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CAHIERS DE TOPOLOGIE ET Volume XLVI-2 (2005)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

WEIL PROLONGATIONS OF BANACH MANIFOLDS IN
AN ANALYTIC MODEL OF SDG

by Eduardo J. DUBUC and Jorge G. ZILBER

Résumé. La théorie des points proches des variétés différentielles
réelles d’André Weil généralise la notion fondamentale de jet
d’Ehresmann, et comme celui-ci, comprend tout le calcul différentiel
des dérivées d’ordre supérieur. Dans cet article nous généralisons
et développons cette théorie pour le cas des variétés banachiques
complexes. Etant donnés une algébre de Weil W et un ouvert B
d’un espace de Banach, Panalyticité et la dimension infinie nous
imposent des modifications dans la définition de B[W], le pro-
longement d’espece W de B, pour que ce dernier ait les propriétés
souhaitées (Définition 2.8). Pour une fonction holomorphe f, nous
démontrons une formule explicite en termes des dérivées d’ordre
supérieur pour la fonction f[W] induite entre les prolongements
d’espeéce W . Dans une seconde partie, nous considérons un modeéle
analytique de la GDS muni d’un plongement j de la catégorie des
ouverts d’espaces de Banach, et nous montrons que le calcul dif-
férentiel usuel dans cette catégorie correspond au calcul différentiel
intrinséque du topos. Explicitement, nous démontrons les formules
jB[W] = (jB)Pw et j(f[W]) = j(f)P¥, o Dw est I'objet in-
finitésimal du topos déterminé par I’algebre de Weil W .

Introduction.

Weil prolongations were introduced for paracompact real C*° manifolds
as a generalization of Ehresmann’s Jet-bundles, and they play a central
role in SDG (Synthetic Differential Geometry).

In section 1 we recall some notions and constructions we need in the
paper, and in this way we fix notation and terminology.

In section 2 we define and develop Weil prolongations for open sets of
complex Banach spaces. We do so in a way that automatically yields the
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version of Weil prolongations for any Banach manifold. Given a real C™
M[W] is defined as the set of morphisms M[W] = {¢: C*(M) - W}.
This definition as such is not adequate for complex Banach manifold-
s. We introduce a definition that has the desired properties and that
coincides with the classical one in the real finite dimensional case (def-
inition 2.8). Then, we give an explicit construction of the Weil bundle
B[W] for an open subset of a Banach space B (proposition 2.10), and
given an holomorphic function f : B; — B, between open subsets of
complex Banach spaces, we give an explicit formula in terms of higher
derivatives for the induced map f[W] : Bi[W] — By[W] between the
respective Weil bundles (formula 2.11 and proposition 2.12).

In section 3 we show that the embedding j : B — 7 of the cate-
gory of open subsets of complex Banach spaces into the analytic model
of SDG developed in [6], [7], is compatible with the differential calcu-
lus. That is, we show that under this embedding the usual differential
calculus in the category B corresponds with the intrinsic differential
calculus of the topos 7 . Explicitly, this is subsumed in the formu-
las jB[W] = (jB)P%, and j(f[W]) = j(f)P%, where Dy is the in-
finitesimal object of the topos that corresponds to the Weil algebra W
(theorems 3.19 and 3.20).

1. Recall of some definitions and notation.

Analytic rings were introduced in [5] for the purpose of constructing
models of SDG well adapted to the study of analytic spaces. An analytic
ring A has an underlying c-algebra that by abuse we also denote A,
and the reader can think an analytic ring just as this c-algebra, however,
for details see [5].

We consider analytic rings in the Topos Sh (X ) of sheaves on a
topological space X, see [5][12]. The sheaf Cx of germs of continu-
ous complex valued functions is a local analytic ring in Sh(X ). An
A -ringed space is (by definition) a pair (X, Ox ), where Ox is an an-
alytic ring in Sh (X ) furnished with a local morphism Ox — Cx (it
follows that Ox is a local analytic ring). Given any point p € X , the
fiber is a local analytic ring 7 : Ox, — Cxp, — C. If 0 isa
section defined in (a neighborhood of) p, we shall denote by [o], the
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corresponding element in the ring Ox,, and by o(p) its value, that is,
the complex number o(p) = = ([o],).

