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CAHIERS DE T0P0L0G1E ET Volume XLVI1I-1 (2007) 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES 

EQUIVARIANT EVALUATION SUBGROUPS 
AND RHODES GROUPS 

by Marek GOLASINSKI, Daciberg GONÇALVES and Peter WONG 

Résumé 
Dans cet article, nous définissons des sous-groupes équivariants 
d'évaluation du groupe de Rhodes supérieur, et nous étudions leurs 
relations avec les groupes de Gottlieb-Fox. 
Classification A. M. S. : Primary: 55Q05, 55Q15, 55Q91; sec-
ondary: 55M20 
Keywords : Equivariant maps, évaluation subgroups, Fox torus ho-
motopy groups, Gottlieb groups, Jiang subgroups, homotopy groups 
of a transformation group. 

Introduction 

While the Gottlieb groups Gn(X) of a CW-space X with a basepoint 
are important objects of study in homotopy theory, the first Gottlieb 
group Gi(X) actually originated from Nielsen fixed point theory. In 
fact, Gi(X) was first introduced by B. Jiang and it is also known as the 
Jiang subgroup J{X). 

In [15], the classical Nielsen fixed point theory was generalized to the 
equivariant setting under the présence of a group action. Subséquent 
works related to equivariant fixed point theory include [2] and [7]. To 
facilitate computation of certain equivariant Nielsen type numbers, an 
equivariant Jiang condition was introduced in [15]. This condition was 

*This work was conducted during the second and third authors' visit to the 
Faculty of Mathematics Computer Science, Nicolaus Copernicus University August 
4 - 13, 2005. The second and third authors would like to thank the Faculty of 
Mathematics and Computer Science for its hospitality and support. 
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studied and relaxed by Fagundes and Gonçalves [2] who gave an example 
in which ail equivariant fixed point classes hâve the same index while the 
space does not satisfy the equivariant Jiang condition. In [4] equivariant 
Gottlieb groups, which are analogs of the equivariant Jiang subgroups in 
higher homotopy groups, were defined and used to compute the Gottlieb 
groups of orbit spaces. 

This paper is organized as follows. In Section 1, we recall the défini­
tion of the higher Rhodes groups an(X, xo, G) and prove the following. 

Theorem 1.2 Suppose a group G acts freely on X with a basepoint 
Xo- Then, an(X,xo,G) ^ rn(X/G,p(xo)) is an isomorphism for ail 
n> 1. 
This generalizes the resuit of Rhodes when n = 1. Moreover, we estab-
lish a split exact séquence for the Rhodes groups, similar to that proved 
by Fox for the torus homotopy groups. We then introduce new equivari­
ant Gottlieb groups (in contrast to those introduced in [4]) as subgroups 
of the higher Rhodes groups and discuss some basic properties in Section 
2. We prove 

Proposition 2.4 A space X is Gottlieb if and only ifit is a Gottlieb-
Fox space. 

Relationships among various évaluation subgroups are discussed in 
Section 3. In particular, n-Gottlieb and equivariant n-Gottlieb spaces 
are related as follows. 

Theorem 3.1 Suppose a group G acts freely on a spaces X with a 
basepoint XQ. 
(1) For n > 2, if X is equivariant n-Gottlieb then X/G is n-Gottlieb. 
(2) For n > 1, if X/G is n-Gottlieb then X is equivariant n-Gottheb. 
(3) Suppose X is a finite aspherical G-CW space. If X is equivariant 
1- Gottlieb then X/G is 1-Gottlieb. 

The authors are grateful to the référée for carefully reading an earlier 
version of the paper and ail his suggestions that make the paper more 
clear and readable. 
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1 Higher Rhodes groups 

Throughout, G will dénote a finite group acting on a compactly gener-
ated Hausdorff path connected space X with a basepoint. The associ-
ated pair (X, G) is called in the literature a transformation group. 

