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CAHIERS DE TOPOLOGIE ET Volume XLVIII-1 (2007)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

UNIFIED CHARACTERIZATION OF EXPONENTIAL
OBJECTS IN TOP, PRTOP AND PARATOP

by Frederic MYNARD

RESUME. Une caractérisation unifiée des objets exponentiels dans les
catégories des espaces topologiques, prétopologiques et paratopologi-
ques (munies des applications continues) est présentée comme applica-
tion d'un théoréme concernant les produits de filtres D-compacts.

1. INTRODUCTION AND TERMINOLOGY

It is well known that the cateory TOP of topological spaces (and
continuous maps) fails to be cartesian-closed, or in other words, fails to
have "good" function spaces. Namely, there is in general no topology T
to put on sets C(X, Z) of continuous functions from X to Z to ensure
that the exponential law

(1.1) C(X x Y, Z) = C(Y,C:(X, Z))

is satisfied () for every triplet of topological spaces (X, Y, Z) (see [10],
[1]). To remedy this situation, one can allow for more structures on
C(X, Z) than only topologies, i.e., embed TOP in a larger category
that is cartesian-closed, or one can restrict the objects to those satisfy-
ing (1.1). More specifically, a topological space X is called exponential
-in TOP if for every topological space Z there exists a topology T on
C(X, Z) such that (1.1) is satisfied for every topological space Y. Not
surprisingly, a category used for the former approach would be instru-
mental in getting internal characterizations of exponential objects, as
observed by F. Schwarz. More specifically, it is known from [17] that
an object X of an epireflective and finally dense subcategory L of a
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topological cartesian-closed category C is exponential in L if and only
if the reflector L : C — L commutes with the product in the following
way:

(1.2) LIXxY)< X xLY,

for every C-object Y. F. Schwarz used this approach (with C = Conv
the category of convergence spaces and continuous maps) to charac-
terize exponential objects in TOP, while the author used it in [14],
[15] to characterize among other things exponential objects in the cate-
gories PRTOP of pretopological spaces (which were first characterized
in [12]) and PARATOP of paratopological spaces (and continuous
maps). The later category was introduced by S. Dolecki [5] and is in-
strumental to characterize countably biquotient maps, strongly Fréchet
(also called countably bisequential) spaces and many other notions.
But despite some similarity in both proofs and results, all the known
internal characterizations of exponential objects in PRTOP and TOP
needed almost entirely separate proofs so far. It is the aim of this pa-
per to present a long sought unified treatment of exponential objects
in TOP and in PRTOP. The case of PARATOP is also obtained as
a by-product. The key is to interpret convergence of a filter in various
reflections (in Conv) of the underlying convergence structure in terms
of compactness of that filter in the underlying convergence, for various
classes of filters and relatively to various families.

Recall that by a convergence space (X, €) I mean a set endowed with
a relation & between points of X and filters on X, denoted z € lim; F or
F ? z, whenever z and F are in relation, and satisfying lim F C limG

whenever F < G; {z}' — z () for every z € X and lim(FAG) =
lim F Nlim G for every filters F and G. A map f : (X,€) — (Y,7) is
continuous if f(lim¢ F) Clim, f(F). If £ and T are two convergences
on X, we say that £ is finer than 7,in symbols & > 7, if Idx : (X,§) —
(X,7) is continuous. The category Conv of convergence spaces and
continuous maps is topological (3) and cartesian-closed [4, Theorem 5]

fAC2X,A'={BcX:34A€ A, ACB}.

3In other words, for every sink (f;: (X;,&;) = X )ic1» there exists a final con-
vergence structure on X : the finest convergence on X making each f; continuous.
Equivalently, for every source (f; : X — (Y;,7:));¢; there exists an initial conver-
gence: the coarsest convergence on X making each f; continuous.
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(). A convergence is called atomic if it has at most one non-isolated
point.

Two families A4 and B of subsets of X mesh, in symbols A#B, if
ANB # ( whenever A € A and B € B. A subset A of X is &-
closed if lim¢ F C A whenever A € F#. The family of &-closed sets
defines a topology T€ on X called topological modification of £ The
neighborhood filter of z € X for this topology is denoted Ng(z) and
the closure operator for this topology is denoted cl¢. A convergence is
a topology if z € lim¢ NV¢(z). By definition, the adherence of a filter (in
a convergence space) is:

(1.3) adhe F = | | lim¢G.

