. héréditairement séparable) est démontrable dans 
ZF. 

1 Introduction, terminology, and preliminary results 

The présent paper is a continuation of the research in [2] on super second count-

able (SSC) and super séparable (SS) metric spaces (complète définitions are given 

below). The study of SSC and SS spaces in ZF was initiated in [1]. In [2] we 

elucidated on the interrelation between the aforementioned properties in the realm 

of metric spaces. In particular, we showed that every SSC metric space is SS, is 

provable without employing any choice principle. In contrast to this resuit, we es-

tablished that the converse implication, i.e. every SS metric space is SSC, is not 

MSC (2000): 03E25, 54B10, 54D65, 54D70, 54E35. 
Keywords: Axiom of choice, weak axioms of choice, super second countable metric spaces, super 

séparable metric spaces, Tychonoff products. 
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provable in ZF set theory. In [2] we also examined whether the properties of SSC 
and SS are hereditary among metric spaces. We showed that the statement "every 
SSC metric space is hereditarily SSC" is provable in ZF, whereas the corresponding 
statement for SS metric spaces is not deducible from the ZF axioms alone. 

Naturally, one having defined the notions of SSC and SS, may ask whether thèse 
properties are preserved under Tychonoff products of finitely many such spaces. In 
Theorem 2 we show that in ZF if the Tychonoff product of two non-empty metric 
spaces (and by induction of finitely many) is SSC then each one of the coordinate 
spaces is SSC. However, the situation for the converse implication is totally différ­
ent. In particular, in Theorem 8 we prove that the weak choice axiom CAC(M) is 
équivalent to the statement "Tychonoff products of finitely many SSC metric spaces 
are SSC". Therefore, the latter proposition is not a theorem of ZF. 

Regarding Tychonoff products of finitely many SS metric spaces, we estab-
lish (see the forthcoming Theorem 7) that if the coordinate spaces are in addition 
Cantor-complete, then their product is SS and the proof requires no choice prin­
cipes. The same resuit applies for hereditarily séparable metric spaces which are 
Cantor-complete (see Theorem 7). However, it still éludes us whether it is provable 
in ZF that the Tychonoff product of two SS metric spaces (or hereditarily séparable 
metric spaces) is again SS (resp. hereditarily séparable). 

Finally, we would like to note that since the axioms of countability play a promi­
nent rôle in the theory of metric spaces we believe that studying their set theoretic 
strength as well as the interrelation between them in the absence of AC is impor­
tant so that we may conceive better our limitations without AC within this part of 
topology. 

Définition 1 L A topological space (X, T) is called super second countable 
(SSC) if every base for T has a countable subfamily which is a base. 

2. A topological space (X, T) is called super first countable (SFC) if for every 
x G X every neighbourhood base V(x) of x there is a countable subfamily 
B(x) of V(x) which is a neighbourhood base of x. 

3. A topological space (X, T) is called super séparable (SS) if every dense sub-
space of X is séparable. 

4. A topological space (X, T) is called dense-in-itself iff X has no isolated 
points. 
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5. If (X, T) is a topological space, then a set Y C X is called nowhere dense if 
the closure of Y has empty interior. 

6. A metric space (A", d) is called (Cantor) complète if Clneu ̂ / 8 f° r ev­
ery descending family {Fn : n G u;} of non-empty closed sets such that 
limn_0 0diameter(Fn) = 0. 

7. CAC(R): The axiom of choice restricted to countable families of non-empty 
subsets of R. 

8. M(P,Q): Every metric space having the property P has also the property Q. 

9. For any topological space (X, T), let 

Iso(X) = {x e X : x is isolated in X}. 

By transfinite recursion we define a decreasing séquence (XQ)aeord of closed 
subspaces of X as follows: 

Xo = X, 

Xa+i = X Q \ I s o ( X a ) , 

XQ = f}{Xp :j3<a) for limit a. 

The set XQ, a G Ord, is called the ath Cantor-Bendixson derivative of X. 

