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CAHIERS DE TOPOLOGIE ET Volume XLDC-2 (2008) 
GEOMETRIE DIFFERENTIELLE CA TEGORIQUES 

A NOTE ON KIEBOOJVTS PULLBACK THEOREM 

FORCOFIBRATIONS 
by Afework SOLOMON 

RESUME Le but de cet article est de montrer que le théorème de 
Kieboom sur les produits fibres pour les cofibrations (Kieboom's 
Pullback Theorem for Cofibrations [8]) a de nombreuses applications 
et généralisations de certains résultats classiques bien connus de 
théorie homotopique. Kieboom a montré que le théorème sur les pro­
duits fibres de Strom (Strom's Pullback Theorem [14, Theorem 12], 
[2, Corollary 3]) est un cas particulier de son théorème et il a donné 
beaucoup d'applications de son théorème aux espaces localement 
équiconnexes. 

Dans cet article, nous donnons des applications plus impor­
tantes du théorème de Kieboom et nous montrons qu'une version du 
théorème principal de l'article de Kieboom [9] est en fait une consé­
quence de son théorème sur les produits fibres, montrant ainsi que la 
plupart des résultats bien connus de Strom sont en fait des cas parti­
culiers du théorème sur les produits fibres. 

Throughout this paper we work in the category Top of Topological 
Spaces and continuous maps. See [ 5 ] and [ 7 ] for the concepts of cofi­
brations, fibrations and cofibrations over a space B. The author wishes 
to thank Peter Booth for his useful suggestions as well as continuous 
encouragement during this work. Information regarding Lemma 1 was 
obtained from Peter Booth. 
Next, we'll state Kieboom's "Pullback Theorem for Cofibrations" for 
the ensuing remarks and examples. 
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Theorem 1. Consider the following commutative diagram in Top: 

xonE0 

fig- i 

in which the inclusions B0 —> B, EQ —> E and X0 —> X are closesd 
cofibrations and if p : E —» B and po •' E0 —> SQ a r e fibrations, then 
the inclusion X0r\ E0 —> X D E is also a closed cofibration. See [ 10 ] 
for the proof(Note: X ïl E dénotes the pullback of X —> B <— E1/ 

Kieboom's proof makes use of the following proposition which is con-
tained in a paper by Heath and Kamps [5, Example 1.3 ]. 

Proposition 1. If i : A —> X is a closed cofibration in Top and if 
further PA : A —* B and px '• X —> B are Hurewicz fibrations, then i : 
PA -^ Px is a cofibration over B. 

The proof given by Heath and Kamps dépends on a resuit of J. E . 
Arnold, Jr; [1, Lemma 3.8] which roughly states the following: 

Proposition 2. Let E0 = Ei D E2 and assume further that {E^EQ) i 
= 1,2 are closed cofibrations and pi : Ej —> B are fibrations with pt = 
p\Ei (p restricted to the E\) for i = 0,1,2, then p : E\\J E2 —» B is a 
fibration. 

Proposition 2 follows from [9, Proposition] once we show that proposi­
tion 1 is a conséquence of a more gênerai lemma which we state below. 
That is, Proposition 1 can be proved with no recourse to proposition 2. 
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Lemma 1. Let f G CB{X,Y). That is, f is a morphism in Tops 
(the category of topological spaces over some fixed topological space B). 
Suppose px •' X —> B and py : Y —> B are Hurewicz fibrations. Then, 
Mf —> B is a Hurewicz fibration. (Mf is the mapping cylinder of f) 

Proof See [11, Corollary I] • 
Now with the help of Lemma 1, we can easily prove Proposition 1. 

Proof Consider the following commutative diagram: 

X x 0 U A x / lxx0uAxI, XxOuAxI^Mi 

X x T 
^ Pxprx 

Since A <̂-> X is closed, it follows that M{ = X x 0 U A x I and by 
Lemma 1, it follows that X x O U i x J - ^ B i s a fibration. Now, 
by Str0m's relative lifting theorem, [13, Theorem 4] 3 R : X x 7 
—> X x OU A x I a retraction making the triangles above commute. 
Therefore, i : PA —• Px is a cofibration over B. • 