Consider in O, , (ring of germs of holomorphic functions on n vari-
ables) the inductive limit topology for the topology of uniform conver-
gence on compact subsets on the rings O,(U), p€ U C C*. It can be
proved that in this topology a sequence [f], converges to a limit [f],,
if there is a neighborhood where (for sufficiently large k) all f; and
f are defined and the convergence is uniform. We shall refer to this
topology as "the topology of uniform convergence”. We shall need the
following result of Cartan ([2] 194, or [3] 28. Lemma 6):

1.1. Lemma. All ideals of the ring O, are closed for the topology of
uniform convergence.

In the finite dimensional case the coordinate projections play an im-
portant (and seldom explicitly indicated) role. Here all the continuous
linear forms have to be taken into account. The following result from
[7] reflects this fact and it is an important tool that we shall need in
this paper.

1.2. Lemma. Let B be an open subset of a complex Banach space
C. Let U be an open subset of C*, let ¢ € U, and let J; C Onq
be an ideal. Let f and g be holomorphic functions, U — B, such
that f(q) = g(q9) = p € B. Suppose that for all linear continuous
forms a € C', it holds that [@o f —aog|, € J;. Then, for all germs
[r]p € OBy, it also holds [ro f —rogl, € J,. a

We recall now the construction of the topos 7  introduced in [6].
We consider the category H of affine analytic schemes [6]. An ob-
ject E in H is an A-ringed space E = (E, Og) (by abuse we de-
note also by the letter £ the underlying topological space of the A-
ringed space) which is given by two coherent sheaves of ideals R, S in
Op, where D is an open subset of C*, R C S. The ideal S deter-
mines the set E of points, and the ideal R the structure sheaf. Thus,
E={peD|h(p)=0VI[h], € Sy}, and O = (Op/R)|g (restriction
of Op/R to E). The arrows in H are the morphism of A-ringed
spaces. We will denote by 7 the Topos of sheaves on H for the (sub
canonical) Grothendieck topology given by the open coverings. There
is a full (Yoneda) embedding H — 7.
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Consider any open set B of a Banach space C, then the ring O(B)
of culpliex valued holomorphic funciions is an analytic ring, and given
any point p € B, the ring Op, = O¢, of germs at p of holomorphic
functions is a local analytic ring. The pair (B, Op ), where Og is the
sheaf of germs of complex valued holomorphic functions is a A -ringed
space. From [7] we have:

1.3. Proposition. The correspondence B +— (B, Og) defines a full
embedding B — A from the category B of open sets of Banach spaces
and holomorphic functions into the category A of A-ringed spaces. [

We warn the reader that this embedding, unlike that in the finite
dimensional case, does not preserve finite products (see [7]).

Next we recall, also from [7], the definition of the embedding of the
category of open subsets of Banach spaces into the topos 7 .

1.4. Definition. Given an arrow t = (¢, 7) : (E, Og) — (B, Op),
we say that (t, 7) has local extensions if for each © € E, there is an
open U > z in C* and an extension (f, f*): (U, Oy) — (B, Op),
t = flung, and T = po f*, where p is the quotient map. We denote:

jB(E) ={(t, 7) : (E, Og) — (B, Og) | (t, 7) has local extensions}.

Given an arrow ¢g: FF— E in H, if t has local extensions, so does
tog, and given an arrow f: By — B, in B, if ¢t has local extensions,
so does (f, f*)ot. From [7] we have:

1.5. Theorem. The correspondence B +— jB defines a finite product
preserving embedding B — 7T from the category B of open sets of
Banach spaces and holomorphic functions into the topos T. O

This embedding does preserve products (not an easy fact unlike in
the finite dimensional case), it is faithful but not full. However, the
global sections functor, when restricted to objects of the form jB,
B € B, is faithful. Thus, the arrows in the topos A : jB; — jB; cor-
respond to certain functions f = I'(\) : By — Bz, which are not neces-
sarily holomorphic, but they are G -holomorphic. These functions have
been studied in [8], where a complete characterization is given.
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2. Weil prolongations of Banach manifolds.