10. A topological space (X, T) is called scattered iff Iso(Y) ^ 0 for each non-
empty closed subspace Y of X. Clearly, X is scattered iff there exists an 
ordinal a 0 such that Xao = 0 . If X is scattered, then the ordinal number 
min{a : Xa = 0} is called the Cantor-Bendixson rank of the scattered space 
X and it is denoted by | X | C B . 

In what follows, "S" stands for séparable, "hSSC" stands for hereditarily super 
second countable, "hSS" stands for hereditarily super séparable, and "hS" stands 
for hereditarily séparable. 

Proposition 1 ([3]) CAC(R) iff every family A = {An : n G UJ) of non-empty 
subsets ofreals has a partial choice function (i.e.y A has an infinité subfamily with 
a choice function). 

Proposition 2 ([6]) Thefollowing statements are équivalent: 
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(i) CAC(R). 

(ii) A metric space is second countable iffit is séparable. 

Proposition 3 ([1]) Thefollowing statements are équivalent: 

(i) CAC(R). 

(ii) RishS. 

(iii) R is SS. 

Proposition 4 ([!]) Thefollowing statements are équivalent: 

(i) CAC(R). 

(ii) Every second countable topological space is SSC. 

(iii) R (with the standard topology) is SSC. 

Proposition 5 ([2]) Thefollowing statements are équivalent: 

(i) CAC(R). 

(ii) RishSSC. 

(iii) RishSS. 

(iv) Every countable subspace ofR is SSC. 

Clearly, if (X, d) is a hS metric space then it is also hSS. Thus, M(hS, hSS) 
and consequently, M(hS, SS), are true in ZF. However, the converse need not be 
true. Indeed, letting X = C U Q, where C dénotes the Cantor ternary set, carry the 
subspace topology, we can easily verify that X is SS (C is nowhere dense in X). 
Now, if X is hS, then C is hS. Since the proposition "C is hereditarily séparable" is 
équivalent to CAC(R) (recall that |C| = |R| and follow the proof of Proposition 3 in 
[1]), it follows that M(SS, hS) implies CAC(M) and consequently it is not a theorem 
of ZF. However, it is easily seen that if X is hSS then X is also hS. Hence, M(hSS, 
hS) ^ M(hS, hSS) and we hâve completed the proof of the following proposition: 

Proposition 6 Let (X, d) be a metric space. Then: 
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(i) IfX is hS, then X is SS. 

(ii) X is hSS iffX is hS. 

(iii) M(SS, hS) iffCAC(R). 

(iv) M(hSS, hS) & M(hS, hSS). 

Theorem 1 ([2]) Thefollowing statements are provable in ZF: 

(i) Every SSC metric space is SS. 

(ii) Every closed subspace ofa SSC metric space is SSC. 

(iii) If (X, d) is a SS metric space and O is an open subset ofXy then the closure 
ofOinXisSS. 

(iv) Every dense subspace ofa SS metric space is SS. 

(v) Every open subset ofa SS metric space is SS. 

Proposition 7 Let X be a scattered topological space having a base B = {Bv : 
v G N}, where N is a well ordered cardinal number. Then X is a well-orderable set. 

Proof. Let a be the Cantor-Bendixson rank of X. Clearly, X = L){Iso(Xi) : i G a} 
and for i ^ j , Iso(Xj) ^ Iso(Xj). Since for every i G a the restriction of B to Xi is 
a base we may use the well ordering of B to define a well ordering on Iso(Xi). Then, 
X being the union of a well ordered family of well ordered sets is well ordered. • 

Remark 1. From Proposition 7 it follows that a second countable scattered metric 
space (X, d) is well orderable. Hence, (X, d) is hereditarily séparable and heredi­
tarily super séparable. Thus, in the sequel, when dealing with the properties of SS, 
hSS and hS we shall always assume that (X, d) is not scattered. 

2 Main results 

Theorem 2 (ZF) Let X, Y be two non-empty metric spaces such that X x Y is 
SSC (SS). Theny each one ofX and Y is SSC (SS). 

• 271 



HERRLICH, KEREMEDIS & TACHTSIS - TYCHONOFF PRODUCTS.. 