We remark that the closedness condition in Theorem 1 cannot be re-
moved under the conditions stated as we hâve used the relative lifting 
theorem of Str0m [13, Theorem 4] in our proof of Proposition 1 and 
it was shown by Kiebom [8,remark 1] that Str0m's Theorem no longer 
holds when fibration is replaced by regular fibration and closed cofibra­
tion replaced by weak cofibration. We observe furthermore, that Furey 
and Heath [4, Proposition 1.7] hâve given a proof of the above theorem 
under a différent set of conditions. As remarked by Kieboom, Theorem 
1 generalizes the resuit of Furey and Heath. We also note that the proof 
given by Furey and Heath does not dépend on the relative lifting theo­
rem of Str0m and so the closedness condition can be removed in their 
proof if we replace the fibrations by regular fibrations and use the well 
known resuit of Kieboom uThe pullback of a cofibration along a regular 
fibration is a cofibration [8, Theorem 2.1]. We now state an improved 
version of the resuit of Furey and Heath. 
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Theorem 2. Consider fig.(i) of Theorem 1. in which the inclusions BQ 
—> B, E0 —> E and X0 —> X are cofibrations and p : E —» B , p0 •' 
£0 —> BQ, f : X —> B and / 0 : X0 —> B0 are regular fibrations, then the 
inclusion XQUEQ -^ XnE is also a cofibration. (Note: X\lE dénotes 
the pullback of X —> B <— E). 

We will now give some examples of well known results in homotopy 
theory that are direct conséquences of Kieboom's Pullback Theorem for 
cofibrations. 

Définition 1. A space X is Locally Equiconnected (LEC) if the inclu­
sion of the diagonal AX in X x X is a cofibration. Equivalently, if the 
diagonal map A ; X —» X x X is a cofibration. See [6] and [3] for the 
définition. 

Application (i): A space X is LEC(locally-equiconnected) iff for ail 
continuous maps / : Z —> X, the graph of / , G/ = {(z, f{z))\z G Z) Ç 
Z x X is a cofibration. See[6, Proposition] for définitions on LEC and 
the original proof of the example. We will now show that this theorem 
is a conséquence of Theorem 1. 

Proof. Let T/ : Z —> Z x X be defined by T/(z) = (2, f(z)) and consider 
the following diagram below 

/ / x l x 

X—^IxX 

We claim that the diagram above is commutative. To see this, 
( / x l x ) I 7 ( z ) =(fxlx)(z,f(z)) 

= (f(z)J(z)) 
= A (/(z)) 
= (A/)(z) for ail z 
= * (/ x l x ) I> = A / 
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using basic properties of pullbacks on composite squares, it is easy to 
see that the diagram below 

ZxX fXlx > X x X 

pn / x i x 

X 

is a pullback. Finally, consider the following diagram of pullbacks: 

Since the inner and outer squares are pullbacks,it follows from Theorem 
1 that Tf : Z —> Z x X is a cofibration. 

• 
Application (U): If A —> X and C —> Y are (closed) cofibrations, then 
s o i s A x C — » X x Y a closed cofibration. 
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Proof The proof follows by applying theorem 1 to the diagram below. 

AxC 

Note : The closedness condition can be circumvented. In the diagram 
above, X —> •, Y —> •, A —> • and C —* * are ail regular fibrations 
and therefore, AxC—> X x Y is a cofibration by Theorem 2.. • 

Application(iii)\ If p : E —> £? is a fibration and E, B, and X are 
LEC, then so is X fi £ LEC. This theorem was originally proved by 
Heath [6] and later noted by Kieboom as a conséquence of Theorem 1. 
We remark that this theorem is the dual of the well known adjunction 
theorem of Dyer and Eilenberg (see[3, Adjunction Theorem]). A simpler 
proof of the Adjunction Theorem was later given by Gaunce Lewis, 
see[12, Theorem 2.3]. 

Proof. The proof actually follows from the diagram shown below: 

XUE ^E 

(Xr\E)>\{Xn E) ^ Ex E 

pxp 

XxX-^rBxB 
/ x / 

X ; ^B 

• 
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Application(iv): If p : E -> X is a Hurewicz fibration denoted by 
îîp = {(e,cj) G £ x X ' | p ( e ) = CJ(0)} = £ n X 7 ; and if 4 Ç X, let p^: 
p - i ( ^ ) _+ 4 and dénote by QPA = {(e,u) G p " 1 ^ ) x AJ\PA(e) = u(0)} 
= p-\A)nAI. 
If p : E -> X is a Hurewicz fibration and A -> X is a closed cofibration, 
then fi PA 

Çtp is a closed cofibration. 

Proof Since the pullback of a closed cofibration along a fibration is 
again a closed cofibration, it follows that p~\A) -> £ is a closed cofi­
bration [14,Theorem 12]. Moreover, since / is compact, and A -> X is 
a cofibration, we hâve A1 - • X7 is a cofibration[15, Lemma 4] It is also 
known that p _ 1 (^ ) -* A i s a fibration. We therefore conclude from the 
diagram below 

n 'PA -P-\A) 

A 

that QPA -> fip is a cofibration by Theorem 1. 