WEeil prolongations have been introduced in [11] for paracompact re-
al C° manifolds as a generalization of Ehresmann’s Jet-bundles [9),
and they play a central role in synthetic differential geometry. Here we
develop this concept for open sets of complex Banach spaces (this au-
tomatically will yield the version of Weil prolongations for any Banach
manifold). Recall the following definition:

2.6. Definition. A complez Weil algebra is a c-algebra W equipped
with @ morphism W — C such that:

1) it is local with mazimal ideal I = n~1(0).

2) it is finite dimensional as a C-vector space. W = C@® I,
I =C™. The integer m + 1 is the linear dimension of W .

3) I is a nilpotent ideal. The least integer T such that I"™*! =0 is
the order (or height) of W .

For details about Weil algebras see [1], [5]. Given any Weil alge-
bra W with maximal ideal I, the dimension d of the vector space
I/I? is the geometric dimension of W, and W =C[¢&, &, ... &,
where the ¢&; satisfy a finite set H of polynomial equations,
h(z1, ... 24) =0, h € H. Since &1 = 0, it follows that there is a
quotient morphism Ogo — W = O40/R, [z:]o — &, which deter-
mines a (unique) structure of local analytic ring in W [5]. The kernel
R = ((h(z1, - .. Ta))ner) of this morphism has associated a set M C N¢
(where N indicates the set of non negative integers) of d-multiindexes
as described in the following remark [1}:

2.7. Remark. Let W be any complex Weil algebra as in definition 2.6.
Then there is a set M (of cardinality m ) of d-multiindexes such that
the list of derivatives D%, for o € M determines W in the sense that
W = O40/R, R={[flo € Oap| f(0)=0, D*f(0)=0Vae M}. O

We introduce now a definition of Weil prolongation for Banach man-
ifolds. However, here we consider explicitly only open subsets of Banach
spaces (notice that it is a local definition).

2.8. Definition. Given a complexr banach space C', an open subset
B c C, and a Weil algebra W, we define the prolongation of B by
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W, denoted B[W], as follows:
BW]={(p, ¥)| p€ Bandy : Op, — W}

where 1 is a morphism of analytic rings such that there is an open
0 € V c C% and an holomorphic function g : V — B, such that
9(0) =p and v = pog*, where p is the quotient Og9 — W (we say
that g is a local extension).

Weil prolongations M[W] were first defined for M a finite dimen-
sional paracompact C* -manifolds as the set of morphisms M[W] =
{¢ : C*°(M) — W}. In this case this definition coincides with the
one given above (see [4], Proposition 1.11). Here, the analytic condition
requires a local definition with germs at a point p, and the infinite di-
mensional condition requires to take as an assumption the existence of
local extensions.

The Weil prolongation B[W] is clearly functorial (by composing) in
the variable W . It is also functorial in the variable B. More explicitly:

2.9. Proposition. Let B; and By be open subsets of com-
plex Banach spaces, and let f be an holomorphic function
f:B1— By. Consider (p, %) € BilW] and f*:0Og, ) — Opy,p-
Then, (f(p), wo f*) € Bo[W] and this defines a map
fW]: Bi[W] — By[W]. O

The projection (p, 1) — p is a map B[W] — B under which B[W]
is the jet-bundle whose points contain the information for the value at
0 of an holomorphic function and a prescribed set of its derivatives.
In fact, we shall see that the points of B[W] are in bijection with the
product of B and m copies of C' indexed by the set M of multiindexes
in remark 2.7. In particular, B[W] can be considered to be an open
subset of a Banach space.

2.10. Proposition. Let B be an open subset of a complex Banach
space C. Then B[W] = B x [][ C, where the product is taken over
a € M. More explicitly, the map w: BW] — B x [[ C defined by
w(p, ¥) = (p, (D*9(0))aecm) , (where g: V — B is any local extension
as in definition 2.8) is a bijection.
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Proof. Consider the quotient p: Oz — (O40/R) = W . First we show
that w is well defined, then that it is a bijection.

