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CAHIERS DE TOPOLOGIE ET Volume XLVJÎ1-1 (2007) 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES 

SMASH PRODUCT OF E(l)-LOCAL SPECTRA 
AT AN ODD PRIME 

by Nom GANTER 

ABSTRACT. Soit (M, A) une catégorie de modèles monoïdale sta­
ble. Nous analysons l'interaction entre la structure monoïdale et 
les morphismes structurels du système de catégories triangulées de 
diagrammes Ho(Mc) telles que définies dans [Fra96]. Comme ap­
plication, nous prouvons qu'une équivalence de catégories définie 
dans [loc.cit.] envoie le Smash produit de spectres E(l) locaux sur 
un produit tensoriel dérivé de complexes de cochaînes. 

Let (M y A) be a stable monoidal model category. We analyze 
the interaction of the monoidal structure with the structure maps 
of the system of triangulated diagram catégories Ho(Mc) defined 
in [Fra96]. As an application, we prove that an équivalence of caté­
gories defined in [ibid.] maps the smash product of E(l )-local spec-
tra to a derived tensor product of cochain complexes. 

1. BACKGROUND AND INTRODUCTION 

1.1. Chromatic localizations and Franke's algebraic models. Let 
S dénote the stable homotopy category, and let E be a generalized ho-
mology theory. Then the E*-localization of S is a triangulated category 
«SE together with an exact functor 

YE: S —> SE> 

which is universal with the property that it sends E*-isomorphisms to 
isomorphisms. It is constructed as Verdier quotient by the thick sub-
category CE of E-acyclic objects of «S, or, alternatively, using Bousfield 
localization in any of the model catégories for S. 

This research was partially supported by a Walter A. Rosenblith fellowship, by 
a dissertation stipend from the German Académie Exchange Service (DAAD), and 
NSF grant DMS-0604539. The paper was completed while the author was visiting 
MSRI. 
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The term chromatic localizations refers to homology localization at 
the Johnson-Wilson homology théories 

E(n) , ( - ) , 

which are defined by Landweber exactness of their coefficient groups 

E(n)+ = Z ( p )[v 1 ) . . . ,v n ,v- 1] 

over the Brown-Peterson spectrum BP. 
The spectrum E(1) is also known as the Adams summand of the p-

local K-theory spectrum: the latter décomposes as 

v-2 

i=0 

so that the localizations at E(l) and at K(p) agrée. 
Let 5 ¾ dénote the category of finite p-local spectra, and 

Then the thick subcategory theorem [HS98], says that the Verdier quo­
tients 

^ ( p ) / L E ( n ) 

are ail possible homology localizations of the category of finite p-local 
spectra (in the above sensé). Note that this is not true for the whole 
stable homotopy category. Further, the question whether the canonical 
functor from S^/C^n) to S^[n) is full and faithful is équivalent to the 
télescope conjecture for E(n) [Kra05, 11.1(3),13.4(5)]. 

From a categorical, structure theoretic point of view, the thick sub­
category theorem implies that it will not be possible to find a model for 
the p-local stable homotopy category which is as simple as Serre's model 
for the rational stable homotopy category. There is indeed a theorem 
by Schwede, asserting that S(V) has no "exotic" model [SchOlb]. The 
localized catégories c>E(n) promise to be simpler, and indeed there are 
purely algebraic descriptions of thèse catégories due to Bousfield and 
Franke: 

Bousfield [Bou85] gave a purely algebraic description of the objects of 
the E(1)-local stable homotopy category at an odd prime, but did not 
address homotopy classes of maps. He introduced an important tool, 
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namely a construction for the Adams spectral séquence by injective 
resolutions, 

E f = Exti(l).E(l)(E(l),X,E(1)»Y[t]) = * [X,Y]E(1Hocal,t_s. 

Pranke [Fra96] used Bousfield's work, in particular the computation 
of the injective dimension of the category of E(1)*E(1)-comodules (it 
equals two) and this spectral séquence construction to show that S^) is 
équivalent to the derived category of a certain type of cochain complexes 
of E(1 )#E(1 )-comodules. He generalized the resuit to "higher chromatic 
primes", i.e. E(n)-local spectra and E(n)*E(n)-comodules (for n2 + n < 
2 p - 2 ) . 

1.2. Systems of Triangulated Diagram Catégories. Pranke's func-
tors are only defined on the level of homotopy catégories, and he actu-
ally proves that the corresponding models are not Quillen équivalent 
[Pra96, Rem.3.1.1]. This is the sensé in which Schwede refers to them 
as "exotic" models. The équivalences do, however, préserve the triangu­
lated structure as well as homotopy Kan extensions along maps of finite 
posets up to a certain length. In particular they préserve homotopy 
(co)limits over such diagrams. For the construction of Pranke's functors 
it is essential to hâve functorial cônes and homotopy Kan extensions. 
How can one never work on the level of model catégories but still hâve 
a good handle on homotopy Kan extensions? The answer is to work 
with homotopy catégories of strictly commuting diagrams of spectra; 
for each finite poset one category. This leads to the notion of a System 
of triangulated diagram catégories (cf. Section 3.1). 

1.3. Introduction. In this paper, we will describe how a monoidal 
structure interacts with the structure maps of a System of triangulated 
diagram catégories. As an application, we will describe the interaction 
of Franke's functor with the smash product in the case n = 1. Dénote 
Franke's functor by 7£ec. We will prove: 

Theorem 1.1. There is a functor isomorphism 

ftec(-) A£E(1J ftec(-) = ftec(- ®^(1U - ) . 

Note that the category of E(1 )*E(1 )-comodules does not hâve enough 
projectives, so that the existence of the derived tensor product on the 
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right-hand side is a non-trivial statement. In spite of our theorem, 7£ec 
is not a monoidal functor: 

Remark 1.2 (Schwede). Let p = 3, and dénote the mod 3 Moore spec­
trum by M(3). It has a unique multiplication, which is not associative. 
However, 

ftec-1 (M(3)) ^ > 0 -» E( 1 )„ A E(1 ), -> 0 -> • • . 

possesses an associative multiplication. Thus we cannot hope to find 
an associative functor isomorphism between — AL — and the (derived) 
tensor product. 

In order to make our work easily accessible for topologists, we stick 
to the terminology of stable homotopy theory. We use, however, only 
very gênerai concepts, that could as well be formulated in the language 
developed in [Fra96]. 

1.4. Plan. In Section 3 we recall the parts of [Fra96] needed for our 
computations. We discuss Systems of triangulated diagram catégories, 
présent the construction of the équivalence functor in a dual (but équiv­
alent) version and state an easy generalization of the spectral séquence 
[Fra96, 1.4.35]. We do not assume familiarity with [Fra96], but some 
of our proofs will quote more of the results of that article. Section 4 is 
about the interaction of a monoidal structure on M with the System of 
triangulated diagram catégories Ho{Mc). It also contains some results 
about the computation of the edge morphisms of a homotopy Kan ex­
tension, which will be important tools for our computations in Section 
7. In Section 5 we explain which model for SE(I) we choose to work 
with. In Section 6 we show that the derived tensor product in Theo­
rem 1.1 is well defined and reduce the proof of Theorem 1.1 to the case 
of fiât complexes. Section 7 then contains the proof for flat complexes. 
Readers not interested in the appplication to E(1 )-local spectra can skip 
Sections 3.2 - 3.3, 6 and 7. 

1.5. Acknowledgements. This paper is based on the author's Diplom 
thesis at the University of Bonn. I would like to thank Jens Franke for 
suggesting this thesis topic and for being an excellent advisor in every 
respect. Many thanks also go to the référée, to Stefan Schwede and 
to Birgit Richter for reading earlier drafts of this paper and making 
plenty of helpful suggestions and to Haynes Miller, Mark Hovey, Charles 



GANTER - SMASH PRODUCT OF E(1)-L0CAL SPECTRA AT AN ODD PRIME 

Rezk, and Tilman Bauer for helpful comments and discussions. Last but 
not least I would like to take this opportunity to thank Cari-Friedrich 
Bôdigheimer for helpful comments on this paper, but also for being a 
wonderful teacher. His enthusiasm and his support for young students 
meant a lot to me during my time in Bonn. 

2. NOTATIONS AND CONVENTIONS 

By p we will always mean an odd prime. Posets are depicted as 
follows: vertices represent éléments, and x ^ y if and only if the vertex 
corresponding to x is linked to the vertex corresponding to y by an 
ascending path. The length of a poset C is defined to be the supremum 
of ail k such that there exists a séquence Xo < Xi < • • • < x^ in C. Ail 
posets considered are finite and therefore of finite length. The cocycles 
of a cochain complex C* are denoted Z* and its coboundaries B\ For our 
purposes it does not matter whether we work with symmetric spectra 
[HSSOO] or S-modules [EKMM97]. For a strict ring spectrum R, we 
dénote the category of strict R-module spectra by MR and its derived 
category by RO[MR). If E is a spectrum, we dénote the underlying 
category of M s, endowed with the model structure used for Bousfield 
localization at E*(—), by 

MstE-1]. 
Its derived category, i.e. the localization of the stable homotopy cate­
gory at E*( —) is denoted by 

SE-Hof.MstE-1]). 