In [11], Rhodes introduced the notion of the fundamental group 
a(X, x0, G) of the pair (X, G), where x0 is a basepoint in X. A typical 
élément in a(X,x0 ,G) is the homotopy class [a; g] consisting of a path 
a in X and a group élément g G G such that a(0) = x 0 , a ( l ) = gx0. 
The multiplication in cr(X, x0, G) is given by 

[aiîffi] * [0:2552] := [ai +5ia2;5i#2]. 

It is easy to see that the groups TTI(X, X0) , a(X, x0, G) and G fit into 
the following short exact séquence 

1 -+ 7n(X, xo) -> <r(X, x0, G) -+ G -* 1. 

Then, Rhodes [12] defined higher homotopy groups a n(X,x 0 ,G) of the 
pair (X, G) for n > 1 which is an extension of rn(X, x0) by G so that 

1 -> T„(X, xo) -> <rn(X, xo, G) -> G -> 1 (1) 

is exact. Hère, rn(X,x0) dénotes the n-th torus homotopy group of 
X introduced by R. Fox [3]. The group rn = rn(X,x0) is defined to 
be the fundamental group of the function space XTn and is uniquely 
determined by the groups ru r 2 , . . . , rn_i and the Whitehead products, 
where T71"1 is the (n-l)-dimensional torus. The group rn is non-abelian 
in gênerai. 

Définition 1.1 Suppose that X is a G-space with a basepoint x0 € X. 
Let Cn = I x Tn~l. We say that a map f : Cn -+ X is of order 
g G G provided /(0,*2 , • • • ,«n) = ^0 ^ d / ( l , t 2 , . . . ,t„) = p(x0) /or 
(£2, • • • , tn) € T71'1. Dénote by [f\g] the homotopy class of a map f : 
Cn -> X of order g and by crn(X,x0,G) the set of ail such homotopy 
classes. We defîne an opération * similar to the one on a(X, x0, G) on 
the set an(X,XQ,G)j i.e., 

[ /V ] *[/;<?] :=[/ ' + s7; </<?]• 
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This opération makes an(X, Xo,G) a group. We write <Ti(X,xo,G) for 
a(X,xojG). Now, the orbit map p : X —> X/G leads to a homo-
morphismp* : an(X,x0 , G) —> rn(X/G,p(x0)), where p*{[f;g]) is rep-
resented by the adjoint of the composite I —> (X/G)Tn~ of Cn = 

/ x T*-1 ^X^X/G for [/; g] 6 an{X, x0, G). 

It was shown in [11] that p* : ai(X,x0, G) —> Ti(X/G,p(x0)) is an 
isomorphism for a free G-action on X. More generally, we hâve the 
following 

Theorem 1.2 Suppose G acts freely on X with a basepoint Xo- Then, 

<rn(X,x0,G)^Tn(X/G,p(x0)) 

is an isomorphism for alln> 1. 

Proof: Since the G-action on X/G is trivial, it follows that 

an(X/G,p(xQ),G) =* rn(X/G,p(x0)). 

By induction, we assume that 

^ (X,xo ,G)^r f c (X/G,p(x 0 ) ) 

for k < n. We define the projection an —• <jn_i by [/; 5] H-> [/; g], where 
/ : Gn_i —* X is given by / o in with zn : Gn_i ^ Gn defined by 
<n(*i,*2,---,*»-i) = (*i,*2,.-.,*n-i,0) for (*i,... , in_i) € Gn_i. The 
projection <7n —• an_i has a section <rn_i —• <jn via the projection Cn —> 
Gn_i defined by (ii, £2 , . . . , tn) »-• (*i, t 2 , . . . , £n_i) for (tu ..., tn) G Gn. 
Consider the following commutative diagram 

1 • rn(X,x0) • an(X,x0 ,G) > G • 1 

(2) 

1 • r„-i(X,x0) • ^n_i(X,x0 ,G) • G > 1, 

where the first two vertical homomorphisms hâve sections. Since this 
diagram is commutative for ail A:, it follows that the canonical projec­
tions an(JV,x0,G) —• an-i(X,xo,G) and Tn(X,x0) -> T „ _ I ( X , x 0 ) hâve 
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isomorphic kernels, which we call K. But, the split exact séquence of 
Fox [3] takes the following form (see [5]) 