Let h be any other local extension. By definition we have that
9(0) = h(0) = p and pog* = poh* =¢. Thus, p([r o glo) = p([r o ko)
V[rl, € Op,p. Then, [rog — rohjy € R, that is, D*(rog — roh)(0) =0
Vo € M. When r € C’, this means that (ro D*g — 7o D*h)(0) =0,
that is, r(D%g(0)) = r(D*h(0)), and, by the Hann-Banach theorem it
follows that D%g(0) = D*h(0) for all a € M.

Injectivity:

Suppose that w(p, ¥1) = w(g, ¥2). Consider local extensions g
of (p, ¥1) and h of (g, 12). Then ¢g(0) = p = ¢ = h(0), and for
each o € M, (D*g)(0) = (D>h)(0). We have 9:([r],) = p([r o g]o)
and ¥o([rlp) = p([rohlo) V[r], € Op,. Let r € C'. Then,
r((D%g)(0)) = r((D*h)(0)), that is D%(r o g)(0) = D%(r o k)(0)
Va € M . Since also r o g(0) = o h(0), we have [rog — roh]y € R.
Given any [r], € Op,,, by lemma 1.2 we also have [rog — rohjo € R,
thus p([r o glo) = p([r o hlo), so ¥1([r],) = ¥2([r],), which shows
1 =1s.

Surjectivity:

Given any (p, (Ca)aenm),let g: C? — C be the function defined by
9(2) = p+ D qem & 2% Clearly, g is holomorphic, g(0) =p € B and
D*(g)(0) = ¢, for o € M. Take an open subset V of C% such that
0eV and g:V — B. Clearly (p, pog*) € BW] and w(p, pog*) =
(p, (Ca)aen)- 0

Next we shall determine an explicit description of the map f[W] un-
der the bijection w, showing at the same time that it is an holomorphic
map of open subsets of Banach spaces.

Let B; and B, be open subsets of complex Banach spaces C; and

C, respectively, and let f be an holomorphic function, f: By — Bj,.
Consider for each § € M the set:

Ap = {1 = (Ba)aem, pa €N, such that Z pe = B}
aEM

Let

d d
il = oy ul = II e led =) cu, ot = I]
=1

aEM aeM i=1
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We say that the set Ag is ﬁmte In fact for a € M, ] > 1, so
!.u'l Z.JaeM Mo = LaaeM Malul - I LaGM Maul - |/u|

For each p € B; there exists a ball B(p, S) and a sequence
of continuous homogeneous polynomials P, of degree r such that
f(e) = > ,50FP(c —p) uniformly on B(p, S). Then, there exist-
s a unique multilinear symmetric continuous mapping ¢, such that
P.(c) = ¢.(c,... ,c), see [10]. We define:

w(f): By x H G = Byx [[.Coy  w(f) = W(Fos @(f)a)aen)

aEM aEM

(2'11) w(f)O(pa (va)aeM) = f(p)a
(f)ﬁ(p’ ('Uoz)cxeM = ﬂ' Z ‘Ml ¢lul (01', teey %)aeM); ﬁ € M.

m
UEAB K
(where for each o € M, the dots indicate a vector of p, coordinates
all equal to va/a!).
We have that for all § € M, w(f)s is separately holomorphic,
thus it is holomorphic, see [10], and since w(f)o also is holomorphic, it
follows that w(f) is holomorphic.

2.12. Proposition. Under the bijection w, the arrow f[W] is given
by the holomorphic function w(f). That is, wo fW] =w(f)ow , the
following diagram commutes:

Bl[W]-—;—) Bl X HaEM Cl
™ e
By[W]—= By x [[aem C2
Proof. Let (p, (ca)aecm) € B1 X [Toenr (C1), and let (p, ¥) be the u-
nique point in B[W] such that w(p, ¥) = (p, (ca)acm). Let g be
the local extension of (p, ) defined by g(z) = p + D ,em & 2°
Then, f[W](p, ¥) = (f(p),® o f*), and fog is a local extension of

