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CONSTRUCTING ORDERED GROUPOIDS

by Mark V. LA WSON

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XL VI-2 (2005)

R6sum6. Nous montrons que chaque groupoide ordonn6 est iso-
morphe a un groupoide construit a partir d’une cat6gorie operant de
manière appropride sur un groupoide provenant d’une relation

d’6quivalence. Cette construction est utilis6e, dans un article sui-
vant, pour analyser le monoide structurel ou gdom6trique de De-
homoy associd a une variete balancde.

Introduction 

The theory of ordered groupoids was introduced by Ehresmann as a
way of formalising the theory of pseudogroups of transformations [3].1
During the 1990’s, the author began a systematic investigation of the
role of ordered groupoids in inverse semigroup theory. This work is

summarised in [8] and forms a part of ’the ordered groupoid approach
to inverse semigroups’. This approach has been substantially advanced
in recent years; see [4, 10, 13, 19]. We may summarise by saying that
ordered groupoids are an important tool in studying inverse semigroups,
and that inverse semigroups are turning out to be natural mathematical
objects; the books [8, 17, 18] provide many examples justifying this last
claim.

The aim of this paper is to describe a way of constructing ordered
groupoids. The construction grew out of concrete examples: the clause
inverse semigroup introduced by Girard in [5] for applications in linear

1 What we call ’ordered groupoids’ were termed ’functorially ordered groupoids’
by Ehresmann.
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logic; my construction of inverse semigroups from category actions in
f91 that was motivated by an analysis of Girard’s semigroup; and De-
hornoy’s construction of the structural monoid of an algebraic variety
defined by a set of balanced equations [2]. In this section, I describe the
idea behind my construction.

Let G be a groupoid. I shall denote the right identity of g E G by
d(g) and the left identity by r(g). I shall also denote g by an arrow

d(g) -&#x3E; r(g). The partial product will be denoted by concatenation;
note that the product gh is defined iff d(g) = r(h). The set of identities
of G is denoted Go. A groupoid G is said to be ordered if it is equipped
with a partial order  in such a way that the following four axioms
hold:

(OG1) x  y implies x-1  y-u

(OG2) If x  y and u  v and xu and yv are defined then xu  yv.

(OG3) Let e  d(x) where e is an identity. Then there exists a unique
element (x e), called the restriction of x to e, such that (x | e)  x
and d(x e) = e.

(OG3)* Let e  r(x) where e is an identity. Then there exists a unique
element (e x), called the corestriction of x to e, such that (e |x) 
x and r(e| x) = e.

In fact, axiom (OG3)* is a consequence of the other axioms; see [8].
The homomorphisms between ordered groupoids are the ordered func-
tors : those functors that are also order-preserving. An ordered functor
a: G - H is an ordered embedding if g  h iff a(g)  a(h).

In the class of groupoids, those that arise from equivalence relations
deserve to be regarded as the simplest. They can be characterised by the
property that if e and f are identities then there is at most one element
g such that e g-&#x3E; f . We call such groupoids combinatorial. Our goal is
to construct ordered groupoids from combinatorial groupoids together
with some other data. The ingredients we need are as follows:

O A category C acts on a combinatorial groupoid H.
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O This action induces a preorder on H whose associated equiva-
lence relation is =

O The quotient structure H/ - is a groupoid on which the preorder
induces an order.

O The groupoid H/ = is ordered and every ordered groupoid is iso-
morphic to one constructed in this way.

In Sections 1 and 2, I shall show that this construction can be re-

alised. In Section 3, I show how this construction contains the one

described in [9]; in addition, I make some remarks of an historical na-
ture. The construction is put to work in [14] in analysing Dehornoy’s
structural monoids [2].

Finally, I need to say a few words about the relationship between or-
dered groupoids and inverse semigroups. Let G be an ordered groupoid.
If x, y E G are such that e = d(x) A r (y) exists, then Ehresmann defined

called the pseudoproduct of x and y. It can be proved [8] that if xO (yOz)
and (x O y) O z are both defined, then they are equal. An ordered

groupoid is said to be inductive if the order on the set of identities
is a meet semilattice.’ An inductive groupoid gives rise to an inverse
semigroup (G, O) using the pseudoproduct, and every inverse semigroup
arises in this way. Ordered functors between inductive groupoids that
preserve the meet operation on the set of identities give rise to ho-
momorphisms between the associated inverse semigroups. An ordered
groupoid is said to be *-inductive if the following condition holds for
each pair of identities: if they have a lower bound, they have a greatest
lower bound. A *-inductive groupoid gives rise to an inverse semigroup
with zero (GO, 0): adjoin a zero to the set G, and extend the pseudo-
product on G to Go in such a way that if s, t E G and sO t is not defined
then put s O t = 0, and define all products with 0 to be 0. Every in-
verse semigroup with zero arises in this way. The details of the ordered
groupoid approach to inverse semigroup theory are described in [8].