• 
Application(v): Let (X, x0) and (Y, y0) be pointed topological spaces. 
We define the following two spaces: 

P+Y = {\eYI\\{l) = y0} 

p-Y = {\eYI\X(0) = yo} 

We regard P+Y and P'Y as subspaces of Y1. We can also think of 
P+Y and P'Y as pullbacks of the following diagrams. 
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y o n Y 7 = P + Y y^Y1 = P~Y 

where ei(À) = A(l) = y0 and e0(X) = A(0) = y0. 
Suppose / : X —> Y is a closed cofibration and x() —• X and t/0 —» Y are 
closed cofibrations, then P+ f : P+X —» P + Y is a closed cofibration. 

Proo/. Since / : X —» Y is a closed cofibration and / is compact Haus-
dorff, it follows that X7 —» Y7 is a closed cofibration. Clearly, x0 —• y0 

is a closed cofibration and It is well known that €[ : Y1 —>Y and ¢1 : X7 

—> X are fibrations. Now apply Theorem 1 to the following diagram: 

P+X 

D 

Application(vi): Let (X, xo) be a based topological space such that 
x0 —> X is a closed cofibration. 
The space of loops QY = {A G Y7 | A(0) = A(l) = y0} is the pullback 
of the following diagram. 
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QY p+Y 

2/o Y 

If / : X —> Y is a closed cofibration , then Qf : f2X 
cofibration. 

QY is a closed 

Proof. Since / is a closed cofibration, it follows from Example (vii) 
above that P + / : P + X —> P + Y is a closed cofibration. Moreover, 61 : P + X 
and 61 : P+Y —> Y are fibrations. Hence the resuit follows by applica­
tion of Theorem 1 to the following diagram. 

X 

nx p+x 

• 
Application (vii) :ln this example we will show that a version of the 
main theorem of a paper by Kieboom[9] is somehow a conséquence of 
Theorem 1. 
Consider the following diagram 
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q'l{A) = D. 

where z, j are inclusions and is, ÎD, JA, PA-, QA are induced by z, j , p, q 
respectively. We also dénote DA = q~l(A) and EA = p~l(A) 

(a) If z, and j are closed cofibrations and p and q are fibrations, then 
EA U D —> i? is a closed cofibration. 

(b) If z is a cofibration, j is a closed cofibration and p, g are regular 
fibrations, then 

EA U Z) —> E is a cofibration. 

Note: Observe that we hâve replaced the condition j is a cofibration 
over B by simply requiring j to be a (closed) cofibration and adding an 
extra condition q a fibration in (a) and q a regular fibration in (b) in 
order to apply Theorem 1.(Compare with main theorem of [9]) 

Proof. (a) Under the stated conditions, JA : DA —» EA is a cofibration 
by Theorem 1. The remainder of the proof is exactly the same as given 
by Kieboom [9]. 

(b) Proof exactly the same as Kieboom. 

• 
Application(viii): If i : A —> X is a cofibration and j : P —• Y is a 
closed cofibration, then X x P U A x Y — > X x Y i s a cofibration. 

Proof. Let X = B , X x Y = E , X x P - D ,AxY = EA ,AxB 
— DA , pr\ = p , and pr\ = q in Example (v) above. Hence, X x P U 
A x Y — > X x Y i s a cofibration. D 
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For the remainder of our discussion, we will focus on another theorem 
of Kieboom which we state below: 

Theorem 3. Consider the commutative diagram in Top 

UPA , Px ? PY are fibrations and ifA—>X is a closed cofibration, then 
the induced map q : X U/ Y —> B is a fibration. 

Proof. By Lemma 1 , A —• X is a cofibration over P . The remainder 
of the proof is exactly the same as given by Kieboom. • 

Note : There's no need of using Proposition 1 to show that A —> X is a 
cofibration over P . The prooof originally given by Kieboom makes use 
of proposition 1 which in turn depended on proposition 2 . As explained 
earlier, proposition 1 is a conséquence of Lemma 1, and it will soon be 
shown that proposition 2 follows from Theorem 3. 
We will now give some applications of Theorem 3. 

Application (i): Proof of Proposition 2 : 
Take Pi H E2 = A , E1 = Y , E2 = X, X U/ Y = Ex U E2 and q =p in 
Theorem 2. 
Application (U): Suppose p :E —• P is a continuous function such 
that P = Pi U B2 and Po = Pi fl B2 —» P is a closed cofibration. Let 
E0=p-1{B1nB2) , ¾ 
. Suppose pi : Ei 
a fibration. 

p'l(Bi) , E2 = p~l{B2) and let E = Ex U E2 

P for z = 0,1,2 is a fibration. Then, p : P —+ B is 
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Proof Consider the following commutative diagram: 

E0 >- E2 

P i H P 2 

D 

Since Pi fl B2 —> P is a closed cofibration and E2 —> P is a fibration, it 
follows that P 0 —» P2 is a closed cofibration [13, Theorem 4]. Now take 
E0 = A , Pi = Y, E2 = X , and X Uf Y = P 0 = E1 n E2 in Theorem 3. 
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