G#F
In particular, the adherence of a subset A of X is the adherence of its
principal filter {A}!. The vicinity filter Ve(z) of z for £ is the infimum
of the filters converging to z for £. A convergence & is a pretopology if
z € limg Ve(z). Notice that a convergence £ is respectively a topology,
a pretopology, a paratopology, a pseudotopology if x € lim¢ F whenever

z € () adheD, where D is respectively, the class clg (F1) of principal
DD#F
filters of £-closed sets, the class F; of principal filters, the class F,, of

countably based filters, the class F of all filters. In other words, the
map Adhp defined by

(1.4) limAdhnff'= n adth
D.D#F

defines the reflector from Conv onto the (sub)category of respectively
topological, pretopological, paratopological and pseudotopological spact
when D is respectively, the class clg (Fy) of principal filters of &-closed
sets, the class F; of principal filters, the class F,, of countably based fil-
ters, the class F of all filters. A class of filters ) (under mild conditions
on D [5]) defines a reflective subcategory of Conv (and the associated
reflector) via (1.4). Dually, it also defines (under mild conditions on

“In other words, for any pair (X,¢), (Y,7) of convergence spaces, there exists
the coarsest convergence [£, 7] -called continuous convergence- on the set C (€, 7) of
continuous functions from X to Y making the evaluation map

ev: (X,€) x (0(5,7)’ [E,T]) - (Y,7)

(jointly) continuous.

.72-



MYNARD - CHARACTERIZATION OF EXPONENTIAL OBJECTS...

D) the coreflective subcategory of Conv of ID-based convergence spaces,
and the associated coreflector By is

(1.5) limp,e F= | | limD.

D-D<F

If 0:2X — 2X and A C 2%, then 0"(A) = {o(4) : A€ A}. If Disa
class of filters, then of(D) = {D €D : D =0*(D)}. If £ and o are two
convergences on X, we say that £ is o-regular if lim¢ F C lim, adh (F)

for every filter F. To a convergence £, we can associate two (Alexan-
droff) topologies £°* and &* defined by (see [7], [6] for details).

cee A= | | cle{z} and cl» A = {y: cle{y} N A # 2}.
z€A
Notice that
At clls B <= cll. A#B.

A convergence ¢ that is £*-regular is called *-regular [2] (°).
Let D be a class of filters on a convergence space (X, €) and let A be
a family of subsets of X. A filter F is D-compact at A (for £) if

(1.6) D €D, D#F => adh; D#A.

Notice that a subset K of a (topological or more generally conver-
gence) space X is respectively compact, countably compact, Lindelsf
if {K}" is D-compact at {K} if D is respectively, the class of all, of
countably based, of countably deep (¢) filters. Compactness of filters
not only generalizes compactness of sets, but also convergence of filters.
In particular:

Theorem 1. Let D be a class of filters.
(1) z € limagnye F if and only if F is D-compact at {z} for £&. In
particular, z € limpe F if and only i F is Fy-compact at {z}

for €.
(2) z € limpe F if and only if F is F1-compact at Ne(z) for €.

Sclgs A is often denoted | A = {y : 3z € A, y C z} where C denotes the
specialization order (e.g., [8]) of the topology T¢. Analogously cle- Ais T A= {y:
3z € A, x C y}. Therefore, a convergence is x-regular in the sense of [3] if and only
if it is up-nice in the sense of R. Heckmann [9].

6A filter F is countably deep if (J.A € F whenever A is a countable subfamily of
F.
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To be precise, answering a problem of F. Schwarz [17], the papers [6],
[14], [15] give characterizations of quasi-ezponential objects in L (where
L ranges over TOP, PRTOP and PARATOP) that is, of objects X
satisfying (1.2) for every convergence space Y among objects of the
cartesian-closed hull of L rather than just among L-object. Of course,
exponential objects in L are the quasi-exponential objects that are
also L-objects. In particular, calling a convergence space (X, £) finitely
generated if € = By, & and bisequential if £ > SBg ¢ (), we have:

Theorem 2. [14]

(1) A pseudotopological space is quasi-exponential in PRTOP if
and only if it is finitely generated.

(2) A pseudotopological space is quasi-ezponential in PARATOP
if and only if it is bisequential.

A convergence £ is called core compact if for every filter F with
z € lim¢ F and every F' € F there exists Kr € F that is compactoid
at F' and T-core compact if for every filter F with z € lim¢ F and every
V € N¢(z) there exists Fyy € F that is compactoid at V.

Theorem 3. (6]

(1) A core compact convergence space is quasi-ezponential in TOP;
(2) Every Epitopological () convergence space that is quasi-ezponen:
in TOP is T-core compact.

However, it is not known whether the two conditions are really dif-
ferent. In the present paper, I show that both parts of Theorem 2 and
the fact that a *-regular convergence space (X, §) satisfies

(1.7) X xPY >T(X xY)

for every convergence space Y if and only if it is T-core compact, all
follow from the same simple principle.
The fact that (1.7) is equivalent to

XxTY >2T(X xY)

"It is easy to verify that this definition coincide for topological spaces with the
usual notion [13].