The identity functors 

id 

form a Quillen pair, and we write (—)E for the composition of its derived 
functors1 

c idL
 c idR

 c 
O > OE > O. 

It is induced by fibrant replacement in AlstE-1] viewed as an endofunc-
tor of JMS- We will sometimes also write (—)E for the (strict) fibrant 
replacement in .MstE-1]. In particular, SE stands for the (strict) E-local 

1 Franke works with the localized catégories, but topologists like to think of this 
functor as localization functor and refer to its image as "E-local spectra". 
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sphère, not as in [EKMM97] for the free E-module spectrum (if E is a 
ring spectrum). 

Définition 2.1. A quasi periodic cochain complex of period N is a 
cochain complex C* of E(1)*E(1)-comodules C^ together with an iso-
morphism of cochain complexes of comodules 

c;_N = c;[N], 

where the right hand side stands for the complex C* shifted to the left 
N times. 

We dénote the category of E(1)*E(1)-comodules which are concen-
trated in degrees congruent to 0 modulo 2p — 2 by2 

C o m o d E ( l ) . E ( l ) -

We dénote the category of period 2p — 2 quasi periodic cochain com­
plexes in ComodE(i)#E(i) by 

C2*-2(Comod°(1),E(1)), 

and its derived category by3 

î?2MComod£m.E(i)). 

3. FRANKE'S ALGEBRAIC MODELS 

This section is a collection of the parts of [Fra96] needed for our 
constructions. We only consider the following spécial case of the main 
theorem of [Pra96]: 

Theorem 3.1 (Bousfield, Franke). The category o/E(1 )-local spectra 
is in a unique way équivalent to the derived category of period 1 quasi-
periodic cochain complexes o/E(1)*E(1)-comodules. 

Hère "unique" means "unique up to canonical natural isomorphism, 
given that the équivalence is also valid for diagram catégories for di­
agrams of length ^ 2, préserves certain additional structure between 
thèse, and transforms £(1),,(-) into something naturally isomorphic to 
H*H". 

2In [Bou85] this category is called B(p), in [Pra96] it is B. 
3Compare to Franke's notations £2p-2,[2P-2](g) a n d £2P-2,[2P-2](g) 
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3.1. Systems of Triangulated Diagram Catégories. Rather than 
recalling Franke's définition of a System of triangulated diagram caté­
gories, we explain the most important example. A model category M 
is called stable, if the suspension functor is invertible in the homotopy 
category Ho{M). This condition implies that Ko{M) is a triangulated 
category, where the triangles are the cofibre séquences [Hov99, 7.1]. We 
will be interested in the category of E(1)-local spectra . This is a tri­
angulated category, and ail of its standard models4 are stable. Franke's 
paper never does any constructions on the level of model catégories. 
However, the homotopy category alone is not rigid enough. For ex­
ample the cône is not a functor in a triangulated category. Therefore, 
Franke also allows himself to work with homotopy catégories of caté­
gories of diagrams in M'. Let C be a finite5 poset. The category Mc of 
C shaped diagrams in M has a model structure with vertex-wise weak 
équivalences and fibrations. The cofibrations are characterized as fol-
lows6: A morphism from A to B in Mc is a Reedy cofîbration if and 
only if for ail c G C the morphism 

(1) Ac i l l imB c /—>B C , 
lhnc/<c AC/ C'<c 

induced by the universal properties, is a cofîbration in M. Of course we 
could just as well define cofibrations and weak équivalences vertex-wise 
and thus force the fibrations to be the maps satisfying the dual condition 
to (1). Note that both model structures hâve the same weak équiva­
lences, and therefore the same homotopy category. Franke considers (for 
fixed M) the entire System of homotopy catégories of diagram model 
catégories. This allows him to use functorial homotopy Kan extensions, 
in particular homotopy (co)limits, cônes etc.: Let f : C —> D be a map 
of posets. The above model structure is made in such a way that pulling 
back diagrams along f préserves fibrations and trivial fibrations. There­
fore the adjoint functors 

LKanf 

4See Section 5. 
5One could do with much weaker conditions on C, see [Hov99, 5.2.], [DHKS04] 

and the original source [Ree74]. 
6see e.g. [Fra96]. Hère thèse cofibrations are called "diagram cofibrations" 

• 9 -
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form a Quillen pair7, and LKanf has a left derived functor. Similarly, 
using the other model structure, one defines right homotopy Kan ex­
tensions, right adjoint to f*. The example of the cône functor [Fra96, 
1.4.5] illustrâtes how homotopy Kan extensions are computed and why 
they are useful. 

Notation 3.2. Write ? for the poset {0 < 1}, and 

V c l x î 
for the sub-poset with éléments {(1,0), (0,0), (0,1 )}. 

Définition 3.3 (Franke). Let f G Ho(.M?). The cône of f is defined as 
homotopy colimit over the "cokernel diagram" of f : 

• Y 

X 
More precisely, let 

\/>:Ml —>My 
dénote the functor that takes as input an élément f of M} and returns 
the object of Mv that has f at the edge ( (0,0) < (0,1)) and the (strict) 
zéro object at the vertex (1,0). Then V° préserves weak équivalences 
and thus induces a functor 

V:Ho(JW*)—>Ho(.Mv) . 

We define the cône of f by 
• coneff) := Holim V°(f)-

V 

Remark 3.4. Note that 

V =HoRKan. 
/ c v 

Remark 3.5 (Comparison with the classical cône définition). Let f : X — 
be a cofîbration between cofibrant objects. Let CX be a cône object of 
X, i.e. part of a factorization 

X> ^cx-2-»* 
of the map from X to the terminal object. 

7For an introduction to Kan extensions, the reader is referred to [ML98, Ch. 10]. 

10-
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Consider the strict pushout diagram 

(2) CX, 

>YiiCX. 
r f 

Without the bottom right corner, this is a Reedy cofibrant replacement 
of V°(f) in M°^. Therefore the bottom right corner is cone(f). 

The functor cône takes values in Ho (AI). Sometimes that is not good 
enough. If, for instance, we want to define cofibre séquences, we hâve 
to take the cône of the ucone inclusion matf\ i.e. of the bottom right 
arrow in (2). We need a functor 

£ont:Ho[M1)—>Eo{M*) 

that returns the bottom right arrow of (2). This is given by [Pra96, 
1.4.5] 

(3) Cone(-) := ^HoLKano V f - ) ! 
VvcKxu /(o.ixn.1) 

3.2. Construct ion of Franke's Functor . Using the functor E(1 )*(—), 
Franke defines a "reconstruction" functor, TZec, from the derived cate­
gory of quasi periodic cochain complexes of E(1)*E(1)-comodules into 
the category of E(1)-local spectra. It turns out that TZec is an équiv­
alence of catégories. In order to motivate the way TZec is defined, we 
look at the simplest analogous situation: instead of the System of dia­
gram catégories corresponding to E(1 )-local spectra, we take the System 
corresponding to quasi periodic E(1)*E(1)-comodules and prétend that 
we want to reconstruct the identity functor by using only information 
that can be obtained via H*(—) (this now plays the rôle of E(1 )*(—)). 
Note that the data of a period 1 quasi periodic cochain complex of 
E(1 )*E(1 )-comodules are the same as the data of a period 2p — 2 quasi 
periodic cochain complex of E(1 )*E(1 )-comodules that are concentrated 
in degrees congruent to zéro modulo 2p — 2, i.e. 

(4) C1(ComodE(i).E(i)) = C2*-2(Comod°(1)#E(1)). 

- 1 1 -
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More precisely, any period one quasi periodic cochain complex C* is 
uniquely determined by its zeroest differential 

d ° : C ° — • C j s C j . , . 

Then the corresponding 2p — 2 periodic cochain complex D* is given by 

'(C°_k)d°_k) if * = 0 m o d 2 p - 2 
(D* dk) = 

else. 

Now any quasi periodic cochain complex C* of period N can be de-
composed into N pièces of the form 
(5) 

> 0 -» Cn -> Bn+1 -> 0 -> > 0 -» Cn+N -* Bn + 1 + N -> 0 -> • • • 

n t K spot 

which can be glued back together along the inclusions of the Bn into 
Cn. More precisely, C* is the colimit of the diagram of complexes 

(6) 70 71 72 7N-1 

B° B1 B2 

where we abbreviate (5) by Zn, and 

>0-*B n ->0-> >0 

B N - l 

TDTl+N 

by Bn; the vertical edges are Bn *-> Cn, and the diagonal edges are 
Bn_H = Bn+1 (recall our convention that arrows in posets always go 
upwards). Note that the colimit of the diagram (6) is equal to its 
homotopy colimit by (1). How can we read off C* from the cohomology 
of such a diagram? Note fîrst that 

>0->C n - ->0-> . . . 

turns up as cône of the diagonal maps. The cône inclusion to the com­
plex IB n + 1 is dn. (Note that Bn+1 is concentrated in degrees congruent 

• 12-
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to n + 1, and that Z n and C n are concentrated in degrees congruent to 
n.) Applying H* to the diagram 

-+0 - * C n -

-»Bn + 1 

-+0 C n 

I 
I B n + 1 . -> 0 • B n + 1 > 0 • • • • 

does not destroy any information, and the same is true for the composite 

> 0 > B n + 1 > 0 > • • • Bn+1 

vertical 

- > < > • -> C n + 1 >• B n + 2 ->0 -> ^n+i 

•>0- ->Cn + 1 

cone 
inclusion 

->0- Cn+1 

In other words, it is possible to reconstruct C# from (6) by applying H*. 
We return to E(1)-local spectra. 