2 The term ’inductive’ is used in inverse semigroup theory in a way quite different
from that used in Ehresmann’s work.
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1 Categories acting on groupoids
In this section, I shall define a class of actions of categories on combina-
torial groupoids, and show that they can be used to construct ordered
groupoids.

We begin by recalling the definition of a category acting on an-
other category, in this case, a groupoid.’ Let C be a category and G a
groupoid. Let 7r: G -&#x3E; Co be a function to the set of identities of C.
Define

We say that C acts on G if there is a function from C * G to G, denoted
by (a, x) -&#x3E; a.x, which satisfies the axioms (A1)-(A6) below. Note that
I write 3a - x to mean that (a, x) E C * G. I shall also use 3 to denote

the existence of products in the categories C and G.

(Al) 31r(x). x and 1r(x) . x = x.

(A2) Ba.x implies that tt(a . x) = r(a).

(A3) Ba. (b - x) iff 3(ab) . x, and if they exist they are equal.

(A4) Ba. x iff 3a . d(x), and if they exist then d(a . x) = a - d(x);
3a x iff 3a . r(x), and if they exist then r(a . x) = a - r(x).

(A5) If 7r(x) = 7r(y) and Bxy then tt(xy)= tt(z).

(A6) If Ba. (xy) then B(a. x)(a. y) and a . (xy)= (a . x)(a. y).
We write (C, G) to indicate the fact that C acts on G. If C acts on

G and x E G then define

Define x y in G iff there exists a E C such that x = a . y. It is easy to

check that is a preorder on G. Let - be the associated equivalence:
x = y iff x  y and y  x. Denote the =-equivalence class containing x
by [x], and denote the set of =-equivalence classes by J(C, G) . The set
J (C, G) is ordered by [x]  [y] iff z  y.

31 am grateful to the referee for pointing out that Ehresmann originated this
notion; see [3], volume 111-3, page 439.
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Remarks

(1) The usual definition of a category acting on a set is a special case
of the definition of a category acting on a groupoid: a set can be
regarded as a groupoid in which each element is an identity. In

this case, axioms (A4)-(A6) are automatic.

(2) Let C act on the groupoid G. Then C acts on the set Go. To

prove this, it is enough to show that if x is an identity in G and
3a - x then a - x is an identity in G. This follows by (A4), since
d(a. x) = a . d(x) = a. x.

(3) Let C act on the groupoid G. If x E G and a E C then 3a - x iff
3a - x-1, in which case (a - x)-1 = a - x-1. It is straightforward to
check that Ge = tt-1(e) is a subgroupoid of G, and that if f - a e
in C, then the function x -&#x3E; a.x from Ge to G f is a functor.

(4) Let C act on the groupoids G and G’. We say that (C, G) is iso-
morphic to (C, G’) iff there is an isomorphism a: G -&#x3E; G’ such
that 3a . z iff 3a - a(x) in which case a(a - x) = a - a(x).

(5) Observe that x y iff C.x C C.y. Thus x == y iff C . x = C . y.

(6) If x - y then d(x) - d(y) and r(x) - r(y) by axiom (A4).

We shall be interested in actions of categories C on groupoids G that
satisfy two further conditions:

(A7) G is combinatorial.

(A8) d (a . x) = d (b . x) iff r(a. x) = r (b . x).

Condition (A7) is to be expected; condition (A8) will make everything
work, as will soon become clear.

Theorem 1.1 Let C be a category acting on the groupoid G’, and sup-
pose in addition that both (A7) and (A8) hold. Then

(i) J(C, G) is an ordered groupoid.
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(ii) J(C, G) is *-inductive iff’ for all identities e, f E G we have that
C.en C. f non empty implies there exists an identity i such that

C . e n C . f = C . i. 

Proof (i) Define

These are well-defined by Result (4).
We claim that d[x] = r[y] iff there exists x’ E [x] and y’ E [y]

such that 3x’y’. To prove this, suppose first that d[x] = r[y]. Then

d(x) - r(y). There exist elements a, b E C such that d (x) = a - r(y)
and r(y) = b. d(x). Thus by (A3) and (A4), we have that

By (A8), this implies that

By (A7), this means that y = b . (a - y). Hence y - a - y and 3z(a . y),
as required. The converse follows by Result (4).