8also called Antoine convergence space. The category of epitopological spaces
is the cartesian-closed hull of TOP. A convergence space is epitopological if it is
x-regular, pseudotopological, and if the limit set of each filter is closed.
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for every convergence space Y under the assumption that X is topo-
logical follows from a transfinite induction whose initial step is (1.7).
However, I do not reproduce this induction [6, Theorem 9.1].

2. PRODUCT OF D-COMPACT FILTERS

[11, Theorem 2] was applied successfully in [16] to a large variety of
product problems, including stability under (finite) product of global
properties like countable and pseudo compactness and Lindel6fness, lo-
cal properties like Fréchetness or strong Fréchetness, and properties of
maps like perfectness and its variants and quotientness and its vari-
ants. It is the common principle behind a surprisingly large number of
classical theorems. With the following variant of [11, Theorem 2] (for
M = J=F), I will be able to show that internal descriptions of expo-
nential objects in TOP, in PRTOP and in the category PARATOP
of paratopological spaces, are also consequences of this same principle.

A filter F on X is compactly D-meshable at A if for every A € A and
every ultrafilter finer than F there exists a filter D in I coarser than
U, which is compact at A. This is a particular case (for M = J = F) of
a general notion introduced in [11] of a M-compactly J to D meshable
filter that depends on three classes of filters.

A class D of filters is composable if for any X and Y, the (possibly
degenerate) filter HD generated by {HD : H € H, D € D}® belongs
to D(Y) whenever D €D(X) and H € D(X x Y), with the convention
that every class of filters contains the degenerate filter. Notice that

(2.1) H# (F x G) <= HF#G < H G#7F,
where HG={H G={z€X:(z,y) e Handye G}: HeH,G €
G}

Theorem 4. Let D be a composable class of filters that includes Fq
and let (X,€) be a convergence space. The following are equivalent:
(1) F is compactly D-meshable at A C 2% in (X, ¢);
(2) for every convergence space Y and B C 2¥, and for every filter
G which is D-compact at B, the filter F x G is D-compact at
A x B;

SHD={y €Y :(z,y) € H and z € D}.
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(3) for every convergence space Y, every filter G on'Y which is D-
compact at {yo} and every H C 2X*Y such that H={y} C A,
the filter F x G is D-compact at H;

(4) for every atomic convergence space Y, and for every filter G
which is D-compact at {yo}, the filter F x G is Fi-compact at
A x {yo}.

Proof. (1= 2)

Let D be a D-filter such that D#F x G. The filter D~ (G)#F and F
is compactly D-meshable at A, so that for every A € A, there exists
a compact D-filter C4#D~(G) at A. Now D(C,)#G and D(C,) is a
D-filter, so that for each B € B, there exists a filter Mp#D(C ,) which
converges to a point yg € B. Moreover D" Mpg# C4 so that there
exists Ua p#D~Mp that converges to some point of A. Therefore
adhD N (A x B) # @. Hence, F x G is D-compact at A x B.

(1 = 3). Let D be a D-filter such that D#(F x G). Since D~ G#F,
for every H € H, there exists a D-filter Ly#D~G which is compact
at H"yp € A. The D-filter DLy meshes with G so that there ex-
ists Wy#DLy so that yy € limy Wg. Moreover, D-Wy#Lyg. Thus
there exists Uy#D Wy and =g € limyx Uy N H™yy. Hence (zy, %) €
adhxxy DNH.

(2 => 4) and (3 = 4) are obvious.

4=1). :

If F is not compactly D-meshable at A (on X), then there exists
Ao € A and an ultrafilter U of F such that for every D-filter D < U,
there exists an ultrafilter Wp of D such that limx Wp N Ay = 0.

Consider the convergence space (Y, 7) whose underlying set is X U
{yo} in which every point of X is isolated and H converges to yo if and
only if there exists a D-filter D < U such that H > Wp A {y}!. By
construction U is D-compact at {yo} in Y. However, F x U is not F;-
compact at Ag X {yo} : In the space X xY, theset A = {(z,z) : z € X}
meshes with F x U because F#U in X, but adhxxy AN(4g X {y}) =
. Indeed, if H is a filter on A, then there exists a filter Hy on X such
that M is generated by {{(z,z) : z € H} : H € Ho}. If (z,%) €
limyxy H then yo € limy Hy (and z € limy Hy). Hence there exists a
D-filter D < U such that Ho= Wp (because H, cannot be {yo}'), so
that limy Ho N Ag = 0. Thus z ¢ Ap. O
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In the case where A=N;(z;) and § is *-regular, we can give an
alternative form of (3 =>1).