Nota t ion 3.6. We dénote the underlying poset of (6) by CN- It has 
vertices Cn and |3n , where n € Z/N and relations (3n ^ Cn and |3n+i ^ 
Cn- In our case, N = 2p — 2. 

Nota t ion 3.7. Following Franke, we write C for the full subcategory 
of objects A of HO(JM$N ) satisfying: 

• Z n := E(1)*_n(A£n) and B n := E(1)*_n(Apn) are concentrated 
in degrees = 0 mod 2p — 2, and 

• E(1),_n(A |3n -> ACn): B n —* Z n is injective. 

Construct ion 3.8. Let A be an object of C. We define 

C ( A ) := E(1),_n (conefA^, -* Au)) . 

If we apply E(1)*_n(—) to the exact triangle 

A,3n+1 -» ACn -> cone (Ap^, -4 ACn) -4 ZAp^, -» ZACn 

we obtain a (short) exact séquence 

B:;; A z? -> cn -4 Bn+1 A z: n+1 0 7 n 
— I -

-13-
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It follows that C? is also concentrated in degrees = 0 mod 2p - 2. In 
order to defîne the differential, we apply E(1)*_n(-) to 

cone (A,3n+1 -4 ACn) -4 l A p ^ -> ZACn+1 -> Zcone ( A ^ -4 ACn+]) 

and obtain 

(7) Q ( A ) — » B n + 1 > > Z n + 1 > • C?+1 (A) 

dn . 

Franke proves that this defines an équivalence of catégories 

C -4 C2*-2(Comod|UE(1)) 
A .-> CJ(A). 

Notation 3.9. We call this équivalence Q. 

Let Q - 1 be a quasi-inverse of Q. Franke further shows that 

(8) Uec := Holim oQ"1: C2p-2(Comod°(1UE(1)) —4 <SE(1) 

factors through the derived category and induces an équivalence of cat­
égories 

7 ) ^ ( 1 ),E(1)-comod) ~ 2?2p-2(Comod^(1)+E(1)) -4 <SE(1), 

the first équivalence being (4). We dénote this équivalence also by TZec. 

Remark 3.10. Franke's construction uses cokernels and coimages, rathe 
than kernels and images. The reason for this is that we need to use 
Adams spectral séquences via injective resolutions - there are not enough 
projectives. The theorem is also valid for diagram catégories up to a 
certain length of the diagrams. In order to improve the restrictions on 
this length, it is advantageous to work with cokernels and coimages. 
However, Franke also proves a uniqueness statement about fëec, which 
implies that the dual construction presented hère results in the same 
functor on <SE(i). 

3.3. A spectral séquence. We now recall the construction of the spec­
tral séquence [Fra96, 1.4.35]. We rephrase Franke's proof to get a gen-
eralization for homotopy Kan extensions: Let M be a stable model 
category, let f : D -4 C be a map of finite posets, and let Y G Ho(A^D). 
Further, let 

-14-
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be a homological functor into a Grothendieck category of graded objects, 
such that 

F t+,(X)=F t(ZX). 

Then there is a spectral séquence 

(9) 

The example relevant for us is 

Ft(-) :=E(1)_t(-):Ho(MsE(l)) —> ComodE(1),E(1). 

The Construction of (9) is analogous to that of [Fra96, 1.4.35]: Let 
D be a poset. For d € D, let id'. {d} —» D dénote the inclusion of the 
vertex d in D. For Y G Ho(.MD), define 

ES* = LKan_sFt(Y) = > Fs+t(HoLKan Y). 

PY:=0HoLKanY d 

d€D 

Then we hâve: 

(10) (PY)d '= © Yd. 
{dGDId^d'} 

We define a morphism g: PY —) Y by letting 

glHoLKaniH vd'• HoLKan Yd —> Y 
id 

be the counit of the adjunction. Taking the homotopy fibre RY of g and 
iterating the whole process with RY playing the rôle of Y, one obtains a 
resolution 
(n) 

PY PRY PRlgt(D)y 0. 

-15-
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Applying the homological functor F*(HoLKanf(—)), one obtains an ex­
act couple 

(-U) 

with 

Df1* = Ft(HoLKan(R-sY)) 

E^ = Ft(HoLKan(PR~sY)). 

This gives rise to a (cohomological) spectral séquence in the usual way. 
We want to discuss its Convergence: Let lgt D dénote the length of 

D, and let r > lgt D. The (r - 1 )st derived exact couple (D;*, E;*) is: 

D** = imloc1-1: D^- 1 -*-^ 1 —> Dg-*) 

' D°0'
s+t if s ^ 0, 

= < im(a-s) i f - l g t D < s < 0 , 
0 else. 

v 

It is of the form 

D1..+1 = ^ = D 0 , . _jL» i m ( a ) _ L » i m ( a 2 j _ t » . # im(algt(D)) _ ± ^ 0 

ï 
E?-< E T 1 ' Er2-* p-lgt(D),* 

Ur 

Therefore, the spectral séquence collapses after (lgt(D) + 1) steps, and 
converges to 

Ft(HoLKanf Y) -^» D"1 ' t+1 -^» D~2't+2 • - - -» D"»D ' t + l g t D » 0 

ker = Egi
t ker = E00

1't+1 

• 16-
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In order to identify the E2 t e rm with 

LKan_sFt(Y), 

we need to show that 

(12) Ft(Y) «- Ft(PR-Y) 

is an LKanf-acyclic resolution. It is obviously exact. Since 

Ft(PY,) = 0LKanF t (Y^) , 
deD l d 

the following lemma implies that the objects Ft(PR*Y) are LKanf-acyc­
lic. 

Lemma 3.11. Let Abe a Grothendieck category. Let D be a finite poset 
and assume that X G AD is such that for any d G D the map 

lim Xc —> Xd, 
c<d 

given by the universal property of the colimit applied to the edges of X, 
is a monomorphism. Then for any map of finite posets f : D —> C, the 
object X is LKanf-acyclic. In particular, X is also lim -acyclic. 

P R O O F : We endow the category C[A) of cochain complexes in A with 
the injective model structure8. For the category of D-diagrams of chain 
complexes, 

CUD)=CU)D, 
we choose the model structure whose fibrations and weak équivalences 
are defined vertex-wise, and whose cofibrations are characterized by (1). 
Then the satellite functors of the total derived functor 

- AD-^V{AD)Ho^f<V[Ac) 

satisfy the universal property of the (left-) derived left Kan extensions. 
Now the condition on X in the lemma says exactly that X, viewed as 

8By that we mean that cofibrations are degree-wise monomorphisms, weak équiv­
alences are the quasi isomorphisms, and fibrations are degree-wise epimorphisms 
with degree-wise injective cokernel. For the existence of such a model structure 
on the category of unbounded cochain complexes in a Grothendieck-category, see 
[FraOl] or [HovOl]. There one can also find a discussion of the connection between 
this story and derived functors in the sensé of homological algebra. 
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an object of C{AD) (i.e. as a cochain complex which is concentrated in 
degree zéro), is Reedy cofibrant. Thus in V(AD), we hâve 

HoLKanX = LKanX. 
f f 

The object LKanf X, however, is also concentrated in degree zéro. There­
fore ail higher derived functors vanish. D 

We hâve shown that the objects in the resolution (12) are LKanf-acyclic. 
Further, by (10), we hâve 

Ft(HoLKanPY')c = Ft( 0 Y )̂ = ® Ft(Y£) = (LKanFJPY')) . 
f(dKc f(dKc c 

Therefore we hâve shown that the cohomology of the complex 

Ft(HoLKanPR#Y) 

computes the derived functors of the left Kan extensions. 
In calculations, we sometimes write down the E2-term directly. If the 

reader is not familiar with Computing derived Kan extensions, (s)he can 
check its correctness by writing down the Ei-term. 

4. SMASH PRODUCTS FOR DIAGRAM CATÉGORIES 

This section discusses the interaction of a monoidal structure with a 
System of triangulated diagram catégories. Our first goal is to define a 
smash product between the (homotopy) diagram catégories. We start 
by defining a strict smash product of diagrams. 

Définition 4 .1 . Let [M, A) be a (model) category with monoidal struc­
ture. Let C and D be finite posets, let 

f : X - 4 Y G Mov{Mc) and g: U -> V G Mor(MD) . 

We define X A U G Ob(.MCxD) by 

(X A U)(a)b)^(c,d) '-— XQ^C A Ub^d 

a n d f A g G H o m A 1 c x D ( X A U , Y A V ) b y 

(f Ag) ( c 4 ) := f c Ag d . 

The following définitions are spécial cases of the définitions in [Hov99, 
4.2.1. 
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Définition 4.2. In the situation of the previous définition the pushout 
smash product of f and g is defined to be the canonical map 

f D g : X A V i l Y A U — > Y A V G Mor(MC x D ) . 
XAU 

Remark 4.3. If we view f and g as objects of MCxl and MDx*, we 
hâve 

(13) f D g = LKan f A g , 

where p * is the map 

P ^ : l x l - > l 
(1,1) M 1 

(1,0),(0,0),(0,1) H> 0. 