(f(p), Yo f*). Since g(0) = p € By, there is an open subset Y of C?
such that 0€Y, g(Y)C By,and fog:Y — B;.
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We have w(f(p), Yo f*) = (f(p), (D*(f©9)(0))aem) . Thus, f(c) =
> »>0 Pr(c — p) uniformly on a ball B(p, S) C B;. Let Y1 30 be an
open subset of Y such that g(Y;) C B(p, S). For z € Y7,

ca ) Co Y Ca
flo() = D B(D] 527 =D on( 3 2% ) =520
r>0 aEM >0 aEM aEM :
Then, by Leibinitz’s formula [10] this is equal to
Ca
ZZ 7-"1—za)aEM)-
=0 (e ,u' a. a!
Since ¢, is multilinear, this is equal to

S B IT ol s Saen) =

r20 |u|=r a€EM

Z Z l/"’l' aEM :uaa)gsml((fﬁ ceey EE)aeM)~

)
a! al
720 |p|=r

It follows that in the development of f(g(z)) around 0, given
B € M the coefficient of 2# is obtained by considering all u such
that ZaeM Heo = [, that is, all u € Ag. So, this coefficient is

Z”GAﬁ o L i ( % ..., @)aem), and it is is equal to P—ﬂ%’!ﬂ@. Then:
! Ca Co
D 0g)0) =8 5 i Seen) = A e
BEA

It follows that (f(p),(D*(f © 9)(0))aem) = w(f)(P, (ca)aem), and
thus w(f(p), Y o f*) = w(f)(p, (Ca)aem))- Since this holds for all
(P, (ca)aem) € B1 X [lpen (Ch), it follows that wo f[W]ow™ =w(f),
that is, wo fIW] =w(f)ow. O

We end this section describing how Weil algebras determine in-
finitesimal objects in the topos. A Weil algebra W can be inter-
preted as an affine (infinitesimal) analytic scheme Dy C (C¢, O,),
Dy = ({0}, W). In H (or in the topos T ) Dy is defined by
Dw = [[(z1, -.. z4) | (A(z1, ... za) = 0, h € H]] C (C¢, Og4), where
H is the set of polynomial equations that define W . We have:
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2.13. Proposition. The assignment W +— Dy, determines a full em-
bedding WP — M from the dual of the category W of Weil algebras

v v v

into the category H of affine analytic schemes. O

The condition in the definition of B[W] says exactly that the pair
(p, ) viewed as an arrow (0, W) — (B, Op) has local extensions.
Thus:

2.14. Remark. By definition, B[W] s the set of arrows
B[W] = [Dw, jB] in T, and under this identification, for any
holomorphic function f, f[W]= (§f)* (composing with jf ). a

Thus, amap Dw — jB in T is a jet of an holomorphic germ (with
a shape determined by W), and composition in 7 corresponds with
composition of jets and functions.

3. Compatibility of Weil prolongations with exponentials in
the topos.

In this section we show that the embedding j is compatible with the
calculus of all higher derivatives. That is, it is compatible with the con-
struction of the jet bundle B[W] — B determined by any Weil algebra
W . Abusing notation, we can write the equations jB[W] = (jB)Pw |
and j(f[W]) =j(f)"".

Through all this section we shall consider a Weil algebra W with
associated ideal R C Oy, set M of d-multiindexes and set H of
polynomial equations, as in definition 2.6 and remark 2.7.

Given a local analytic ring A = O,,/J,, where z € C", and
Jy C Op is any ideal, consider the coproduct (as analytic rings)
AW = On-}-d,(:z:,O)/(JzaR); where (Jz, R) C On-f-d,(a:,o) is the ide-
al generated by the germs at (z, 0) of the functions of J, and the
functions of R considered as functions of n + d variables. We have:

3.15. Proposition. Given any (f](z,0) € Ontd,(z,0) -
[flz.0) € (Jzs R) <= [f(—,0)): € Jo, [(D?f)(—,0)], € J;VaeE M.

Proof. We consider f = f(u, z) where u € C" and 2z € C¢.
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=) We have f(u, 2) = > v(u, 2) hi(uv) + >_6;(u, 2) gj(z) where
[hi]m € J;, [gj]o € R and ['yz](x,o), [5 ](z o) E On+d (z,0) - This holds in
an open neighborhood of (z, 0). Since D* indicates derivation with
respect to z, it follows that

D*f(u, 0) = > (D) (u, 0) hi(u) + D D*(8;(u, 2) g;(2))(u, 0).