Proof. Assume that X x Y is SSC. We show that X is SSC (similarly one proves 
that Y is SSC). To see this, fix B and C two bases for X and Y, respectively. Then 
B = {B x C : B e B,C e C} is a base for X x Y and consequently there exists 
a countable subfamily B = {(Bn x Cn) eB : n e UJ} which is a base for X xY. 
Clearly, {Bn : n G UJ} c B is a base for X and X is SSC as required. 

Assume now that X x Y is SS. We show that X is SS (similarly one proves that 
Y is SS). Fix a dense subset D of X. Then, D x y is a dense subset of X x Y and 
consequently there is a countable dense subset {(dn,yn) : n G UJ} C D x Y of 
X x y. Clearly, {dn : n G a;} C D is a countable dense subset of D and X is SS 
as promised. • 

Theorem 3 Thefollowing statements are équivalent: 

(i) For every SS metric space X, X x N is SS. 

(ii) For every SS metric space X,for every family A = {Ai : i G N} of dense 
subsets of X there exists a countable subset G C UA such that for every 
i G N, GPiAi = X. 

(iii) For ail SS metric spaces X and Y, X x Y is SS. 

Proof. (i) => (ii) Fix a family A = {Ai : i G N} of dense subsets of the SS 
metric space X. Clearly, D = U{Ai x {i} : i G N} is a dense subset of X x N 
and consequently there exists a countable dense subset H = {hn : n G N} of 
D. Clearly, G = {gn = Dom(hn) : n G N} c U4 and it satisfies: Vi G N, 
GnAi = X. 

(ii) => (iii) Let X, Y be two SS metric spaces and fix a dense subset D of X x 
Y. Let B = {Bn : n G UJ},C = {Cn : n G u} be bases for X and F , respectively. 
For each n G N we let: 

An = {x G X : 3y G C„, (x, y) G D}. 

Then ^4n is dense in X. Indeed, let U be a non-empty open subset of X. Since 
D is dense in X x y , (C/ x Cn) n D ^ 0. Let (x,y) be a member of the latter 
intersection. Clearly, x G C/ D An and ^ n is dense in X. Put .A = {An : n G N}. 
By (ii) there exists a countable set G* C U-4 satisfying: Vn G N, Gx H 4 = X. 
Then the set (G* x Y) n D is dense in X x y . To see this, let O = Bn x Cm 

for some n, m G N. Then Bn n Gx H Am ^ 0. Let x be a member of the latter 
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intersection. By the définition of Am there exists y G Cm such that (x,y) G D. 
Clearly, (x, y)eOn{Gx xY)D D. 

For each n G N we let: 

Wn = {yeY:3xe Bn, (x, y) G (Gx *Y)n D}. 

Then Wn is dense in Y. Indeed, let U be a non-empty open subset of y . Then 
(Bn x U) fi (Gx x y ) D D 7̂  0, so let (x, y) be an élément of the latter intersection. 
Clearly, y G U fl Wn and Wn is dense in Y as required. Put W = {VKn : n G N}. 
By (ii) there exists a countable set Gy C UW satisfying: Vn G N, Gy n Wn = y . 

We assert that the countable set (Gx x Gy) n D is dense in X x y , hence it is 
dense in D. Let O = Ba x Cm for some n,m G N. Then Cm H Gy H Wn ^ 0. 
Let y be an élément in the latter intersection. By the définition of Wn there exists 
an élément x G Bn such that (x, y) G (Gx x Y) H D. Clearly, (x, y) G O n (Gx x 
Gy) H D. Thus, D is séparable and X x y is SS finishing the proof of (ii) => (iii). 

(iii) => (i) This is straightforward • 

Theorem 4 Lef X, y be fwo non-empty metric spaces. Then X xY is SS iffX x N 
andY xN are SS. 