Définition 4.4. We say that 

-~A-:McxMD—>MCxD 

satisfies the pushout product axiom, if for any two cofibrations f in Mc 

and g in MD, the map fDg is a cofîbration, which is trivial if f or g is. 

Définition 4.5. A (symmetric) monoidal model category (.M, A) is a 
model category M together with a closed (symmetric) monoidal struc­
ture — A —, such that 

• there are functorial factorizations of morphisms into a trivial 
cofibration followed by a fibration, and into a cofîbration fol-
lowed by a trivial fibration respectively, 

• — A— : M x M —> M satisfies the pushout product axiom, 
and 

• the cofibrant replacement of the unit 

Q S - ^ S 
satisfies the following condition: for any cofibrant object X, 

Q S A X ^ S A X 

is a weak équivalence (and 

X A Q S ^ X A S 

is, too). 
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Hovey showed in [Hov99, 4.3.1.] that for such a (symmetric) monoidal 
model category, the monoidal structure on M has a left derived func­
tor, which is itself a (symmetric) monoidal structure on the homotopy 
category. For our application, only one of the following two examples 
will be relevant (compare Section 5). 

Example 4.6. The model category MR of strict modules over a strict, 
strictly commutative ring spectrum R is a symmetric monoidal model 
category [SSOO]. 

Example 4.7. (I learned this from Stefan Schwede.) Let (Aïs, As) be 
a model for the stable homotopy category, and let E be an object of 
Ms. Then 

(MtE-'l.As) 
is also a monoidal model category. 

PROOF: Without loss of generality we may choose E to be cofibrant. 
Since Bousfield localization does not change the cofibrations, we only 
hâve to check the pushout product axiom for 

f :X->Yandg :U->V 

in the case that g is an E-isomorphism, i.e. if 

gAid E :UAE-> VAE 

is a week équivalence. The pushout product axiom for (Aïs, As) implies 
that 

gAidE = gD(*> >E) 

is a cofîbration, because E is cofibrant. If we apply the pushout product 
axiom for 

(AJs,As) 

once more, this time to f and g A idE, it follows that 

fn(gAidE) = ( fng)Aid E : (xAV IL Y A U ) A E — > Y A V A E 

is also a weak équivalence. D 
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Proposition 4.8. Let (AI, A) be a monoidal model category. Then 

-A-:McxMD—*Mc*D 

has a total left derived functor 

- AL - : Ho(A(c) x Ho(AfD) —> Ho(AfCxD). 

PROOF: By [Hov99, 4.3.1.], it is enough to show that the pushout 
product axiom is satisfied. Let U >-> V be a Reedy cofibration in Mc 

and Xv->Ya Reedy cofibration in AfD. Le., we assume 

(14) V c G C : U c # IL ! i m V a ~ V c 
lim _ ua a<c 

and 
VdGD:X d . i l l imY b ~Y d 

l im b < d x b b<d 

to be cofibrations in M. Since — A A and A A — are left adjoints and 
therefore préserve colimits, and because of the pushout product axiom 
in At, it follows from (14) that the morphism with source the pushout 
of 

UcAYd i l limVQAYd and VcAXd U limVcAYb 
lima<cuQAYd a<c limb<dvcAxb b<d 

over 

(U c 11 l imVajAfXd 11 limYb) 
V lîîïla<cU° Û<C / \ lîîïlb<dXbb<d / 

and target Vc A Yd is a cofibration for every pair (c, d). By the remark 
below this pushout is just the pushout of 

UcAYd i l VcAXd and lim VQAYb 
U c A X d (a,b)<(ctd) 

over 

( lim UaAYb 11 lim VQAXb , 
\(a,b)<(c,d) lîni(û,b)<(c,d)UoAXb (a,b)<(c,d) / 

and the map is the one you would expect there. We hâve shown that 

UAY 11 V A Y - ) V A Y 
UAX 
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is a Reedy cofibration. If one of the two maps U >—> V and X >—» Y 
is a vertex-wise weak équivalence, it follows from the pushout prod­
uct axiom in Af that U A Y i l VAY—> V A Y is also a vertex-wise 

UAX 
weak équivalence. Therefore the pushout product axiom is satisfied. D 

Remark 4.9. The calculation uses the isomorphism 

lim ? a A ? b = l im?aA? d m 11 l im? c A? b , 
(a,b)<(c,d) a<c lîîïla<c ?aA?b b < d 

b<d 

which follows in a straightforward way from the various universal prop-
erties. Alternatively, by (18) the right hand side is 

limLKan(?QA?b) 

v f 

with 

f : { ( a , b ) | ( a , b ) < ( c , d ) } -> V 

(c,b) .-> (1,0) 

(a,d) M (0,1) 

(a,b) | a < c a n d b < d H* (0,0) 

(compare notation 1). 

Remark 4.10. In the proof of the preceding proposition we are working 
with the model structure that has Reedy cofibrations as cofibrations. 
We do so for later référence. Of course, if we work with vertex-wise 
cofibrations and weak équivalences instead, the pushout product axiom 
is straight forward. The universal property of — AL — implies that up 
to canonical isomorphism bot h constructions give the same resuit. 

In the following, (M, A) is a monoidal, stable model category. We 
discuss compatibility of — AL — with the various other structures of 
the System Ho(Afc). In order to do so, we need a lemma about the 
composition of derived functors. 

Lemma 4.11. LetC andV be model catégories, E an arbitrary category, 
and let 

F:C—>V and G:V—>£ 
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be functors, such that F sends trivial cofibrations between cofibrant ob-
jects to weak équivalences between cofibrant objects, and G sends trivial 
cofibrations between cofibrant objects to isomorphisms. Then the derived 
functors LG, LF and L(G o F) exist, and in the commutative diagram of 
natural transformations 

(15) LG o LF - > L(G o F) 

Go F, 

induced by the universal properties of the various derived functors, i is a 
functor isomorphism, Moreover, i is associative up to canonical natural 
équivalence. 

P R O O F : The existence of the derived functors is for example dis-
cussed in [Hov99]. By construction, the diagonal morphisms in (15) are 
isomorphisms on cofibrant objects. Therefore ix is an isomorphism for 
cofibrant X. For arbitrary X we use the diagram 

LF o LG(X) — Ï - + L(G o F)(X) 

î-
LF o LG(QX) - ¾ L(G o F)(QX), 

where for the moment Q(—) dénotes the cofibrant replacement functor. 
The argument also shows the associativity of i. D 

Example 4.12. Left Quillen functors préserve trivial cofibrations, cofi­
brations and initial objects. Therefore they also préserve cofibrant ob­
jects (and trivial cofibrations between them). 

Corollary 4.13. There is a functor isomorphism 

Holim (A AL B) = (Holim A) AL (Holim B). 
CxD C D 

P R O O F : As in [Hov99, 4.3.1], it follows from the pushout product 
axiom (proof of Proposition 4.8) that — A — sends Reedy cofibrant 
objects of Mc x MD to diagram cofibrant objects of MCxD and pré­
serves (vertex-wise) trivial Reedy cofibrations between Reedy cofibrant 
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objects. As a left Quillen functor, lim also satisfies the conditions of the 
lemma. Further, for A G A4, we know that A A — is a left adjoint and 
therefore commutes with colimits, which implies the analogous strict 
formula. D 

More generally, we hâve 

Corollary 4.14. There is a functor isomorphism 

HoLKan(AALB) = (HoLKanA) AL (HoLKanB). 
fxg f g 

P R O O F : The proof is analogous to the proof of Corollary 4.13. The 
strict formula follows, because left Kan extensions commute with left 
adjoints. D 

Corollary 4.15. There is a functor isomorphism 

f*AALg*B = (f xg)*(AA L B). 

PROOF: This time we work with the model structure whose cofibra­
tions and weak équivalences are defined vertex-wise. Then —A — and 
pulling back both préserve cofibrant objects and trivial cofibrations be­
tween them. The analogous strict statement follows directly from the 
définition. D 

Corollary 4.16. The pushout smash product has a left derived functor 

- D L - : Ho(Af*) x Ho(A/g) —* Ho(Af*). 

P R O O F : According to (13), we hâve 

fDg=LKan(f A g). 

But 
- A - : A Ï * x M1 —>MM 

and LKanr, both préserve Reedy cofibrant objects and vertex-wise 
trivial Reedy cofibrations between them. Therefore the left derived 
pushout smash product exists and is given by 

(16) - D L - = HoLKan(~ AL - ) . 
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D 

There is one further corollary, that has nothing to do with the monoidal 
structure, but will turn out to be useful. 

Notation 4.17. Let f : C —> D be a map of posets. For d G D, we let 
C —> d dénote the subposet 

{c G C | f (c) ^ d} 

of C, and we let 
j d : ( C - > d ) - ^ C 

dénote its inclusion into C. For an edge d ^ d; G D, let 

pâ':(C-)d') —> l 
c H> 0 iff(cKd, 
c i—> 1 else. 