We define a partial product on J(C, G) as follows: if d[x] = r[y]
then

otherwise the partial product is not defined. To show that it is well-

defined we shall use (A7) and (A8). Let x" E [x] and y" E [y] be such
that 3x"Y". We need to show that x’y’ =- x"y". By definition there exist
a, b, c, d E C such that

and there exist s, t, u, v E C such that

4Strictly speaking, I should write d([x]) but I shall omit the outer pair of brackets.
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Now x = b - x’ and x" = c - x. Thus x" = (cb) - x’ by (A3). Now 3x’y’
and so 7r(XIY’) = tt(x’) by (A5). Thus 3(cb) - (x’y’). Hence (cb). (x’y’) =
[(cab) . x’][(cb) . y’] by (A6) which is x"[(cb) . y’]. We shall show that
(cb) - y’ = y", which proves that x"y"  x’y’; the fact that x’y’ x"y"
holds by a similar argument so that x’y’ = x"y" as required. It therefore
only remains to prove that (cb) . y’ = y". We have that y" = (ut) . y’
and d(x") = r(y"). Thus d(x") = r(y") = (ut) . r(y’) by (A4). But

d(X") = (cb) - r(y’). Thus (ut) . r(y’) = (cb). r(y’). Hence

by (A4). Therefore

by (A8). It follows that the elements (ut) - y’ and (cb). y’ have the
same domains and codomains, and so are equal by (A7). It follows that
(cb). y’ = (ut). y’ = y". Thus the partial product is well-defined.

It is now easy to check that J(C, G) is a groupoid: [x]-l = [x-1],
and the identities are the elements of the form [x] where x E Go.

The order on J(C, G) is defined by [x]  [y] iff x = a - y for some
a E C. It remains to show that J(C, G) is an ordered groupoid with
respect to this order.

(OGI) holds by Result (3).
(OG2) holds: let [x]  [y] and [u]  [v] and suppose that the partial

products [x][u] and [y][v] exist. Then there exist x’ E [x], u’ E [u],
y’ E [y] and v’ E [v] such that [x] [u] = [x’u’] and [y] [v] = [y’v’]. By
assumption, [x’]  [y’] and [u’]  [v’] so that there exist a, b E C such
that x’ = a . y’ and u’ = b. v’. We need to show that x’u’ y’v’.
Now d(x’) = r(u’) and so a. d(y’) = b. r(v’). But d(y’) = r(v’) Thus
a - d(y’) = b. d(y’). Hence

By (A8), we therefore have that
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and so a - y’ = b - y’ by (A7). Thus x’u’= (a. y’) (b. v’) = (b - y’) (b ’ v’) .
Now 3y’v’ and so hv (AS) and (A6) wP have that (h.y’)(b.v’) = h- (y’v’).

Thus x’u’ = b - (y’v’) and so x’u’  y’v’, as required. 
(OG3) holds: let [e]  d[x] where e E Go. Then e  d(x) and so

e = a - d(x) for some a E C. Now 3a . z by (A4). Define

Clearly [a ’ x]  [a], and d[a’ x] = [a . d(x)= [e]. It is also unique with
these properties as we now show. Let [y]  [x] such that d[y] = [e].
Then y = b - x for some b E C and d(y) - e. Because of the latter,
there exists c E C such that e = c - d(y). Thus e = (cb). d(x). But
e = a . d(x). Thus (cb). d(x) = a.d(x). Hence (cb) . r(x) = a.r(x) by
(A8). So by (A7), c. (b. x) = a. x, giving c.y = a. x. It follows that we

have shown that a.x  y. From d(y) - e, there exists d E C such that
d(y) = d. e. Using (A7) and (A8), we can show that y = d. (a. x), and
so y « a. x. We have therefore proved that y - a. x Hence [y] = [a. x],
as required.

(OG3)* holds: although this axiom follows from the others, we shall
need an explicit description of the corestriction. Let [e]  r[x] where
e E Go. Then e  r(x) and so e - b - r(x) for some b E C. Now 3b - x
by (A4). Define

The proof that this has the required properties is similar to the one

above.

(ii) We now turn to the properties of the pseudoproduct in J(C, G).
Let [e], [f] be a pair of identities in J(C,G). It is immediate from the

definition of the partial order that [e] and [f] have a lower bound iff
C - e n C - f # 0. Next, a simple calculation shows that [z]  [e], [f]
iff C-i c C . e n C . f. It is now easy to deduce that [i] = [e] A [f] iff
C . i = C . e n C . f.