Proof. (=>) Assume that X x y is SS and without loss of generality that both X 
and y are infinité sets. By Theorem 2 X is SS and Y is SS. We show that X x N 
is SS (and similarly y x N is SS). If Iso(y) = Y then X x N embeds as a dense 
subspace of X x y and consequently by Theorem 1 (iv), X x N is SS. So, we may 
assume that Iso(y ) ^ Y. Fix D a dense subset of X x N. Then, 

A = {An = Dom(D n (X x {n})) : n G N} 

is a family of dense subsets of X. Since y \ I so (y) is a second countable dense-in-
itself metric space, we may fix a maximal infinité antichain O consisting of basic 
open sets in y \ I so(y) (hence of open sets in Y). Then V = O U {{y} : y G 
Iso(y)} is clearly countable (Y is second countable, hence Iso(y) is countable), so 
let {On : n G N} be an enumeration of V. It can be readily verified that 

D = \j{An x On : n G N} 

is a dense subset of X x Y and consequently it contains a countable dense subset 
G. It is also easy to see that for every n G N, G n = G fl (An x On) is dense in the 
open subspace X x On of X x Y. Hence, Gn = 7rx(Gn) C An is dense in X and 
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consequently for every n G N, Gn x {n} C An x {n} c D is dense in X x {n}. 
Thus, G = U{Gn x {n} : n G N} c D is a countable dense subset of X x N 
(hence of D) and X x N is SS as required. 

(<=) From Theorem 2 we deduce that X and y are SS and from our hypothesis 
and the proof of Theorem 3 we conclude that X x y is SS as required. • 

The proofs of the subséquent two theorems are similar to the proofs of Theorems 
3 and 4, respectively, so we leave them as an easy exercise for the reader. 

Theorem 5 Thefollowing statements are équivalent: 

(i) For every hS metric space X, X x N is hS. 

(ii) For every hS metric space X,for every family A = {Ai : i G N} of subsets of 
X there exists a countable subset G C UA such that for every i G N, G D Ai 
is dense in Ai. 

(iii) For ail hS metric spaces X and Y, X xY is hS. 

Theorem 6 Let X, Y be two non-empty metric spaces. Then X xY is hS iffX x N 
and Y x N are hS. 

We show next that the statement "the product of two complète hS (SS) metric 
spaces is hS (SS)" is provable in ZF set theory. First we need to establish the subsé­
quent two Lemmas. 

Lemma 1 Let X be a SS metric space. Theny every family A = {An : n G UJ} of 
dense subsets ofX has a choice function. 

Proof. Let S be a countable base for the metric topology on X and let O = {On : 
n G o;} C S be an antichain. Put 

Y = \J{On nAn:neuj}U (f]{(On)
c : n G UJ}). 

Since An is dense in X, it follows that Onï\Anj^$ for ail n e UJ. Furthermore, Y 
is dense in X. Indeed, let V be a non-empty open subset of X. If V does not meet 
any On , then clearly V D Y ^ 0. If V H On ^ 0 for some n e UJ, then since An is 
dense in X, V n On H An ^ 0, hence V n Y ^ 0. Thus, Y = X. 

Since X is SS, let D = {dn : n G UJ} be a dense subset of Y. For every 
n G CJ, On fl y is a non-empty open subset of Y and since O is an antichain, 
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On n y = On n An. Therefore, (0„ n An) n D ^ 0 for every n G a;. Then 
/ = {(n, dm n) : n G a;}, ran = min{ra G a; : dm G On D ^4n}, is clearly a choice 
function for A, finishing the proof of the Lemma. • 

Lemma 2 Thefollowing statements are équivalent: 

(i) CAC(R). 

(ii) There exists a complète dense-in-itself hS metric space. 

(iii) There exists a complète dense-in-itself SS metric space. 

Proof. (i) => (ii) R with the standard metric is complète and dense-in-itself. By 
Proposition 3, R is hS. 

(ii) => (iii) This follows from Proposition 6. 
(iii) => (i) Fix a complète dense-in-itself SS metric space (X, d). Fix a neigh­

bourhood base B = {Bn : n e UJ} for X consisting of closed sets. For every n e UJ, 
via a straightforward induction we construct a Tr-base1 IIn = U{Lni : i G UJ} of Bn 

such that: 

(a) Each Lni C B is a maximal antichain in Bn and each member of Ln% has 
diameter less that l/(z + 1). 