Here, for each u, we have that [§;(u, —)g;lo € R. It follows that
D*(6;(u, 2) g;(2))(u, 0) = 0. Thus, [(D*f)(—,0)], € J,. Similarly,
f(u, 0) = > vi(u, 0) hy(u) (recall that since [g;]o € R, then g;(0) = 0).
Thus [f(—, 0)]; € Jx.

< ) Consider the development of f around (z,0), f(u,z) =
f(u, 0)+ 3" bg(u) 2°, where bg(u) = 5D f(u, 0). Given any § # 0, if
B € M, then [(D?f)(—, 0)]z € Jz, thus, [bs]: € J. If B ¢ M, then,
given any a € M , since 3 # a, it follows that D*(2?)(0) = 0, thus,
[#P]o € R. It follows that in all cases [bg(u) 2°](;,0) € (Jz, R). Thus, in
the development of f, [f(—, 0)](,0) and all [bg(u)2°)z,0) € (Jz, R).
Since this series converges uniformly on a neighborhood of (z, 0), it
follows by lemma 1.1 that [f],0) € (Jz, R). a

Given any analytic ring A in any topos, a Weil c-algebra W (as in
definition 2.6) determines an analytic ring structure in A™*! that we
shall denote A[W].

In particular, consider an object E € H given by two coherent
sheaves of ideals I, J in an open subset of C*, J C I, E = Z(I) and
Opz = Ony/J; for z € E. We define the object (E, Og[W]) to be
the A- ringed space with fibers

Op[W]e = Opg[W] = {[og]. + Z[Ui]m &y [00)es [0i)e € O}

where the symbols &; satisfy the same set H of polynomial equations
that define W . We have:

3.16. Remark. Let 1y : Op,; — Og, be the quotient map. There is
a morphism of analytic rings 65 : Onyd, (z,0) = OB [W] defined by

6([flz0) = m[f(—, 0)]z + Z T ([(D*f)(—, 0)]s) éa

aEM
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which identifies Op.[W] with the quotient On+d, (z,0/(Jz, R) (this

11~ Lot @ 18 e d abhnnvn tL 4 (T M (xri\ — a7\ [}
Juwuwa VY UV.dU WitW 91V wo LG \ ~ 1\1!, VELVV 1)<ty [N

3.17. Remark. By construction of coproducts of analytic rings and
products in H, we have that E x Dy = (E x {0}, Ogx{o}) where,
for each z € E, Opx0},(,00 = Ontd,(z,0)/(Jz, R). It follows that
E x Dy = (E x {0}, Og[W]). g

3.18. Proposition. Let E be an object in H , let U be an open subset
of C* such that E C U, let V be an open subset of C* such that
0€V, let B be an open subset of a complex Banach space C, and let
g, h be holomorphic functions, g, h : U xV — B. Then:

(9 9)ExDw = (h, h*)|ExDy
=
((9(=,0), (9(=, 0))le = ((h(=, 0), (h(—, 0)")|z and Vo€ M,
((D%g)(=, 0), (D%9)(=, 0))|e = ((D*h)(=, 0), (D*h)(=, 0)")|&-

Proof. To simplify the proof it is convenient to adopt the convention
that D° is the identity operator. Thus, if @ = 0 = (0,0, ..., 0),
Def=f.

Let 6y : On+d,(m,0) - On+d, (x,O)/(Jx: R) and 7 : On,m - On,z/Jz
be the quotient maps, and let z € E.

