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DESCENT EQUIVALENCE
by Xiuzhan GUO1, Manuela SOBRAL2 and Walter THOLEN3

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CA TEGORIOUES

Volume XLV-4 (2004)

RESUME. Soit A: C°p --&#x3E; CAT une cat6gorie index6e par C et
soit B un objet de C. Une equivalence de A-descente est un mor-
phisme de C/B qui induit une equivalence entre les categories de
descente relatives a A de son domaine et de son codomaine.
Dans cette note, les auteurs étudient les propri6t6s de ces mor-
phismes et ils obtiennent une caract6risation complete des mor-
phismes qui sont des 6quivalences de descente pour toutes les ca-
t6gories A.

ABSTRACT. For a C-indexed category A, an A-descent equiva-
lence is a morphism of bundles in C which induces an equivalence
between the A-descent categories of its domain and codomain.
In this note, properties of such morphisms are studied, and those
morphisms which are A-descent equivalences for all C-indexed

categories A are fully characterized.

0. Introduction. Descent Theory was developed by Grothendieck 11],
[2] in the context of fibred categories. If the category E is fibred over
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the category C with pullbacks, then each morphism p : E - B of C is
associated with its descent category DesE(p) (see, for example, [4], for
details). Having defined descent structures, it seems natural to us to

compare two bundles (E, p) and (X, cp) over B in the descent sense and
to ask:

When do two bundles (E, p) and (X, p) over B have the "same descent
behavior" ?

More clearly, we would like to know under which conditions a morphism
of the two bundles (E, p) and (X, cp) over B would render equivalent
descent categories. To this end, we shall examine here for morphisms of
bundles the notion of descent equivalence, which was introduced in the
first author’s Ph.D. thesis [3], and study its properties.

We formulate this notion in the (essentially equivalent) language of
internal categories and of indexed categories (see [5,6,7]), rather than
that of fibrations, making extensive use of some of the results of [5],
which we recall here in sufficient detail.

After some preliminary observations concerning descent equivalences
and their comparison with effective descent morphisms, in Theorem 1
we give a somewhat surprising necessary and sufficient condition for a
morphism of bundles to be a descent equivalence (with respect to all

indexed categories): one just needs the existence of any morphism of
bundles in the opposite direction. In Theorem 2, we characterize those
descent equivalences whose domain or codomain is given by an effective
descent morphism.

Acknowledgements: We thank the anonymous referee for a sugges-
tion which led to an improved exposition of the first part of the proof
of Theorem 1. The second author acknowledges interesting discussions
with George Janelidze on the subject of this paper.

Partial financial assistence through an NSERC Research Grant is
acknowledged. The hospitality of York University and financial assis-
tence by CMUC/FCT and ATLANTIS 98-00-CAN-0017-00 is gratefully
acknowledged by the second author.

1. Internal categories. Recall that an internal category D (cf. [6])
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in C is given by a diagram

in C, which satisfies

where D2, 7ri , 7r2 are given by the following pullback diagram in C:

An internal functors f : D --&#x3E; D’ between two internal categories
D, D’ in C is given by two morphisms f o : Do -7 Do, f 1 : D1 --&#x3E; D1 of
C such that

Composition of internal functors is defined in the obvious way. Hence
one obtains cat(C), the category of all internal categories and internal
functors in C. It is actually a 2-category (see [5]) since one can define the
notion of internal natural transformation a : f --&#x3E; g of internal functors
f, g : D --&#x3E; D’, given by a morphism a : D0 --&#x3E; D’ in C such that
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T2. m’  ac, f1 &#x3E; = m’ g1, ad &#x3E;.

The composite [3rv - f - h of internal natural transformation s a :
f -- g and 0 : g --&#x3E; h is the morphism m’  B, a &#x3E;: Do --&#x3E; D’, and
the identity internal natural transformation 1 f : f --&#x3E; f is the morphism
e’fo : Do - D’1.