The vertices of a left homotopy Kan extension are given by [Fra96, 
Prop. 1.4.2]: 

(17) (HoLKan(X))d s Holim j*X. 
f C->d 

In an algebraic situation, where it makes sensé to speak about satellite 
functors, this becomes 

(18) (LKansx) = ( l im) (X|C-*d). 
V f ' d \ C - W s 

The following corollary says that the edges of a homotopy Kan extension 
are also what we would expect. 

Corollary 4.18 (Edges of homotopy Kan extensions). There is a func­
tor isomorphism 

(d < d')* HoLKanX = HoLKan jï,X. 
f d' 
T Pd 

This implies that the edges of 

(LKansx) 

are given by the various universal properties on the right hand side of 
(18). 
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PROOF: Look at the analogous strict diagram. Its vertices are given 
by (18) with s = 0, and at the edge d < d' there is the map that is 
obtained by applying the universal property of lim Xc to the colimit 

cec->d 
inclusions 

Xc «-> lim Xcf. 
c'€C->d' 

This diagram satisfies the universal property of the strict left Kan ex­
tension of X along f in Atc . Therefore the analogous strict statement 
is true. Since )*d, and left Kan extensions préserve diagram cofibrations, 
the claim follows by Lemma 4.11. D 
We also need a variation of Corollary 4.18. 

Notation 4.19. In the situation of Notation 4.17, let 

B : = ( C - > d ) x ? i l (C->d#). 
(C-»d)x{1} 

Let 
rB: B —> (C -> d') 

be the projection onto the first factor on (C —> d) x l and the identity 
on the rest. Let le be the left adjoint to rB, i.e. IB sends (C —> d) to 
(C-* d) x{0}. Let further 

P B : B — • ! 

send (C -* d') to 1 and (C -> d) x {0} to 0, and let 

J B ^ J d ' O T B -

Corollary 4.20. With Notation ^.19, we hâve a functor isomorphism 

(d ^ d')* o HoLKan = HoLKan j j . 
f PB 

PROOF: We hâve 
Pd'=PB°lB. 

Therefore 

HoLKan ) \ , = HoLKan HoLKan j d , = HoLKan r ^ , 
pd7 PB IB PB 

D 

Next we discuss the compatibility of the smash product with the trian­
gulated structure. 
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Proposition 4.21. There is a functor isomorphism 

cone(—) AL cone(—) = cone(—DL—). 

PROOF: We hâve 

cone(f) ALcone(g) = Holim o V (f ) AL Holim o V (q) 
V V 

= Hglim(V(f)ALV(g)), 
V x V 

where the first isomorphism is Définition 3.3 and the second isomor­
phism is Corollary 4.13. The diagram 

(Vf )A L (Vg) 
has the form (for f : X -* Y and g: U —> V) 

YAV 

:AV 

YAU 
XAU 

In particular, Corollary 4.15 implies 

( V ( f ) AL V ( g ) ) l((o,oK(i,o))x((o,o)<(o,i)) = f AL g € Bo(MM). 
We consider the map 

F V X V -> V 
((0,1),(0,1)) M (0,1) 

((0,1),(0,0)),((0,0),(0,0)),((0,0),(0,1)) ^ (0,0) 
( l , 0 ) x V > U < V x ( l , 0 ) M (1,0). 

By Corollary 4.18 and with p * as in (13), we hâve 

HoLKan ( V f A L V g ) 1(0,0)̂ (0,1) = HoLKan (f AL g) 

= fnLg, 
where the second isomorphism is (16). Further, by (17), we hâve 

HoLKan ( V f AL V g ) l(i o) = *. 
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Together, we obtain 

HoLKan ( V f AL V g ) = V (fDLg) 

If we apply Holim v to this équation, the claim follows. D 

For future référence, we recall another functor isomorphism [FYa96, 
Thm.2]: We hâve 

(19) ConeoHoLKan(-) = HoLKan oConec(-), 

where 

Vrt:Cxl^l 

dénotes the projection to the second factor. It follows that 

(20) cone o HoLKan(-) = Holim o conec(-). 

The remainder of this section is about the interaction of Cone with the 
monoidal structure. It needs some préparation and is not needed in 
the proof of Theorem 1.1. The reader only interested in this theorem 
can skip ahead to Section 5. Before we can discuss the compatibility of 
the smash product with the "cone inclusion" functor (Cone from (3), we 
need an alternative description of Cone. For completeness, we also give 
a similar description of the "cone map" 

Cone(Cone(f)): cone(f) —> IX G Ko{Ml). 

For our next définition, we make an exception from our conventions 
about posets, and let the arrows point to the right and down. 

Définition 4.22. We define the functors 

that map 
X - U Y eM* 

to 

->Y X 

I and 
-*Y 

-+Y 

eM ut 
- • * 

respectively. 
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In thèse pictures, horizontal arrows correspond to the second factor 
of l x l whereas vertical arrows correspond to the first factor. Both of 
thèse functors préserve weak équivalences and therefore induce functors 
on the homotopy catégories. We use the same names for thèse induced 
functors. 

Lemma 4.23. There are functor isomorphisms 

Cone(-) = cônes o £$ ( - ) 

and 
ConeoCone(—) =cone$o^X(—). 

Hère we used the following notation: Let C be a poset. We write 

conec: Eo{MCxl) = Eo[{Mc)1) —> Eo{Mc) 

for the cone functor with Mc playing the rôle of M. In our situation, 
C = l, the first factor of l x î . 

P R O O F : We write v ° c for the functor v ° with Mc playing the 
rôle of M. We claim that 

HoLKan O V * O £ 2 ( X 4 Y ) 
idSx(VC($xS)) 

is of the form 

cone l n (f)) 
^ f " Cone t 

X - ^ Y >cone(f). 

Indeed, this follows from Définition 3.3, (3), and the fact that for a 
diagram X <E Eo{MCxl) the vertex (conec(X))c is isomorphic to the 
cone of the corresponding restriction X(cxg (see [Fra96, 1.4.2]). 

For the cone map, we look at 

HoLKan <>V* o £ J ( x - ^ Y )• 
idgx(VC($x?)) 
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By the same argument as above and by (17) this is of the shape 

>cone(f) 

Ui coneg(i_^(f)) 

>IX 

The right vertical edge is given by (17) with M* playing the rôle of M. 
It is 

cônes o££(f ) . 

We hâve to show that the right square is homotopy bi-cartesian. But 
the top square is homotopy bi-cartesian, and so is the square that we 
obtain by putting the top square and the right square next to each 
other. Therefore, [Fra96, Prop. 1.4.6] implies that the right square is 
also homotopy bi-cartesian. D 

Now let M stand for the model category M1 with vertex-wise cofibra­
tions and weak équivalences. Then 

préserves Reedy cofibrations. Hère we identified the first exponent in 
J\f* = (M*)* with the vertical arrows. Therefore Lemma 4.11 implies 

Corollary 4.24. There is a functor isomorphism 

K O ( - D L - ) £ ( H H ) D [ ( K ( - ) ) . 

Hère n ? dénotes the pushout with M playing the rôle of M. Propo­
sition 4.21 now implies 

Corollary 4.25. There is a functor isomorphism 

Cone(-DL~) = Cone(-) A\ Cone(-). 

Hère A% dénotes the (internai) smash product in N. 
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P R O O F : We hâve 

£one(fDLg) = cone* (£2(fn L g)) 

= coneraSïfMDl-cQtg))) 
S cone g (H(f ) )A^cones (£3(g) ) 

= £one(f)A^Cone(g), 

where the third isomorphism is Proposition 4.21. D 

5. W H I C H MODEL? 

There are four canonical choices of a model for <SE(1)J ail of which 
are equally well suited for our purposes. Firstly, we can work either in 
the world of symmetric spectra [HSSOO] or in the world of S-modules 
[EKMM97]. Let Ms be one of thèse two models for the stable homotopy 
category. One possible model for <SE(D is .Ms[E(1 )_1] (compare Example 
4.7). To obtain the other model, we recall that Hopkins and Ravenel 
hâve shown that the localization at E(n) is smashing, i.e. that for ail X 
in «S, one has 

XE(U) — X A S SE(TI) 

[Rav92]. If the localization at a spectrum E is smashing, the fibrant 
replacement SE of the sphère spectrum in A^sfE-1] can be chosen to be 
a strict, strictly commutative ring spectrum, and 

-AsSEi -MsfE" 1 ]— iMs t 

is a Quillen équivalence. In other words, 

Ho(.MsE) 

is the localization of Aïs at E*, and 

- A l : SE 
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is the localization functor9. For Franke's methods it is irrelevant which 
model for <SE(i) one likes to choose. The only property of the model cat­
egory that is relevant for him is that it induces a System of triangulated 
diagram catégories, i.e. that the model category is stable10. Moreover, 
Schwede [SchOla] has constructed a functor11 

O: Ms —> Sp1 , 

that maps (strict) ring spectra to (strict) ring spectra, and induces for 
any strict (strictly commutative) ring spectrum R a monoidal équiva­
lence 

H o ( M R ) - ^ H o ( 0 ( R ) - m o d ) . 

We also know that for any strict, strictly commutative ring spectrum 
R, the functor 

- A s R : ( . M s , A s ) - - ^ ( A 4 R , A R ) 

is strictly monoidal. It follows that up to équivalence ail four models 
mentioned above give rise to the same System of triangulated diagram 
catégories, and the same smash product on it. 