=) Clearly g(z,0) = h(z,0) = p, and for all [r], € Op,,,
6z([r © 9(z,0)) = 0z([r © h)(z,0)) - Then, [rog — 70 hlz0 € (Js, R).
Thus, by 3.15, it follows that for ¢ = 0 and all a € M,
[D*((rog) — (roh))(—,0)]z € J.. When r € C', this means that
[(r o D*¢ — 7 0 D*h)(—, 0)], € J,. Since J, C I, the value at
z of any germ in J, is 0. Thus, r7((D%g)(z, 0)) = r((D*h)(z, 0))
(for all » € C'). It follows by the Hahn- Banach theorem that
(D*g)(z, 0) = (D*h)(z,0) = go € C. By lemma 1.2, it fol-
lows that [r o D%g(—, 0) —r o D*h(—, 0)], € J, for all [r]s, € O¢,q. -
Thus, m.([r o D*g(—, 0)]s) = mg([r o D*h(—, 0)];). This means
that n, o D%g(—, 0)* = m, o D%h(—, 0)* (for all z € E). Thus
(D*g)(—, 0)*)|e = (D*R)(=, 0)*)|& -

< ) For a =0 and each a € M, (D%g)

(z, 0) = (D*h)(z, 0) =
do € C and [roD%g(—, 0) — roD*h(—, 0)], € J, for a

1]' [T]QQ € OC Qo *
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When r € C', this means that [D*((rog)—(roh))(—, 0)]; € J,. Thus,
by 3.15, [rog—roh]; 0 € (Jz, R) forall r € C'. Using lemma 1.2 for
(Jz» R), it follows that [ro g —7oh]; 0 € (Jz, R) for all [rp] € Op ,,
where p is the point p = g(z, 0) = h(z, 0) = go. This means that
0z([r © 9(z,0)) = 0z([r © h(z,0)) . It follows that d, 0 g* = J, o h* for all
z € E. This finishes the proof. O

3.19. Theorem. Let B be an open subset of a Complex Banach space
C. Then, there is an isomorphism w : (jB)?% = j(B x [[ C) in
T, where the product is taken over a € M. Moreover, under the
identification B[W]| = [Dw, jB], this isomorphism on global sections
is the bijection w defined in proposition 2.10.

Proof. Since the functor j preserves products, it is equivalent to
show that for each E € H, there is a natural (in FE') bijection:
[E, (jB)P%] = [E, jB x [[(5C)]. The second statement will be evi-
dent by the definition of this bijection.

a) Let ¢ be an arrow, £ : E — (jB)Pw .

That is, € is an arrow E X Dy — jB in 7, which is given by a
morphism of A-ringed spaces, £ : (E x {0}, Ogx{0}) — (B, Op) which
has local extensions.

For each £ € E there is an open subset U of C" such that
z € U, an open subset V of C% such that 0 € V and an holo-
morphic function g : U x V — B such that (g,9*)|e'xpw = &lE'xDw »
where £/ = U N E. In this way, we have an open covering of F,
and, for each E’ in the covering, morphisms (g(—, 0), g(—, 0)*)|&,
((D%g)(=, 0), (D%g)(—, 0))|er, Va € M .

Given another open E” in the covering, with holomorphic func-
tion h, (h,h*)|erxpw = &|lErxDyw , We have (g, 9*)|(enE")xDyw =
(h, h*)|(g'nE"yxDw - By 3.18 (on the object (E' N E"), it follows
(g(_» 0)» (g(—, O)*)IE’HE” = (h(—a 0)7 (h’(—v O)*)IE’HE”’ and Vo € M,

((D%g)(—=, 0), (D%9)(=, 0))| e = ((D*h)(=, 0), (D*h)(=, 0)*)|Enee

So, these data is compatible in the intersections. Therefore it deter-
mines unique morphisms of A-ringed spaces ¢ : (E, Og) — (B, Op)
and B, : (E, Og) — (C, O¢) such that, for each E’ in the cov-
ering’ it holds that wIE’ = (g(—a O)a (g('—’ 0)*)|E') and ﬂalE’ =
((Dag)(“a 0)1 (Dag)(_’ 0)*)!1‘3’ :
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By a similar argument it follows that ¢ and £, do not depend on
the covering. Clearly these morphisms have locai extensions. 1hus, they
actually define arrows in the topos, ¥ : E — jB, and [, : F — jC,
which determine an arrow (¥, (Ba)aem) : £ — jB x [[(JC) in T .
This defines a function [E, (jB)P%] — [E, iB x [] (jC)]. We have to
prove now that it is a bijection.