(b) Vm G N, VO G Lnm, 3Q G Ln(m_l)9 OcQ. 

We do this as follows: For i = 0, by using the well ordering of B, we let Lno be 
a maximal antichain in Bn with each of its members having diameter less than 1. 

For i = m + 1 and using the well-ordering of B again, we fix for each O G Lnrn 

a maximal antichain CQ in O with each of its members having diameter less that 
1/(2 + 1). Put Lni = U{G0 : O G Lnm}. 

Clearly, IIn = U{Lni : ile u} is a 7r-base for Bn. Furthermore, as Bn is closed 
and for every i G CJ, each member of Lni has diameter less than l / ( i + 1), and 
for every maximal chain C of IIn , C fl Lni is a singleton, it follows that nC is a 
singleton. For every n e UJ, let yn = U{nC : C is a maximal chain of I I n } . We 
assert that for every n eu, \yr

n\ = {&"{ (= \R\ in ZF). Indeed, we define a function 
Hn : UJU —> yn by recursion as follows: Let / G u;". Let V/(0)

 De t h e /(0) élément 
of L^o in the numbering that Lno inherits as a subset of B. Assume that we hâve 

'Let (X, T) be a topological space. B C T\ {0} is called a ir-base if every non-empty élément 
of T contains an élément of B. 
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defined a chain V/(0) D V/(1) D ... D Vf(k) of IIn . Let Vf(*+i) b e t h e / ( f c + *) 
élément of CV/(fc) (the maximal antichain in V)(fc) in the above construction of IIn) 
i n Ln(k+\y Clearly, Vfi<k+l) C V)(fc), {Vy(fc) : k e UJ} is a maximal chain of ïln, 
and n{V)(fc) : k G CJ} is a singleton, say {anf}. Finally, define Hn(f) = anj. It 
can be readily verified that Hn is a one-to-one function from UJU onto Yn. Thus, 
|yn | = 1^1 asclaimed. 

We show next that CAC(R) holds. Fix a disjoint family A = {Ai : i e UJ} 
of non-empty subsets of uu. It is straightforward to verify that for every i e UJ, 
Di = U{Hn{Ai) : n G UJ} is a dense subset of X. By Lemma 1 let / be a choice 
function of the family V = {Di : i G UJ}. For every i G UJ, let # = H~^(f(ï)), 
rii = min{n G a; : /(z) G Hn(Ai)}. Clearly, F = {(i,£i) : i G a;} is a choice 
function of A finishing the proof of (iii) => (i) and of the Lemma. • 

Theorem 7 Let X, Y be two non-empty complète metric spaces. Then, 

(i) XxY is SS iffX and Y are SS. 

(ii) XxY is hS iffX and Y are hS. 

Proof. (i) (=>) This follows from Theorem 2. 
(i) (<=) Assume that X and Y are SS. In view of the proof of Theorem 3 it 

suffices to show that X x N is SS. We consider the following two cases: 
(a) Iso(X) = X. Clearly, Iso(X) is countable and consequently Iso(X) x N is 

a countable discrète dense subset of X x N. Since every dense subspace of X x N 
includes Iso(X) x N it follows that X x N is a SS space. 

(b) Iso(X) ^ X. Then Z = X\lso(X), being open in X, is dense-in-itself and 
since X is SS it follows from Theorem 1 (v) that Z is SS. Let B = {Bn : n G N} 
be a base for X and let x e Z. Then there exists n G N such that x G B^ C Z. 
Clearly, Bn is a complète dense-in-itself subspace of X, and by Theorem 1 (iii), 
Bn is SS. Thus, by Lemma 2, CAC(R) holds. Since X x N is second countable, it 
follows from Proposition 4 that X x N is SSC. By Theorem 1 (i), X x N is SS. 