6. T H E DERIVED TENSOR PRODUCT 

In this section we define the derived tensor product ®E(1}*
 o n ^ e 

derived category of quasi-periodic cochain complexes in ComodE(1)#E(i) 
and show that ®E(i). 1S a m o n ° ida l structure. Since ComodE(i)*E(i) does 
not hâve enough projectives, we need to work with fiât replacement 

9For symmetric spectra, this statement is [SS03, 3.2.(iii)]. For S-modules this 
is a resuit of Wolbert [Wol98], which can also be found in [EKMM97]. In order 
to get this précise statement from [EKMM97], one actually has to combine a few 
propositions: it follows from VIII.2.1., V1IL3.2., and from the fact that by III.4.2. 
and VII.4.9. the derived catégories of AS-modules and of S-modules are équivalent 
as monoidal catégories. Hère AS —> S dénotes the q-cofibrant replacement of the 
sphère spectrum. 

10 A model category is called stable, if the suspension functor is invertible in the 
homotopy category. In our example this follows from the fact that the suspension in 
HO(JMR) is given by smashing over R with S1 A\ R. Therefore smashing over R with 
S - 1 A<j R is an inverse of the suspension. Also Quillen équivalent models give rise 
to the same suspension functor. The fact that the homotopy category of a stable 
model category is triangulated, is proved in [Hov99, 7.1]. 

n j u s t for the moment, M s dénotes the S-modules from [EKMM97] and SpL 

denotes the symmetric spectra from [HSSOO]. 
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rather than projective replacement. Our définition of a fiât complex is 
object-wise, forcing us to replace both sides of ®EO)„ with Aat objects. 
The following lemma is essentially due to Christensen and Hovey. 

Lemma 6.1. Let E be a Landweber exact cohomology theory, and let C 
be a quasi-periodic cochain complex of(E*,E*E)-comodules. Then there 
exist aflat quasi-periodic cochain complex P of (E^E^E) -comodules and 
a quasi-periodic quasi-isomorphism i from P to C. Moreover, the pair 
(P,i) dépends on C in a functorial way. 

P R O O F : We claim that cofibrant replacement in Christensen and 
Hovey's projective model structure12 on Ch(E*,E*E) can be done in 
such a way that thèse conditions are satisfied. We hâve to show three 
things: (a) Cofibrant objects in the projective model structure are fiât 
over E*, (b) weak équivalences in the projective model structure are 
quasi-isomorphisms, and (c) if C is quasi-periodic, one can choose a 
quasi-periodic cofibrant replacement of C (functorially in such C). 

(a) Let P be cofibrant in the projective model structure. By [CH02, 
4.4], P is a retract of a (transfinite) colimit of a diagram of 
complexes 

0 = P0 -> Pi -> > Pa -> Pct+i -> • • • , 

where each P a —> Pa+i is a degree-wise split monomorphism 
whose cokernel is a complex of so called "relative projectives" 
with no differential, and if a is a limit ordinal, P a is the colimit 
over ail Pp with (3 < a. It is also pointed out in [Hov04, p. 15] 
that every "relative projective" comodule is projective as an E*-
module. We can therefore prove by transfinite induction that 
the limit over ail the P a is fiât: The complex P0 is fiât. In every 
degree, Pa+i is the direct sum of P a with a projective E*-module, 
thus if P a is degree-wise fiât, so is Pa+i. If a is a limit ordinal, 
P a is a direct limit of fiât objects and hence fiât. For the same 
reason the colimit over the entire diagram is fiât. Moreover, 
in an abelian category, retracts are direct summands, and thus 
retracts of fiât modules are fiât. This proves that P is degree-wise 
fiât. 

12 Cf. [Hov04, 2] and [CH02, 4.4]. 
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(b) Since E* is Landweber exact, it follows from [Hov04, Sec. 1.4] that 
(E*,E*E) satisfies the conditions of [Hov04, 2.1.5]. Therefore, 
weak équivalences are quasi-isomorphisms. 

(c) Now let C be quasi-periodic. In the proof of [CH02, 4.2] an 
explicit cofibrant replacement is constructed. Observe that for 
a quasi-periodic complex C the complexes Pt and Q\ may be 
chosen (functorially) in such a way that the "partial cofibrant 
replacement" of C is again quasi-periodic. None of the other 
steps in [CH02, 4.2] (colimits, pullbacks, path objects, cofibres) 
destroy quasi-periodicity. This proves the claim. 

D 

Remark 6.2. Flatness in our case means flatness over E(1 )*. Therefore 
fiât objects are exactly the p-torsion free objects, and fiât replacement 
in 

CVComodE^Efi)) 
translates into flat replacement in 

C2"-2(Comod°(1).E(1)). 

Note also that for the same reason subobjects of flat objects are again 
flat. 

The following is a corollary of [GM96, III.2.10]. 

Proposition 6.3. LetC be a category, S a left-localizing system ofmor-
phisms in C and B ÇC afull subcategory. Suppose that for ail X e ObC 
there exist Y G ObB and s: Y —> X in S. Then 

Ss:=SnMor£ 
is left-localizing in B, and the canonical map 

B[SJ] -> CtS"1] 

is an équivalence of catégories. 

Notation 6.4. Let 

CnatCC2p-2(Comod°(1)+E(i)) 

be the full subcategory of flat objects, and let 

Tfiat: Cnat —> P2p-2(Comod£(1)+E(1)) 
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be the composition of its inclusion with the localization functor. Let 
Kfiat dénote the homotopic category (in the sensé of homological alge-
bra) of Cfiat, and let S dénote the class of quasi-isomorphisms in Kflat. 

Corollary 6.5. The functor ynat induces an équivalence of localized 
catégories 

KnatfS"1] -> P2 p-2(Comod° ( 1 ) ,E n )). 

In other words, flat replacement can be done in such a way that it 
is functorial on morphisms in the derived category, not just the strict 
category: let c|) be an équivalence of catégories inverse to the équivalence 
in Corollary 6.5, then (J) is such a flat replacement functor on the derived 
category. 

Corollary 6.6. The tensor product in C2p_2(ComodE(1)#E(i)) has a left 
derived functor <8>E(1}+> defining a symmetric monoidal structure on the 
derived category. 

P R O O F : The functor 

( - ®E(1), - ) : Kfiat x Kfl(it —> KnattS""1] 

takes pairs of acyclic complexes to acyclic complexes. Therefore, by the 
same argument as in [GM96, III.2.23], it factors over the localization 

(Kfiat x KnotWS x S)"1] = KnaJS"1] x KnattS"1]. 

As in the proof of [GM96, III.6.8], we precompose (— ®E(i)* —) with 
4) x ¢, to obtain a functor (—®E(i). ~) satisfying the universal property 
of the left derived functor of (— <8>E(i)„ —)• As in the proof of [Hov99, 
4.3.2]) the structure diagrams making ®E(1)* a monoidal structure can 
be translated into the respective diagrams for ®E(i)„- ^ 

7. P R O O F OF THE MAIN THEOREM 

In this section we prove the following theorem: 

Theorem 7.1. There is a functor isomorphism 

(~ ASE(i) " ) ° neC ° T f l û t " UeC ° ^ f l û t ° (~ ®E(1). - ) -
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Combined with the results of Section 6 this implies Theorem 1.1. Let 
C and C be in Cflût. Recall that TZec was defined as 

ftec(C) = Holim Q-Vq, 
CN 

(cf. Notation 3.7 and Equation (8)). We wish to find an isomorphism 

lZec-'(TZec(C) A\E{}] TZec(C)) s C ®B(1). C. 

The computation of the left-hand side consists of two steps: First, we 
need to find an object of C whose homotopy colimit is 

ftec(C)A£E(nftec(C). 

Then, we need to apply Q to this object. 

Notation 7.2. In what follows, we abbreviate —A\ - bv — A -
7 S E ( 1 ) J X * 

7.1. An object of £, whose homotopy colimit is 1Zec{C)A1Zec{C). 

Notation 7.3. We write A for Q_1(C) and Â for Q~\C). 

We hâve 

TZec(C) Aftec(C) = (Holim A) A (HolimÂ) = Holim(AAÂ), 
C N C N C N X C N 

where the first isomorphism is (8) and the second is Corollary 4.13. Let 
DN be the poset 

DN := {(3n,Tn, Cn I n G Z/2p_2} 

with relations generated by 

Pn+1 < Tn> Pn ^ Tn> Tn+1 ^ Cn and y n ^ Cn-

D N : Co Ci C2 C2p-3 

T2p-3 

ip-3 
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Consider the map of posets 

pr: CN x CN —* DN 

O„0t) -* Ps+t 
(P.,Ct),(C,0t) •-» Ts+t 

(C„Ct) »-* Ci+t-

Notation 7.4. With A and Â as in Notation 7.3, let 

E:=HoLKan(AAÂ). 
pr 

This is an object of Hof.M^j). 

Proposition 7.5. The objects 

E(1).(E«J vrith*e{$,y,Q 

are concentrated in degrees congruent to n modulo 2p - 2. The mor-
phisms 

(21) E(1UEYJ->E(1UECJ, 

induced by the corresponding edges in E, are monomorphisms. 