Proposition 1. Let (X,£) be a *-regular convergence space. If for
every atomic convergence space (Y,7), and for every filter G which is
D-compact at {yo}, the filter F x G is F1-compact at Nexr(Zo,%0), then
F is compactly D-meshable at Ne(zo).

Proof. If A = N¢(zo), then in the construction carried on in the (4 =

1) part of the proof of Theorem 4, Ay can be chosen §-open. Moreover

FxU is not Fy-compact at Nex-(Zo, yo) because (o, yo) ¢ clexr(adhexr «

Indeed, by the same argument as in (4 => 1), adhgx, & C A§ % {yo} U

U (clg z x {z}) and the set A§x {yo}U U (cl¢ z x {z}) can be shown to
X

zeX z€
be (€ x 7)-closed : First notice that A§ x {yo} is (§ x 7)-closed. Assume

H x M is a filter on |J (cle z x {z}) converging to (z,y) for £ x 7. If
zeX

y # yo then M = {y}' and H is a filter on cl¢ y, which is -closed, so
that z € cl¢ y. If y = yo then M = Wp for some D and H >cll, M so

that cli. H#M. Moreover = € lim¢H C limg clg. H by *-regularity of
€. But lim¢ cll. M C adhg M C A§ so that (z,3) € A5 x {y0}- O

In case D = F; and A = {zo}, Theorem 4 applies to the effect that

Corollary 1. Let (X, &) be a pseudotopology. The following are equiv-
alent: '

(1) (X,€) is finitely generated;

(2) X x PY > P(X xY) for every convergence space Y ;

(8) X is quasi-exponential in PRTOP.

Proof. If (X, €) is a finitely generated pseudotopology, then F is com-
pactly F;-meshable at {zo} whenever z € limx F. Therefore, for any
convergence space Y and every G such that y € limpy G, the filter
F x G is Fy-compact at {(zo, %)}, that is (zo,%0) € limxxpy (F X G)
because G is F;-compact at {y}. Hence X x PY > P(X xY) for
every convergence space Y. Conversely, if X x PY > P(X xY) for
every convergence space Y then whenever zg € limx F, we have that
F x G is Fy-compact at {(zo,yo)} for every filter G that is F;-compact
at {yo} in a convergence space Y. Hence F is compactly F1-meshable
at {zo}. In particular every ultrafilter of F contains a set converging
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to zo. Therefore, a finite union of such converging sets —also converging
to zo— belongs to F. Hence X is finitely generated. 0O

In case D=F;, A = N(z0) and H = Nex-(To,%), Theorem 4
(1 = 3) particularizes to (1 = 2) in the result below. Assuming
that (X,&) is a *-regular convergence space, Proposition 1 leads to
(2 =>1) in the result below.

Corollary 2. Let (X,€) be a *-regular convergence space. The follow-
ing are equivalent:

(1) (X,€&) is a T-core-compact;

(2) X x PY > T(X xY) for every convergence spaceY .

Proof. The proof of (1 = 2) is similar to that of Corollary 1 except
that we need to observe two things. The first one is that (Nex-(Zo, ¥0)) ™
Ne(zo). The second is that F is compactly F-meshable at N;(zo) if
and only if for every V' € N¢(zo) there exists Ky € F which is com-
pact at V. If F is compactly F;-meshable at M¢(z¢) then for every
V' € Ne¢(zo) and every ultrafilter U of F, there exists Uyy € U which is
compact at V. Therefore, there exists finitely many ultrafilters U,, .., U,
of F such that J Uyy, € F. Evidently |J Uy, is compact at V. The
other implication s trivial. =

(2 =>1) follows from Proposition 1. O

Corollary 3. Let (X, £) be a topological space. The following are equiv-
alent:

(1) (X,€) is a core-compact;

(2) X x PY > T(X xY) for every convergence space Y;

(3) X xTY > T(X xY) for every convergence space Y;

(4) X is exponential in TOP. ,

Proof. The fact that (2 <= 3) for a topological space (X, £) (in which
case T'-core compact is equivalent to core-compact) is proved by trans-
finite induction in [6, Theorem 9.1]. The inital step of the induction is
Corollary 2. O

In case D =F, and A = {z0}, Theorem 4 applies to the effect that

Corollary 4. Let (X,£) be a pseudotopology. The following are equiv-
alent:
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(1) (X, &) is bisequential;

(2) X x B,Y > P,(X xY) for every convergence space Y';
(3) X x P,Y > P(X xY) for every convergence space Y ;
(4) X 1is quasi-exponential in PARATOP.

Proof. It suffice to notice that the condition that F is compactoidly
F,-meshable at {zo} whenever z, € lim¢ F rephrases as { > SBg, 5S¢,
which coincides with bisequentiality for pseudotopologies. O

1.

2.

3.

10.

11.

12.

13.
14.

15.

16.
17.
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