An internal functor f : D -7 D’ of C is an internal category equiva-
lence if there is an internal functor g : D’ -7 D such that gf = 1D and
fg = 1D’.

For example, if p : E --&#x3E; B is a morphism in C, then

is an internal category in C, where e = lE, lE &#x3E;, (n1, n2) is the kernel
pair of p, 7rl2 and n23 are such that n1n23 = n2n12 (pullback square)
and 7Fl3 = n1n12, n2n23 &#x3E;. This internal category is denoted by Eq(p).
Every object B in C can be viewed as a discrete internal category B of
C:

Clearly, Eq(1B) is isomorphic to the above discrete internal category B.
For any morphism q : (E, p) --&#x3E; (X, cp) in CIB, as in [5] one con-

structs the internal functor

where qo - q, 9i = q x B q. Then, for a fixed object B of C, the
assignments:

define the functor

2. Indexed categories. A C-indexed category A or a pseudo-functor
A : Cop -7 CAT (cf. [5,7,8]) consists of the following data:
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. for every ob j ect E of C a category A E

. for every morphism f : E --&#x3E; D of C a functor f * : AD ---t AE,

. for every f : E ---&#x3E; D, g : D - B in C, two natural isomorphisms:

which make the diagrams

and

commute.

For example,

given by B - C/B and ( f : E --&#x3E; B) - f * : C/B --&#x3E; C/E, the pull-
back functor along f, is a C-indexed category, also called the basic

C-indexed category.
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Let D be an internal category in C. One defines A D (cf. [5]) to be
the category with

- objects all pairs of (C, E), where C C oba’o and E : d* C --&#x3E; c* C is a

morphism in A Dl such that

and

commute, in AD0 and AD2, respectively, with the above natural isomor-
phisms arising from Il and 12,

- morphisms h : (C, E) --&#x3E; (C’, E’) of AD given by morphisms h : C --&#x3E; C’
of AD0 such that

commutes in A".
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In [5], it was proved that, for every C-indexed category A : cop --+
CAT, the extension

given by the assignment D - AD, is a pseudo-functor of 2-categories.
As a consequence, one obtains that f or every internal category equiva-
lence f : D - D’ of C, the functor f * : AD’ --&#x3E; AD is an equivalence of
categories.

3. Effective descent, descent equivalence. Now, let DesA be the
pseudo-functor AoEqB :

The discrete functor p : E -- B can be factored as

where po = p, Pi = pn1 = pn2, 50 = 1E, 61 = e = 1E, IE &#x3E;, with

(TTi, 7T2) the kernel pair of p. Applying A to the last diagram, one has a
commutative diagram (up to natural isomorphism) in CAT:
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p is called an A-descent morphism (effective A-descent morphism) if the
comparison functor OP is full and faithful (an equivalence of categories).
p is called an absolute (effective) descent morphisms if it is an (effective)
A-descent morphism for every C-indexed category A.

For a nlorphism q : (E, p) --&#x3E; (X, p) in C/B, the authors of [9]
considered the following diagram in cat(C):

, and where (n1, n2) is the

kernel pair of p.
Applying A to diagram (1), one obtains the following commutative

diagram (up to natural isomorphisms) in CAT:

where and
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Definition. Let q : (E, p) --&#x3E; (X, cp) be a morphism in C/B. We call
q an A-descent equivalence (A-descent pre-equivalence) if DesA(q) is
an equivalence of categories (full and faithful). We call q an absolute

descent equivalence (absolute descent pre-equivalence) if DesA (q) is an
equivalence of categories (full and faithful) for every C-indexed category
A.

4. Properties of descent equivalences. Functoriality of DesA( )
leads immediately to a number of consequences.

Proposition 1. The morphism p : (E, p) --&#x3E; (B, 1B) in C/B is an
A-descent pre-equivalence (A-descent equivalence if and only if p is an
A-descent (effective A-descent) morphism.