0 -> rn_!(fiX,xS) -> rn(X,x0) ^ rn_i(X,x0) -> 1. (3) 

Thus, 
ffSTn-i(fiX,x5), 

where x^ dénotes the constant loop at x0. Now, consider the following 
commutative diagram 
1 —• K —> an(X,x0,G) -* an_i(X,x0,G) - • 1 

1 - T„-i(n(X/G),p(xo)) - rn(X/G,p(xo))^rn_i(X/G,p(xo))-^l . 

Note that T*(QZ) is a direct product of higher homotopy groups of Z. 
Since G acts freely on X, the orbit map p : X -> X/G is a finite cover. 
Hence, the map p* : K = rn_i(ftX,x0) -» r„_i(fi(X/G),p(x0)) is an 
isomorphism. Thus, by the Five Lemma and inductive hypothesis, the 
homomorphism p* : an(X,x0 ,G) -> rn(X/G,p(x0)) is an isomorphism. 
• 

Since, in (3), the kernel of rn -* rn_i is rn_i(fiX,x^), we hâve the 
following resuit generalizing (3). 

Theorem 1.3 The following séquence 

0 - • rn_!(fiX,xS) -> an(X,x0 ,G) ^ an_!(X,x0 ,G) -+ 1 (4) 

is spKi exac£. 

Remark 1.4 Let sn_i : an_i —• an be the section. Consider the in-
jective homomorphism sn_i o • • • o s2 ° Si • 0"i -» 0"n and the action 
Gn : an —> Aut(an) given by conjugation. The action of ai on an is 
given by 

0n o 5n_i o - • • o si : ai -> Aut(an). 

Likewise, for the Fox torus homotopy groups, there is an action of ni = 
ri on rn. In fact, the action of n on rn is simply the restriction of that 
of <Ji on an. Furthermore, since Tn_i(fiX,z5) = YT^X.Xo^j one 
can show that 7rn(X,x0) is a (embedded) normal subgroup of an. By 
embedding ai in an, one obtains an action of ai(X, XQ, G) on 7rn(X, XQ). 
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2 Evaluation subgroups of Rhodes groups 

Given a space X, we defined in [5] the Gottlieb-Fox groups to be the 
évaluation subgroups Grn := G T „ ( X , X 0 ) := lm(ev^ : Tn{Xx,lx) —• 
Tn(X,x0)) of the torus homotopy groups rn for n > 1, where Xx := 
Map(X, X) is the map space. 

In this section, we define and study the analogous évaluation sub­
groups of the Rhodes groups an for n > 1. 

Définition 2.1 Given a G-space X, consider the pointwise action ofG 
on the space Xx, i.e., (gf)(x) := gf(x) for g G G, / G Xx and x G X. 

The évaluation subgroup 

Gan := Gan{X,x0,G) := Im(e^ : a n ( X x , l x , G ) -+ an{X,x0,G)) 

o/a n is called the n-th Gottlieb-Rhodes group of a G-space X. 

To relate the Gottlieb-Rhodes groups with the Gottlieb-Fox groups, we 
consider the homomorphism pn : Gan -* G given by \f\g\ *-> g for 
[f\g]eGan. 

Theorem 2.2 The following séquence 

l^Grn^ Gan ^ G 0 - l (5) 

is exact. Hère, Go is the subgroup of G consisting of éléments g consid-
ered as homeomorphisms of X which are freely homotopic to l*. 