PROOF: By Corollary 4.18, 

(22) E|yn<Cn = HoLKan j ^ (A AÂ) 

(Notation 4.17). Still using Notation 4.17, 
(CN X C N ) -> Cn = 

(C„Ct) 

(Ps+1,Ct) K.,Pt+i) 

(P.+i,Pt) 
0,+i.Pt+i) 

Os,Pt+l) 
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The black vertices are the ones mapped to zéro by p ^ . In other words, 
the source of (22) is the homotopy colimit over the black subdiagram, 
whereas the target is the homotopy colimit over the entire diagram. In 
order to compute the E(1)«-homology of (22), we apply the spectral 
séquence (9) to the right hand side of (22). In order to compute the 
E2-term, which involves left derived Kan extensions along p ^ , we will 
need three lemmas. 

Notation 7.6. Let 

^ C N r n C (CN X C N - > Cn) 

dénote the sub-poset with éléments 

{(Cs, Ct), (C, Pt), (Ps> Ct), (P., Pt), (Ps+i> Pt) I s + 1 = n}. 

Let 

j ^ : ^ C S r n —> (CN X C N -> Cn), 

dénote its inclusion, and 

l ^ : (CN x C N - 7 Cn) > xXr^Nrn 

dénote the left adjoint to j A . Let further 

P ^ ! =P£ ° W ^ S m —• L 
Lemma 7.7. There are functor isomorphisms 

(LKan)s = (LKan) soj* 

P R O O F : Consider the Grothendieck spectral séquence for the com­
position of derived functors, where the composition is 

< . * . 
ïT\ xn^or*w trNrN» 

Since j A is right adjoint to l ^ > 

L K „ a n = C * . * 
and higher derived left Kan extensions along l A vanish. Therefore, 
the spectral séquence collapses, and the claim follows. D 
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Notation 7.8. Consider the poset 

rrKn ".= {<*s,t, (Cs, Ct), (Ps+1, Pt) I S + t = Tl} 

with relations 

(Ps+1,Pt) , (Ps,Pt+l) ^ <*s,t 

<*s,t < (Cs,Ct). 

Let g and p ? be the maps of posets 

g:xr^OSrn -> xAxrn 
(Cs,Ct) M (Cs,Ct) 

(Cs,Pt) , (Ps,Ct) , (Ps,Pt) »-* as>t 

(P , + 1 > Pt ) •"> (P«+1,Pt) 

and 

(Cs,Ct) M 1 

(Ps+i.Pt).aSit »-> °-

Lemma 7.9. Let X G H o ( M ^ ) 6e such that 
X l{(ts,Pt),(ps,tt),(Ps,|3t)} 

25 lim ««-acyclic. Then there is an isomorphism (natural in such X) 

(LKan)sX = (LKan)s o LKanX. 

PROOF: We hâve 

By (18), X is LKang-acyclic. The Grothendieck spectral séquence im­
plies the claim. • 
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Consider a diagram y with underlying poset -J^.: 

(23) Z, 
TH. 

Z2 

X2 

Z3 

x3 
> A V A V X 

Lemma 7.10. £ei y be as in (23). Then there are functor isomor­
phisms 

f 

LKan(y) s= coeq. 
eY i =±jez i 

0Yt 
efi 

eg i 
t©Xt 

/ 

(LKan),(;y)£«ï, 
P A 

0¼ 
©htf. 

10¾ 

V ©^=40^ y 
w/iere (co)eq? dénotes the (co)equalizers ofthe pairs of horizontal arrows 
(together with the induced map between them). The higher derived left 
Kan extensions along p . vanish. 

PROOF: The first statement is (18), the third statement follows from 
(18) and the fact that for a diagram of length one the second and ail 
higher derived colimits vanish. The second statement follows from the 
other two together with the universal property of derived functors and 
the snake lemma applied to an LKan-acyclic resolution. D 

We are now ready to complète the proof of Proposition 7.5. As subob-
jects of flat objects, E(l ),(A«. ) and E(l ).(Â«/) are flat, and the Knneth 
spectral séquence13 reduces to 

WUA*. A A^) = E(1K(A«.) <g>E(1), E(1).(Â«/). 

The Knneth spectral séquence for non connective spectra can for example be 
found in [EKMM97]. 
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Firstly, we hâve 
EdU(rCn(AAÂ)) = 

Z'^Z1 

(24) 

Since Bs and B1 are flat, the maps Bs ® B1 -* Bs ® Z1 and Bs <g> B1 -* 
Zs ® B1 are monomorphisms. Thus j A applied to (24) satisfies the 
condition of Lemma 7.9. We are reduced to the situation of Lemma 7.10, 
with y the left Kan-extension along g of j * . applied to the diagram 
(24). Computing y with (18) and then applying Lemma 7.10, we obtain 

LKanE(1)_n(j? (AAÂ)) = ( f f i Z ^ B 1 I I BS®Z}^> (¾ Z ^ Z 1 ) , 
- ^ ^n ^ ^ Bs<g>Bl ^ 1 ^ T ) C n 

s+t=n s+t=n 

where the map is the canonical inclusion. The higher derived left Kan 
extensions of (24) along p ^ vanish. 

Secondly, we consider 
E(1).n_1(fcJAAA)) = 

B s + 1 <g> Z* 

B s + 1 <g> B 

Z s <g> B t + 1 

B s < g > B t + 1 . 
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By the same argument as above, we get: 

LKanEdU^O^CAAÂ)) = 0: 0 -> 0, 

LKm.WU-^lJAAÀ)) = id e V9*. 
P Tn s + t = n + l 

The higher derived left Kan extensions vanish. 
Thirdly, 

E(1)_ n . k ( (AAÂ) |^ ) = 0, 

if k is not congruent to 0 or 1 modulo 2p-2. This complètes the calcula-
tion of the E2-term. It is concentrated in degrees (0, m) and ( -1 , m+1 ), 
with m = n mod 2p - 2. Therefore the spectral séquence collapses at 
the E2-term and becomes a short exact séquence (of morphisms) 
(25) 

» > ® Z'®if >«D^E,,)- ¢ , 8 - 8 8 ^ 0 s+t=n v ' "v ™' ' s+t=n+1 

E(1)_„ (Holim (Pvn» 

In particular, E(1)»(EYJ andE(1)*(EcJ are concentrated in the correct 
degrees, and 

E(1)_JHojini(p£)) 

is a monomorphism. This complètes the proof of Proposition 7.5. D 

Note that 

E(l).(Efc) = E(1).(0 APsAÂPt)= 0 B'®B* 
s+t=n s+t=n 

is concentrated in the same degrees. We need one more step to obtain 
an object of C with the correct homotopy colimit. 

Remark 7.11. The assumptions of the following proposition are su-
perfluous. We only state them to simplify the proof. 

Proposition 7.12. Let E G HofjW^J be such that for ail ne Z/2 _2 

and ail a G {(3,y,C} the object E(1),(E«J is concentrated in degrees 
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congruent to - n modulo 2p - 2. Let i: CN -> DN send (3n to yn and 
Cn to Cn- Then there is an isomorphism, natural in E, 

Holim E = Holim i*E. 
» • • 

D N CN 

Corollary 7.13. Let E be as in Notation 7.4. Then i*E is an object of 
C with 

Holim i*E = TZec{C)A1Zec{C). 
CN 

Moreover this isomorphism is natural in C and C. 

PROOF (OF PROPOSITION 7.12): We show that the counit of the 
adjunction 

£E: HoLKan i*E—>E 
i 

induces an isomorphism of homotopy colimits. Since E(1 )*(—) is faithful 
on <SE(I), it is enough to show that 

E( 1),(Holim £E) 
D N 

is an isomorphism. We compute this using spectral séquence (9), or 
rather [Fra96, 1.4.35]. Recall that 

(26) E <- PE <- RE <- OE 
) 

is an exact triangle whose E(1)»-homology is the first step of a lim 
acyclic resolution of E(1 )*(E). More precisely, it is the resolution 

E(D-n(E) = 

0 0 

E(l)_n(PE) = 
B GffiB A, 

where Ai = Z © G 0 B and A2 = G 0 B. 

-43-



GANTER - SMASH PRODUCT OF E(1)-L0CAL SPECTRA AT AN ODD PRIME 

E(1U(RE) = 
B G©B A3 0 

where 

and 

Note that 

A3 = ker(if+ i | + 1z) = B 

À4 = ker(if + 1G)~B. 

E(1)_nRE 

is already lini_-acyclic, so that the construction stops hère. Note also 
that the restrictions to Î(CN) form a lim -acyclic resolution14 of 

E(1).(i*E). 

The functor (HoJLKcm^ simply adds a bottom row filled with zéros15 

and therefore préserves the property of a diagram to hâve lim -acyclic 
E(1)«-homology. Thus, for Computing the homotopy colimit of 

HoLKan i*E, 
i 

we may replace (26) by 

HoLKan i*E t - HoLKan i*PE <- HoLKan i*RE. 
i i i 

Then £E, £pE and £^E induce a map of exact couples. Since the image of 
i is cofînal in DN, this map becomes an isomorphism in the E2-term. D 

14The lini j 's of diagrams of the shape CN are computed as equalizers in a way 
similar to Lemma 7.10. 