Proof. Applying Eq to the following commutative diagram:

we obtain the commutative diagram:

Clearly, with the notation of the previous section, 1B = 1Eq(1B), p = p.
Hence, p* is an equivalence of categories if and only if p* is an equivalence
of categories, as desired. 0

One also easily obtains:

Proposition 2. Let q : (E, p) --&#x3E; (X, W), r : (X, p) ---&#x3E; (Y, E) be mor-

phisms in C/B.
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(1) If two of q, r, and rq are A-descent equivalences, so is the third

one.

(2) If r is an A-descent equivalence, then q is an A-descent pre-equivalence
if and only if rq is an. A-descent pre-equivalence.

D

It is also easy to show that A-descent (pre-)equivalences have the
intended invariance property:

Proposition 3. Let q : (E, p) --&#x3E; (X, p) be an A-descent pre-equivalence
(A-descent equivalence) in C/B. Then p is an A-descent (effective A-
descent) morphism if and only if p is an A-descent (effective A-descent)
morphism.
Proof. By Diagram (2), DesA(q) Qp = Qp (up to natural isomorphism).
If q is an A-descent equivalence, then DesA (q) is an equivalence of cate-
gories. Therefore, cpc,o is an equivalence of categories if and only if Qp is
an equivalence of categories. Hence p is an effective A-descent morphism
if and only if p is an effective A-descent morphism.

Suppose now that q is an A-descent pre-equivalence. Then DesA(q)
is full and faithful. If p is A-descent pre-quivalence morphism, then
4)P = DesA(q)Qp (up to isomorphism) is full and faithful. Hence p is an
A-descent morphism. On the other hand, if p is A-descent morphism,
then DesA(q)Qp = Qp (up to isomorphism) is full and faithful, and so is
cpc,o. o

5. A necessary and sufficient condition for absolute descent

equivalences. In any category, the absolutely effective descent mor-
phisms are precisely the split epimorphisms [5]. A characterization of
the absolute descent equivalences is given by the following:

Theorem 1. Let q : (E, p) --&#x3E; (X, cp) be a morphisms in C/B. Then q
is an absolute descent equivalence if and only if there is any morphism
s : (X, p) --&#x3E; (E, p) in CIB.
Proof. 4===: By hypothesis, we have p = cpq and ps = cp. So there
exist two internal functors
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We claim that sq = 1Eq(p) and qs = 1Eq(p). In order to prove this

it suffices to construct natural transformations between the respective
pairs of functors since all natural transformations between internal func-
tors whose codomain is a groupoid are natural isomorphisms. To this
end we define a: sq --&#x3E; 1Eq(p) by a = 1 E , sq &#x3E; : E --&#x3E; E X B E in C. It

is easy to check that

and

Hence a is an internal natural transformation.

Similarly one shows that (3 : 1Eq(p) -j qs, given by B = qs, Ix &#x3E;:

X --&#x3E; X xBX, is an internal natural transformation. Therefore, DesA (q)
is an equivalence of categories.

: We show more precisely:

(1) If ÐesA(q) is essentially surjective on objects for every C-indexed
category A, then there is a morphisms s : X ---t E in C with

psq = p;

(2) If, furthermore, DesA(q) is full and faithfv,l for every A, then s of
(1) yields a rrzorPjaism s : (X, ’P) --&#x3E; (E, p) in C/B.

(1) Consider the C-indexed category Ap of Theorem 3.5 [5]:

where A’ = C(A, E) carries an equivalence relation given by
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making it a category (in fact, a groupoid), and where t* : C(B, E*) --&#x3E;
C(A, E) is the composition functor with t. Since

the object lE of AP has a descent structure fl : n2*(1E) --&#x3E; n1*(1E), where
(n1, n2) is the kernel pair of p. Hence, by diagram (2) and the proof of
Theorem 2.5 [5],

But DesAp(q) is essentially surjective, so there is (s, p) E DesAp(X, cp)
such that DesAp(q)(s,u) = (1E,E), and therefore VpDesAp(q)(s,u) =