Proof: Since [f\g] G Gon, we get \f\g\ = ev*([F',g]) for some [F;g] G 
an(X

x, lx,G). This means that 5* ~ 1^ (or equivalently g G Go) via 
the homotopy determined by the restriction map F | : / x { l , . . . , l } — » 
Xx. Thus, we get pn(Gcrn) = Go- By the naturality of the évaluation 
map and the fact that Ker(pn C rn, it follows that Kerpn = Grn. • 

The group Gan was already defined by M. Woo and Y. Yoon [16] 
who asked whether Gon is abelian in gênerai. In view of (5), if GQ is 
non-abelain then Gan is non-abelian. In fact, even when Go is abelian, 
Gan need not be as we illustrate in the following example. 
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Example 2.3 Let KP 3 = S 3 /{±/} be the 3-dimensional real projec-
tive space and G = Z2 © Z2. Consider the free action of the quater-
nionic group Q8 C S3 = Sp(l) on the sphère S3. Then, consider 
G = Q8 /{±1} C 5p( l ) /{± l} = S 3 /{± /} so that G acts on R P 3 as 
a quotient of Q8. Then, Gai = <%, Gn = Z2 and G0 = G = Z2 © Z2. 
Using a similar construction with G = A$ acting on R P 3 as a quotient 
of the icosahedral group of order 120, one obtains Go = A5, which is 
non-abelian. 

We hâve three évaluation subgroups, the classical Gottlieb groups 
Gn(X) = Gn(X, x0), the Gottlieb-Fox groups Grn(X) = Grn{X,x0) and 
the Gottlieb-Rhodes groups Gcrn(X, G) = Gan(X, x0, G), where (X, G) 
is a transformation group. We shall compare thèse différent notions. 
Recall that a space X is a Gottlieb space if Gn(X) = nn(X) = nn(X, x0) 
for ail n > 1. Similarly, we say that X is Gottlieb-Fox or Gottlieb-
Rhodes for a G-space X if Grn(X) = rn(X) and Gan(X, G) = an(X, G), 
respectively for ail n > 1. Certainly, any if-space is Gottlieb-Fox. 

Remark 2.4 It is straightforward to see, using Theorem 2.2, that a G-
space X is Gottlieb-Rhodes if and only if X is Gottlieb-Fox and G0 = G. 

Proposition 2.5 Suppose that X is a compactly generated Hausdorff 
path connected space. Then, X is Gottlieb if and only if it is a Gottlieb-
Fox space. 

Proof: It was shown in [5] that the Gottlieb-Fox groups are direct 
products of the classical Gottlieb groups. More precisely, there is an 
isomorphism 

n 

Z = l 

where 7* = (^Ii)- From [3], we also hâve 

n 

i=2 
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where on = (^). Suppose X is Gottlieb. Since n = Vl and Gn = 
Gu we hâve TX = GT^ By inductive hypothesis, we may assume that 
Grn(X) = Tn(X). Now, 

n+l 

rn+1(X)^Hwi(X)^^Grn(X) 
i=2 

n+l n 

s n *«w* "iiN*)1". *=2 t=l 

where /¾ = (^1) . Since the action giving the semi-direct products is 
given by the Whitehead product and X is Gottlieb, that action is trivial 
and thus 

n+l n 

rn+1(X)^[]7r,(X)^xJ]7r,(X^. 

For 2 < i < n, 

«+-(;:3+C:3-G-0-
It is easy to see that 

ïx1 / „ \ n+1 

î = l 1=1 

Thus, by induction, X is a Gottlieb-Fox space. 
Conversely, if X is Gottlieb-Fox, then GTX{X) = Tl(X) is équiva­

lent to d ( X ) = TT^X). Suppose G<(X) = TT2(X) for i < n. Then, 
V i W = I l p i ^ i W ' ' 1 x rn(X) is a direct product since rn(X) = 
G r n(^) - n r = i ^ ( ^ ) 7 1 and Whitehead products with Gottlieb élé­
ments vanish. Now, 

n n 

I]G^)(-">) xGn+1(I) ^ Grn+1(X) = rB+1(J) ̂  n.,(X)(.-.)x7r„+1(J) 
i = 1 t = l 

But, by inductive hypothesis, nt(X) = Gt(X) for i < n. Note that 
the equality above means that the inclusion GT„+1(X) ^ rn+1(X) is an 
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isomorphism. This inclusion is given by the product of the respective 
inclusions G„+i(X) C 7rn+i(X) and G»(X) C m{X) for i < n. Since the 
inclusions Gi(X) Ç iïi(X), for i < n, are isomorphisms, it follows that 
the inclusion Gn + i(X) ^ 7rn+1(X) must be an isomorphism. Hence, X 
is a Gottlieb space. D 