15In Franke's setup, the statement about HoLKani follows from the statement 
about LKant using the spectral séquence (9). With model catégories, it follows 
because LKani préserves weak équivalences. 
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7.2. Computing Q(i*E). We hâve found an object of £, whose homo­
topy colimit equals TZec(C) A7£ec(C)5 namely 

i*E = i*HoLKau(AAÂ). 
pr 

In order to compute 

TZec^(TZec{C) A1Zec{C))y 

we apply Q to i*E as explained in Construction 3.8. There are two 
steps: In 7.2.1 we détermine the objects, in 7.2.2 the differentials of the 
complex Q(i*E). 

7.2.1. The objects. 

Notation 7.14. Write 

(B^->Z*) := A|Ps+1<Cs 

Cs := cone(£s+1->Zs), 

and similarly B1"4"1, Zl and C*. 

Proposition 7.15. The cone 6f a <{diagonal" edge (|3n+i ^ Cn) ofi*E 
is isomorphic to 

0 CSAC\ 
s+t=n 

and this isomorphism is natural in A and A. 

PROOF: In order to apply the cone, we need to compute (i*E)|pn+1 ^ n 

as object of Ho(M|E(l)). By Corollary 4.20 

(27) (i*E)k+1<Cn = HoLKan j*B((AAÂ)), 
PB 

where B, pB and JB are as in Notation 4.19: 
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V$ 

Let 
iB: B s ( C N x C N ^ Cn) x J 

be the canonical inclusion, and let 

prg: (CN X C N -> U) x l —> l 

be the projection onto the second factor. Then 

(28) HoLKanji(AAÂ) = HoLKan HoLKan j * (A A Â). 
PB vn ÎB 

We need to compute the cone of the right hand side of (28). This right 
hand side is the homotopy Kan extension along pr^ of a diagram which 
is by (17) of the form displayed in Figure 1. Hère — 11 — dénotes the 
derived pushout, the vertices in B are black, and those edges that belong 
to the factor l, are abbreviated by vertical arrows. 

Remark 7.16. If we would forget some information and think of Figure 
1 as a morphism in 

we would obtain the morphisms E|pn+]<^n as homotopy colimit over 

CN X CN —> Cn 

of the map in Figure 1. 

By (20) together with (27) and (28), 

cone((i*E)|Pn+1<cJ = Holim coneCN xcN^cn (HoLKan j£( A AÂ)). 

CNxCN-*£n lB 

By [Fra96,1.4.2], we know that for a diagram X G Eo{MCxl) the vertex 

(conec(X))c 
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ZSAZ 

ZsAÊ t + 1 

B^AJP BsABt+1 

B^AÉ* 11 2 s AB t + ' 

B , + 1 A i * 

BS+1AB* 

2 s A6 t + ' 

BsABt+1 

of the diagram conec(X) is isomorphic to the cone of the corresponding 
restriction X|cxg. Therefore, 

coneCN x cN -. cn HoLKan j *B ( A A A) 

has the form 
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cone ( £s+1 A& i l Zs A Ê t+1 -» Zs A Z*\ 

(7 

(29) 

Consider the subposet of CN x CN —> Cn 

W n := {(Cs, Ct), 0,+i• Pt) I s + 1 = n}, 

and let j ^ dénote its inclusion. Since y^ has a left adjoint, there is 
a functor isomorphism 

Holim = Holim k*A^ 
CNxCN-»Cn W 

But Holin^^j*^applied to (29) becomes 

0 cone ( ( HoLKan j^(A AÂ) ) ) . 
s+t=n \ \ l B / ( C s , C t ) x ? / 

We hâve already suggested in the pictures, that 

( HoLKan j*B(A A Â)) 
^ VB /(Cdx* 

is of the form 

Es+1 A £* 11 Z'A S t+1 —> Zs A Z\ 

We need to make this more précise. By Corollary 4.18, we hâve 

( HoLKan j*B(A A Â)] = HoLKan jB,(A A Â), 
V l B /(CCiJxI P B ' 
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where 

B' 

PB' 

JB' 

B-*(Cs,Ct) 
= PBIB' 

= J B I B ' . 

This expression can be simplified as follows. Consider the map of posets 

i&Ul -» B' 
(0,0) H-> ( p s + 1 , p t + 1 ) x { 0 } 
(1 .0 ) - > ( p s + 1 , C t ) x { 0 ) 
(0 ,1 ) M ( C s , p t + 1 ) x { 0 } 

(1.1) M (Cs,Ct). 

It has a left adjoint IA , satisfying 

p B / o U o U =p B / . 

B' 

Therefore, with 

as in (13), 

ib 
' l«. 

1$, := JB' ° \$, and p ^ = PB< o i ^ 

HoLKan j B , = HoLKan j * (A A Â). 
PB/ P ^ O 

By Corollary 4.15, 

j y A A À ) = (A|Ps+1^)A(Â|Pt+1^ t). 
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Therefore, by (16), 

HoLKanj^(A A A) = (A|fc+1< J n f Â l f c ^ } . 

Finally, Proposition 4.21 implies the claim: 

cone I HoLKan JJJA A Â) j = cone (A|P-+1 ̂ ) A cone (A|3t+1^Ct) . 

D 

7.2.2. The differentials. We hâve determined the objects of Q(i*E), and 
are ready to compute the differentials. It turns out that it is enough to 
consider a simple spécial case: 

Remark 7.17 (Franke). Let C* be a cochain complex, and let s G Z. 
Consider the map of cochain complexes 

(30) • * 0 ->c s 

-»• c s _ 1 — • c s d« >Cs+1 
I 

-> C s+2 

We will write f c,s for this map and f g t for the analogous map for C 
and t. We apply Propositions 7.5, 7.12 and 7.15 to the maps fc,s and 
f Q t and obtain 

-» Cs ® C1 •* c s <8) c 1 e c s ® c 

(d'^l.l^d1) 

_> e c'oc*'. 0 Cs' ® C t
# 

s/-r-t/=n s'+t'=n+1 

The left vertical arrow is the inclusion of the (s, t ) t H summand, and the 
horizontal arrows are the differentials we are looking for. Therefore, in 
order to find the differential in the gênerai case, i.e. the lower horizontal 
arrow, it is sufficient to consider the much simpler case that C and C are 
both as in the top row of (30). Note that Q - 1 maps a cochain complex 
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of this form into an object of C that looks like 

(31) * C * 

spot 

where 
CS = E(1)*(IC). 

Proposition 7.18. Let A and A G Ob£ be two objects of the form 
(31) for s, C and t, C. Then the map (7) that induces the (s + t) t H 

differential in Q(i*E) is 

diag: L2C AC —* L2C A C 0 L2C AC. 

PROOF: Let n = s + 1 . By Corollary 4.18, i*E looks like 

(32) * LCAC CAC * 
o 

LCAC CAC 

spot 

The first morphism of (7) is 

Cone(Cone(i*Epn+1<Clt)). 

In our case this is the identity of L2CAC. 
The second morphism of (7) is the suspension of 

(t*E)|3n+1^cn+n 

and is therefore also equal to the identity of L2CAC. 
The third morphism of (7) is the suspension of the cone inclusion 

belonging to 
(i*E)pn+2^tn+T 

Corollary 4.18 implies that (i*E)(3n+2^Cn+1 is the "equatorial embedding" 
of LC AC into its suspension, i.e. it is the left homotopy Kan extension 
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V x ! - * i 

(33) CAC CAC * * 

\ / — > \ / 
CAC CAC. 

The claim now follows from the following lemma about the cone inclu­
sion of the equatorial embedding. D 

Lemma 7.19. The cone inclusion ofthe equatorial embedding ofX into 
LX, defined as in (33), is equal to 

d iag : IX—>IXeIX. 

PROOF : Taking cônes commutes with homotopy colimits. Therefore 
the morphism that we want to identify is equal to the homotopy colimit 
over \/* of the lower right hand arrow of the diagram 

(34) * i 

^ \ / 

X X * ' * IX IX 
\ / — \ / — » \ / 

X X * . 

This arrow is a baby-phantom: restricted to any vertex of \/*, it be-
comes zéro, yet its homotopy colimit is not equal to zéro. For simplicial 
sets, and therefore for finite spectra, the claim of the lemma is well 
known. It can for example be seen by looking at explicit cofibrant re­
placements in the last diagram. But this spécial case implies the gênerai 
case: In [Fra96, Cor. 1.6.1.], Franke defines a family of bi-functors 

- A - : / C c x S £ n — > / C CxD 

that commutes with homotopy colimits and cônes, and is associative. It 
has the properties that — AS0 is the identity, —AS1 is the suspension, 
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and that - A * is zéro. Hère /CD is an arbitrary System of triangulated 

diagram catégories, in our case 

/CD = Ho(Mg ( 1 )), 

and S£n dénotes the homotopy category of C-shaped diagrams of finite 
spectra. In order to obtain the two diagrams (33) and (34) for arbitrary 
X, we take the corresponding diagrams for §° and smash it with X. 
Since the claim of the lemma is true for S0, and by the properties of 
Franke's smash product, it follows that it is also true for X. D 

Together with Remark 7.17 this complètes the proof of Theorem 1.1. 

L2CAC = LCALC. 
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