b) (Injectivity). Suppose that we have two arrows & and &
E — (jB)P% in T which determine the same (¢, (Ba)acm). They
correspond to arrows E X Dy — jB , that is, morphism of A-ringed
spaces E x Dy — (B, Op) with local extensions. For each z € E,
let g and h be local extensions of ¢ and & around (z, 0) re-
spectively. We can assume that they are defined in a same open
subset U xV Cc C*xC%, (z,y) € UxV, gh:UxV — B,
(9, 9*)|E'xpw = &ilerxpw s (B, B*)|erxpy = &ole'xpDy , Where E' =
UNE. Since & and & determine the same (¥, (Ba)acnm), it
follows that (g(_u O)a (9(—, 0)*)|E’ = (h’(_a 0)) (h(_a O)*)lE’ and
((D2g)(=, 0), (D%g)(=, 0)*)|er = ((D*h)(—, 0), (D*h)(—, 0)*)|p for
all € M. It follows by 3.18 that (g, ¢*)|e'xpw = (h, A*)|E'xDy , thus,
&1z xpw = &2|E'xDy - Since the open sets E’' x Dy cover E X Dy, it
follows that & =&;.

c) (Surjectivity). Let (v, (Ba)aem) : E — jBx [[(JC) in T . That
is, ¥ : (E, Og) — (B, Op), Ba: (E, Og) — (C, O¢) are morphisms
of A-ringed spaces with local extensions. For each z € E, let go, ga,
be a local extension of ¥, B, respectively, go: U — B, go: U — C,
U an open subset of C*, z € U. Let g : U x C¢ — C be the
function defined by g(u, z) = go(u) + ZaeM%!ﬁza. Clearly g is
holomorphic and g(z, 0) € B. It follows that there exists an open
subset T of C*, z € T, an open subset V of C?, 0 € V, and
g(TxV) C B. Consider g : TxV — B, and the morphism of A -ringed
spaces (g, 9%)|g'xpy : E' X Dy — (B, Op) where E' =TNE. Notice
that g(u, 0) = go(u), and for each o € M, (D*g)(u, 0) = go(w). That
is, g(—, 0) = go and (D%g)(—, 0) = go.

We have an open covering of E x Dy and, for each E' x Dy, in this
covering, a morphism (g, g%)|p'xpy : B/ X Dy — (B, Op). Exactly in
the same way as before in this proof, it is straightforward to check that
these morphisms are compatible in the intersections (use 3.18). Thus,
they determine a morphism of A-ringed spaces £ : E x Dy, — (B, Op)
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unique such that for each E’, the restriction & |gxp,, = (9, 9*)|E'xDw -
It is clear that & has local extensions and thus it defines an arrow
€:ExDw — jB in T, thatis, £ : E — (jB)Pw. It is immediate
also to check that the construction defined in a) above when applied to
¢ yields (¥, (Ba)aert) -

Finally, it is straightforward to check the naturality in E of this
correspondence. O

Let B; and B, be open subsets of complex Banach spaces C; and
C, respectively, and let f be an holomorphic function, f: B; — Bs.
Consider the holomorphic function w(f) defined by equation 2.11, then:

3.20. Theorem. Under the bijection w of theorem 8.19, the arrow
()P : jBPY — jBPY s given by the function w(f). Ezplicitly,
wo (5f)P% = j(w(f)) ow, that is, the following diagram commutes:

(1B1)P" —= §(B1 X [1aem C1)
l(jf)DW lj(w(f))
(7B2)P" —= (B2 X [Lem C2)

Proof. Equivalently, we shall prove the equation w o (jf)P% ow™! =
J(w(f)). Applying the global sections functor I' this equation be-
comes the equation w o f[W]ow™ = w(f) of proposition 2.12 (recall
remark 2.14). Thus ['(w o (jf)P% o w™!) = I'(j(w(f))). Then, by
proposition 1.1 of [8] (see the comments after theorem 1.5) we have

wo ()P ow™ =j(w(f)). O
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