(ii) (=>) This is straightforward. 
(ii) (4=) Assume that X and Y are hS metric spaces. If X and Y are scattered 

then, in view of Remark 1, X and Y are well orderable. Thus, X x Y is a well 
orderable séparable metric space and consequently X x Y is hS. So assume that X 
is not scattered. This means that for some ordinal number a, the subspace XQ of X 
is a complète dense-in-itself hS metric space. Thus, by Lemma 2, CAC(M) holds. 
Since X x Y is second countable, it is hereditarily second countable as well. Thus, 
by CAC(R), X x Y is hS. • 
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Theorem 8 Thefollowing statements are équivalent: 

(i) CAC(R). 

(ii) Tychonoff products of finitely many SSC metric spaces are SSC. 

Proof. (i) => (ii) Let {{Xi, di) : i < n}, n G N, be a family of SSC metric spaces, 
and let X be its Tychonoff product. Clearly, X is a second countable space, hence 
by CAC(M), X is SSC. 

(ii) =>> (i) Fix A = {Ai : i G N} a disjoint family of non-empty subsets of p(N). 
It suffices, in view of Proposition 1, to show that some infinité subfamily £ of .A has 
a choice function. Without loss of generality we may assume that for every n G N 
and for every X G An, Xn[l,n]= 0. Consider X = {0} U {1/n : n G N} as a 
subspace of R equipped with the standard metric. 

Claim. X is SSC. 

Proof of the Claim. Fix a base B for X. Since for every n G N, 1/n is an isolated 
point of X, it follows that {1/n} G B. Let {Sn : n G N} be an enumeration of the 
set of ail finite subsets of {1/n : n G N}. Since for every neighbourhood O e B of 
0, X\0 is some Sn , it follows that C = {{1/n} : n eN}U {O e B :0 e O} C B 
is a countable subset of B and is a base for X. Hence, X is SSC as required. 

By the Claim and our hypothesis we hâve that Y = X x X is SSC. For every 
n G N and every Z G An let 

OnZ = (([0,1/n] x [0, l /n ] ) \ ({( l /n , l/z) :zeZ}U {(1/n,0)})) n Y. 

It can be readily verified that C = {Onz ' ri G N, Z G An} U {{(1/n, 1/ra)} : 
n,ra G N}U {({1/n} x [0,1/m]) H Y : n,ra G N} U {([0,1/m] x { l / n } ) n 7 : 
m, n G N} is a base for the topology of y . Let V C 6 be a countable base 
for y . Let {Onizn : z G N} C P be an enumeration of a strictly decreasing 
neighbourhood base of the point (0,0) of Y. It is straightforward to verify that 
{(rii, Zn. ) : i G N} is a choice function of the infinité subfamily £ = {An : i G N} 
of A, finishing the proof of the theorem. • 

Theorem 9 Thefollowing statements are équivalent: 

(i) CAC(R). 
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(ii) Tychonoff products of finitely many SFC metric spaces are SFC. 

Proof. (i) => (ii) This can be established similarly to the proof of (i) => (ii) of 
Theorem 8. 

(ii) => (i) Simply note that the metric space X of the proof of Theorem 8 is 
trivially SFC. • 

Theorem 10 Thefollowing statements are équivalent: 

(i) CAC(R). 

(ii) X" is SSC (resp. SS)for every metrizable SSC (resp. SS) space [X, T). 

(iii) The Baire space UJ" is SSC (resp. SS). 

Proof. (i) => (ii) Let (X, T) be a metrizable SSC (resp. SS) space. Then in ZF, 
X" is a metrizable second countable space, hence by CAC(R), X" is SSC (thus by 
Theorem 1 (i), it is SS) as required. 

(ii) => (iii) UJ, as a subspace of R, is SSC (SS) in ZF. By our hypothesis, the 
Baire space UJ" is SSC (SS). 

(iii) => (i) UJ" is (topologically) homeomorphic to the set I of the irrational 
numbers (see [5]). If / is SSC, then from Theorem 1 (i) we deduce that / is SS. The 
conclusion follows from the fact that CAC(R) holds iff I is SS (the latter équivalence 
can be proved as in Lemma 2.2 in [1] but with / instead of M). • 

Question. In ZF, are Tychonoff products of finitely many hS (or SS) metric spaces 
hS (or SS)? 
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