Example 2.6 Let X = § n be the n-sphere and G be a finite group 
acting freely on X. Unis even, then G = Z2 in which case G ^ G0 = 
{e}. If n is odd, then for any g € G, the Lefschetz number L(g+) is zéro 
since g has no fixed points. It follows that L(g*) = 1 - degp* = 0 and 
this implies that degg* = 1. Thus, 5* is homotopic to l x . In this case, 
G = G0. 

Example 2.7 Let X = T3 be the 3-dimensional torus and G = Z2 = 
(i). The action of G on X is given by t • (a, 6, c) »-» (i4a, 6, c), where A 
is the antipodal map on S1 and z dénotes the complex conjugate of z. 
The map induced by the generator t is of degree 1 but is not homotopic 
to the identity so that G ^ G0. It is well known that if-spaces are 
Gottlieb spaces. This example shows that X being Gottlieb-Fox does 
not imply X that is Gottlieb-Rhodes without the condition G = G0. 

Next, we generalize a resuit of Gottlieb [6] on the Gottlieb subgroups 
in a fibration. Let G be a finite group. By a G-fibration, we mean a 
G-map p : E -> B satisfying the G-Covering Homotopy Property for 
any G-spaces. 

Theorem 2.8 LetGbea finite group and E -^ B be a G-fibration such 
that BG ^ 0. Let F = p-1(fco) for some b0 e BG_and choose b0e F. 
Then, there exists a homomorphism d* : an(ÇlB,bo,G) —• an(F,60 îG) 
such that 

d.(an{ClB,bo,G)) C Gon(FM,G). 

Proof: Let QB be the space of loops based at b0. Consider the G-
action on QB x G given by g • (A, g1) = (g\,ggf) for (À,p') G SÏB x G 
and g e G. Because the définition of on automatically restricts to the 
component of the basepoint and the group G is finite, the projection 
pG : VLB x G —> Q.B induces an isomorphism 

PG* : <*n{ÇlB x G,(^ ,e) ,G) -> <rn(QB,^,G), 

• 63-



GOLASINSKI, GONÇALVEZ & WONG - EQUIVARIANT EVALUATION SUBGROUPS... 

where e € G dénotes the identity élément. 
Using the G-Covering Homotopy Property, there exists a G-lifting 

function /IQ : SIB x G —• FF. Define a map d* to be the composite 

<7„(£1BÂ,G) p ^ an(QBxG, (^,e) ,G) ^ an(F
F,lFlG)e^ <7n(F,&0,( 

Then, the assertion follows from the définitions of d* and of Gan. • 

Remark 2.9 When G = {1}, the map d* becomes the boundary ho­
momorphism induced by the action of VLB on F so that Theorem 2.8 
becomes the first part of [5, Theorem 2.2]. 

3 Equivariant Gottlieb groups and orbit 
spaces 

In [4], equivariant Gottlieb groups {Gn(X
H,Xo)} or simply {Gn(X

H)} 
were defined for every subgroup H < G of a G-space X, where XH is the 
subspace of X given by //-invariant points. Thèse groups are subgroups 
of the classical homotopy groups Ttn(X

H). When n = 1, {G\(XH)} are 
the same as the G-Jiang subgroups as defined in [15]. In this section, 
we investigate relationships among the various évaluation groups. 