That is But 4)q is just a

lifting of q*,

Hence q*s - 1 E in AEp, and therefore psq = p.
(2) In order to prove that ps = cp, again, we consider the C-indexed

category B : Cop --&#x3E; CAT of Theorem 3.5 of [5] with BA = C(A, B)
considered a discrete category, for every A E C, and with t* the com-
position functor with t, for every t : A - B in C. It is easy to check
that (ps, 1) and (p, 1) are objects of DesB (X, p) and that

by the fact that psq = p. Since DesB(q) is full and faithful, (ps, 1) is

isomorphic to (cp, 1), which yields ps = p. 0

From Theorem 1 one obtains:

Corollary 1. Let q : E ---&#x3E; X and cp : X --&#x3E; B be two morphisrras of
C. Then q : (E, cpq) --&#x3E; (X, cp) is an absolute descent equivalence if and
only if there is a morphism s : X - E in C such that cpqs = cp

Corollary 2. Let q : (E, p) --&#x3E; (X, p) be a morphism in CIB. Then q
is an absolute descent equivalence if either q is a split epimorphism in
C or q is a split monomorphism in C/B.
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Remark. Corollary 1 implies in particular that split epimorphisms
are the absolutely effective descent morphisms (see Thm. 3.5 of [5]).
In fact, if p : E --&#x3E; B has a splitting s with ps = 1B, then we may
apply Corollary 1 to p : (E, p) --&#x3E; (B, 1B), so that with 1B also p is an
absolute effective descent morphisms (i.e., effective descent w.r.t. every
C-indexed category A), by Proposition 3.

6. Descent equivalences whose domain or codomain is effective
descent. With the help of Corollary 2, Proposition 3 can be refined,
as follows. Given any morphism q : (E, p) --&#x3E; (X, cp) in C/B, we form
the pullback diagram

in which 7r, is a split epimorphism. Hence 7Tl : (E x B X, pn1) --&#x3E; (E, p)
is an absolute descent equivalence, by Corollary 2.

Theorem 2. The following conditions are equivalent:

(i) p is an effective A-descent morphisms and 1f2 : (E xB X, p7ri) --&#x3E;

(X, cp) is an A-descent equivalence,

(ii) cp is an effective A-descent morphisms, and q : (E, p) --&#x3E; (X, p) is

an A-descent equivalence.

Proof. (i) (ii): By Prop.l, p : (E, p) --&#x3E; (B, 1B) is an A-descent

equivalence. Since 7f1 is an A-descent equivalence, also p7Tl = pn2 :
(E xB X, pn1) --&#x3E; (B,lB) is an A-descent equivalence, and so is cp :
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(X, p) - (B, 1B), by Prop.2 and the hypothesis on n2. Then, another
application of Propositions 1 and 2 gives (ii).

(ii)===?(i): By Prop.3, p is an effective A-descent morphism. As before
then, p7rl = pn2 is an A-descent equivalence, and so are q (by hypoth-
esis), p, cp, and then n2, by repeated application of Propositions 1 and
2. a

Remark. We note that in (i) it is enough to assume that ÐesA(1f2)
be full and faithful, rather than an equivalence of categories. Indeed,
since n1 is an A-descent equivalence, also pn1 = ’P7r2 is an A-descent

equivalence when p is an effective A-descent morphism, which implies
DeSA(7r2) is essentially surjective on objects.

If A is the basic fibration, Theorem 2 may be simplified, as follows:

Corollary 3. For any morphism q : (E, p) --&#x3E; (X, p) in C/B, p is

an effective descent morphism if and only if ’P is an effective descent
rnorphism and q : (E, p) --&#x3E; (X, cp) is a descent equivalence.
Proof. Using pullback-stability of effective descent morphisms (see
[10]) and the composition-cancellation rule of [9], for "only if one can
argue as in (i) (ii) of Theorem 3. Likewise for "if’. D
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