It will be useful to have a description of the pseudoproduct itself. If
C.i=C.en C.f then denote by

e * f and f * e
elements of C, not necessarily unique, such that
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Suppose that [x], [y] are such that the pseudoproduct [x] 0 [y] exists.
Then by definition L ld(x)] A [r(y)] exists. Thus C. d(x) n C. r(y) = C. e
for some e E Go. It follows that

Now

and

Hence

The condition that if C . e n C . f is non-empty, where e and f are
identities, then there exists an identity i such that C . e n C . f = C. i will
be called the orbit condition for the pair (C, G). Part (ii) of Theorem 2.1
can therefore be stated thus: J(C, G) is *-inductive iff (C, G) satisfies
the orbit condition.

2 Universality of the construction
In this section, I shall show that every ordered groupoid is isomorphic
to one of the form J(C, H) for some action of a category C on a com-
binatorial groupoid H.

Let G be an ordered groupoid. There are three ingredients needed
to construct J(C, H): a category, which I shall denote by C’(G), a
combinatorial groupoid, which I shall denote by R(G), and a suitable
action of the former on the latter. We define these as follows:

O We define the category C’(G) as follows: an element of C’(G) is
an ordered pair (x, e) where (x, e) E G x Go and d(x)  e. This
element can be represented thus
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We define a partial product on C’(G) as follows: if (x, e), (y, f ) E
C’(G) and e = r(v) then (x, e)(y, f) = (x 0 zi, f). This product
can be represented thus

since in this case x0y = x(d(x) y). It is easy to check that in this
way C’(G) becomes a right cancellative category with identities
(e, e) E Go x Go. Further details of this construction may be found
in [12].

O We define the groupoid R(G) as follows: its elements are pairs
(x, y) where r(x) = r(y). Define d(x,y)= (y, y) and r(x, y) =
(x, x). The partial product is defined by (x, y)(y, z) = (x, z).
Evidently, R(G) is the groupoid associated with the equivalence
relation that relates x and y iff r(x) = r(y).

. We shall now define what will turn out to be an action of C’(G)
on R(G). Define 7r: R(G) -&#x3E; C’(G)a by 7r(z, y) = (r(x), r(y)),
a well-defined function. Define (g, e) - (x, y) = (g Q9 x, g O y) iff

e = r(x) = r(y). This is a well-defined function from C’(G) *R(G)
to R(G).

Proposition 2.1 Let G be an ordered groupoid. With the above defini-
tion, the pair (C’(G), R(G)) satisfies axioms (Al)-(A8).

Proof The verification of axioms (A1)-(A7) is routine. We show ex-

plicitly that (A8) holds. Suppose that

Then s O x = t 0 x. The groupoid product x-ly is defined, and the
two ways of calculating the pseudoproduct of the triple (s, x, x-ly) are
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defined, and the two ways of calculating the pseudoproduct of the triple
(t, x, x-1 y) are defined. It follows that s O y = t O y; that is,

The converse is proved similarly.

The next theorem establishes what we would hope to be true is true.

Theorem 2.2 Let G be an ordered groupoid. Then J(C’(G), R(G)) is

isomorphic to G.

Proof Define a: G - J(C’(G), R(G)) by a(g) = [(r(g),g)]. We show
first that a is a bijection. Suppose that a(g) = a(h). Then (r(g), g) =
(r(h), h). Thus (a, r(g)) . (r(g), g) = (r(h), h) and (b, r(h)) . (r(h), h) =
(r(g), g) for some category elements (a, r(g)) and (b, r(h)). Hence

It follows that a and b are identities and so h  g and g  h, which
gives g = h. Thus a is injective. To prove that a is surjective, observe
that if [(x, y)] is an arbitrary element of J(C’(G), R(G)), then (x, y)=
(d(x), x-ly) because

Next we show that a is a functor. It is clear that identities map to

identities. Suppose that gh is defined in G. Now a(g) = [(r(g), g)] and
a(h) = [(r(h), h)]. We have that d[(r(g), g)] = [(g, g)] and r[(r(h), h)] =
[(r(h), r(h))]. Now (g, g) - (d(g), d(g)) because

and

Thus a(g)a(h) is also defined. Now (r(h), h) = (g, gh) because
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and

Thus a(g)a(h)= ((r(g), gh)] = a(gh). It follows that a is a functor.