For any positive integer n, a space X is n-Gottlieb if Gn(X) = irn{X). 
Similarly, X is n-Gottlieb-Fox if Grn(X) = rn(X). Recall from [4] that 
for any n > 1 and for any subgroup H < G, 

Gn(X
H) = Im(e^ : 7r n (Map^ H (X",X") , \XH) -> nn(X

H,x0)), 

where Ma,pWH(XH,XH) is the space of WH = NH/H-maps on XH, 
where NH is the normalizer of H in the group G and WH is the Weyl 
group. For any positive integer n > 1, a G-space X is said to be n-
Gottlieb-Rhodes if Gan(X, rc0, G) = crn(X, x0, G). Similarly, we say that 
X is equivariant n-Gottlieb if G n (X / / ) = irn(X

H) for every subgroup i / . 
While one can define analogously the notion of equivariant n-Gottlieb-
Rhodes, i.e., Gan(X

H
yx0, WH) = an(X

H,x0iWH) for every subgroup 
H, for the rest of the paper we will only study the various évaluation 
subgroups when the G-action is free. 
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Theorem 3.1 Suppose a group G acts freely on a space X with a base-

point XQ. 
(1) For n>2,ifXis equivariant n-Gottlieb then X/G is n-Gottlieb. 
(2) For n > 1, if X/G is n-Gottlieb then X is equivariant n-Gottlieb. 
(3) Suppose X is a finite aspherical G-CW space. If X is equivariant 
1- Gottlieb then X/G is 1- Gottlieb. 

Proof: Certainly, given a free G-action on X, the subspaces XH are 
empty for any non-trivial subgroup H of G and X{e} = X. 

(1) For the obvious map q : MapG(X, X) - • Map(X/G,X/G), con­
sider the following commutative diagram 

7rn(MapG(X, X), lx) - ^ ?rn(X, xo) 

7rn(Map(X/G,X/G),lx / G) - ^ 7rn(X/G,p(x0)) 

for any n > 2. If X is equivariant n-Gottlieb then the évaluation map 
ev* : 7rn(MapG(X,X),lx) - • 7rn(X,x0) must be onto. Furthermore, 
since p* : 7rn(X,x0) - • 7rn(X/G,p(x0)) is an isomorphism, the commu-
tativity of the diagram implies that ev* : 7rn(Map(X/G,X/G), 1X/G) -> 
7rn(X/G,p(x0)) isalsosurjective, i.e., Gn(X/G;p(x0)) = 7rn(X/G,p(x0)) 

(2) The case when n = 1 was already proven in [15, Proposition 
4.9]. For n > 2, it was proven in [4, Proposition 3.3] that p*(Gn(X)) = 
Gn(X/G). Since p, : 7rn(X) - • 7rn(X/G) is an isomorphism for n > 2 
and Gn{X/G) = 7rn(X/G) by assumption, it follows that G n (X) = 
7rn(X), i.e., X is equivariant n-Gottlieb. 

(3) Since X is a finite aspherical CW space, so is X/G. The funda­
mental groups TTI(X) and 7Ti(X/G) are finitely generated and torsion-
free. Since X is equivariant 1-Gottlieb, Gi(X) = TTI(X) and conse-
quently 7rx(X) S Zd for some integer d > 0. By [4, Proposition 3.3], 
pm(Gi{X)) Ç Gi(X/G). Moreover, a resuit of Gottlieb asserts that 
Gi(X/G) is the center of TTI(X/G). It then follows that p^Tr^X)) = 
p*(Gi(X)) Ç Gi(X/G) is central in TTI(X/G). In other words, the exact 
séquence 

0 _> Zd
 *Ê TT!(X) - • 7n(X/G) -> G -> 1 
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determined by the orbit map p : X —> X/G is a central extension. 
By [14], the group 71̂  (X/G) = Zd is free abelian of the same rank as 
TT^X). Then, since X/G is aspherical, Gi(X/G) = Center(7r1(X/G) = 
7Ti(X/G)) and the space X/G is 1-Gottlieb. • 

For n = 1, (1) of Theorem 3.1 does not hold as we show in the 
following examples. 