Finally, we prove that a is an order isomorphism. Suppose first that
g  h in G. Then g-1  h-1 and (d(g)lh-l)  h-’ and r(d(g)|h-1) =
d(g) = r(g-1). Thus (d(g)lh-l) = g-’. It is now easy to check that

(r(g), g)= (p0 h-’, r(h)) - (r(h), h). Thus a(g)  a(h). Now suppose
that a(g)  a(h). Then (r(g), g) = (a, r(h)) . (r(h), h). It follows that
a is an identity and that g = a O h and so g  h. We have proved that
a is an order isomorphism.

Hence a is an isomorphism of ordered groupoids.

As an application, I shall show how the theory can be used to de-
scribe inverse semigroups with zero; the case of inverse semigroups with-
out zero is similar. Let S be an inverse semigroup with zero. We denote
by S* the set S B 101 regarded as an ordered groupoid: the partial prod-
uct of s and t is defined iff S-1 s = tt-1 in which case it is equal to the
usual product st; the partial order is the natural partial order. 

The category C’ = C’(S*) consists of those ordered pairs (s, e) where
s E S* and e E E(S*), the set of non-zero idempotents of S, such that
s-is  e. The product of (s, e) and (t, f ) is defined iff e = tt-1 in which
case (s, e) (t, f ) = (st, f ).

The combinatorial groupoid R = R(S*) consists of those pairs (s, t)
such that s and t are both non-zero and ss-1 = tt-1. Now the relation
R is defined on S by s R t iff ss-’ = tt-1 and is one of Green’s relations.

By Theorem 2.2, the ordered groupoid S* is isomorphic to J(C’, R).
Thus the inverse semigroup S is isomorphic to J(C’, R)° equipped with
the pseudoproduct. We may summarise these results as follows.

Theorem 2.3 Every inverse semigroup with zero S is determined upto
isorraorphism by three ingredients: the category C’(S*), Green’s R-

relation, and the action of the category on the groupoid determined by
Green’s R-relation.
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3 Final remarks

I begin by explaining how the construction of ordered groupoids from
categories acting on sets described in [9] can be viewed as a special
case of the construction of this paper.5 Let (C, X) be a pair consisting
of a category C acting on a set X where we denote by 7r: X - Co
the function used in defining the action. Define the relation R* on the
set X as follows: xR* y iff 7r (x) 7r(Y) and for all a, b E C we have
that, when defined, a.x = b . x =&#x3E;a . y = b . y. Observe that R* is

an equivalence relation on the set X . In addition, x R* y implies that
c. x R* c. y for all c E C where c . x and c. y are defined. Consequently,
we get a combinatorial groupoid

Define tt’ : G(C, X ) -&#x3E; Co by tt’(x, y) = tt(x), and define an action of C
on G(C, X) by a - (x, y) = (a - x, a. y) when d(a) = tt’ (x, y) . It is easy
to check that axioms (Al)-(A8) hold. We may therefore construct an
ordered groupoid from the pair (C, G(C, X)). This is identical to the

ordered groupoid constructed in [9] directly from the pair (C, X ) .
To conclude, I would like to say a few words about the origins of

the constructions described in Sections 1 and 2. Let G be an ordered

groupoid. The category C’ (G) is one of a pair of categories that can be
associated with an ordered groupoid G. The other, denoted C(G), is
left rather than right cancellative. The origin of these categories goes
back to one of the founding papers of inverse semigroup theory written
by Clifford [1]. However the explicit connection between Clifford’s work
and category theory was discovered by Leech [15]. He showed that in
the case of inverse monoids, the whole structure of the semigroup could
be reconstituted from either of these two categories. The importance of
these categories was further underlined in the discovery by Loganathan
[16] that the cohomology of inverse semigroups introduced by Lausch [7]
was the same as the usual cohomology of one of its categories. Further
applications of these categories can be found in [11, 12, 13]. As I indi-
cated above, these categories completely determine the structure of the

5In fact, in [9] I look only at inverse semigroups, but the construction generalises
easily.
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semigroup in the case of inverse monoids. This raises the question of
what can be said in general. The semigroup background to this question
is discussed in [9]. As a result of reading a paper by Girard on linear
logic, I was led to the construction described in [9], which shows how
inverse semigroups can be constructed from categories acting on sets. I

thought this was the final word on this construction until Claas R6ver
pointed out to me the paper by Dehornoy [2]. Dehornoy constructs an
inverse semigroup from any variety, in the sense of universal algebra,
that is described by equations which are balanced, meaning that the
same variables occur on either side of the equation. This construction
was clearly related to my construction in [9], but I felt the fit was not
quite good enough. It was an analysis of the connections between the
two that led me to the construction of this paper.
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