Example 3.2 Let X = S3 x S3 x S3, G = Z2 = (t), where the free 
action of G on X is given by t • (x,y,z) = (-x.y.z). Hère, w dénotes 
the conjugate of w in S3 which is regarded as the unit quaternions. 
Note that d ( X ) = {1} since TT^X) = {1}, and Gi(X/G) = {1} while 
7Ti(X/G) = Z2. To see this, observe that the éléments of G\{X/G) act 
trivially on 7r3(X/G) = 7r3(X) but the automorphism fy G Aut(7r3(X)) 
for fy(l 0 1 © 1) = (1 0 (-1) © (-1)) is non-trivial. 

Example 3.3 Let X = S3 and G be a finite subgroup of S3. The free 
action of G on X is multiplication in S3 so that X/G is the coset space 
S3/G. By [9], Gn(S3/G) ^ Gn(§3) for ail n > 1. Since S3 is a topological 
group, it is n-Gottlieb for ail n > 1, i.e., S3 is a Gottlieb space. Using 
[4, Proposition 3.3], we hâve Gn(S3) - ^ Gn(S3/G) for n > 2 so that 

Gn(S3) S Gn(S3) a* 7rn(S
3). For n = 1, GX(S3) = {1} = 7n(S3). 

Therefore, S3 is equivariant n-Gottlieb for ail n > 1. However, if G is 
not abelian, then §3/G is not 1-Gottlieb. 

Remark 3.4 J. Oprea [10] proved that if G is a finite group acting 
freely on § 2 n + 1 then Gi(S2n+1/G) is the center of G. In particular, 
when n = 1, Oprea's resuit asserts that §3/G is Gottlieb if and only 
if G is abelian. This resuit cannot be generalized to arbitrary simply 
connected Gottlieb spaces. In fact, Example 3.2 serves as a counter-
example in which X is a simply-connected Gottlieb space (since it is a 
topological group) admitting a free G = Z2 action but X/G is not a 
Gottlieb space. 

J. Siegel [13] gave the first example of a finite dimensional Gottlieb 
space that is not an i/-space. Following our discussion in this section, 
one can construct similar but even simpler examples as follows. 
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Example 3.5 Let X = S3/Z4 be the coset space of S3 by the finite 
subgroup Z4. Then, X is a Gottlieb space but not an i/-space. The 
fact that X is a Gottlieb space follows from the same argument used 
in Example 3.3 except now G = Z4 is abelian so that X is indeed 1-
Gottlieb. The fact that X does not admit an if-structure follows from 
[1, Theorem 4, p. 87]. 

We end this section by studying the Gottlieb-Rhodes groups of a 
free G-space and the Gottlieb groups of the orbit space when the space 
is aspherical. 

Proposition 3.6 Suppose a finite group G acts freely on a finite as­
pherical G-CW space X with a basepoint. Then X/G is Gottlieb if and 
only if X is a Gottlieb-Rhodes space. 

Proof: By Theorem 3.1, X/G is Gottlieb if and only if X is equivariant 
Gottlieb. Since the G-action is free, an equivariant Gottlieb space is the 
same as a Gottlieb G-spa^e. Using Remark 2.4 and Proposition 2.5, X 
is Gottlieb-Rhodes if and only if X is Gottlieb and Go = G. Thus, if X 
is Gottlieb-Rhodes then X/G is Gottlieb. 

To prove the converse, it suffices to show that if X/G is Gottlieb 
then Go = G. Since X/G is Gottlieb the groups 7Ti(X/G) and 7Ti(X) are 
abelian. Hence, because the space X is path connected, there is a canon-
ical induced G-action on 7Ti(X). But p : X —» X/G is a finite cover, so it 
follows that the short exact séquence 0 —* TTI(X) —» 7Ti(X/G) —» G —> 1 
is a central extension so that G acts trivially on 7Ti(X). That is, every 
g G G induces the identity homomorphism on 7Ti(X). Since X is as­
pherical, it follows that g is homotopic to the identity map lx- This 
means that G0 = G. . • 

Remark 3.7 In gênerai, X being equivariant Gottlieb does not imply 
that X is Gottlieb-Rhodes even when G acts freely on X. In fact, 
Example 3.2 furnishes such an example since Go = { l}7^G = Z2 and 
X is equivariant Gottlieb. 
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