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AXIOMS FOR CONVENIENT CALCULUS
by Alfred FRÖLICHER

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CA TEGORIQ UES

Volume XLV-4 (2004)

Dedicated to Dieter Pumplün at the occasion of his 70th birthday and in memory
of his active role in the foundations and early developments of convenient calculus

Résumé.
Afin de g6n6raliser et am6liorer le calcul differentiel classique, on a
essay6 de remplacer les normes par d’ autres structures (localement
convexes; bomologiques; de convergeance; etc). On peut éviter un
choix arbitraire. Soit F est une classe d’ espaces vectoriels structures
quelconque et supposons qu’on a pour tout E, F E IF un ensemble
S(E, F) d’applications dites "lisses". Si les S(E, F) satisfont trois
axiomes (qui sont valables si r est la classe des espaces de Ba-
nach avec les C°° (E, F)), alors tout E E T poss6de une unique
structure d’espace vectoriel convenable telle que les applications
"lisses" sont les applications lisses au sens du calcul convenable
[7]. Donc (T, S) est une catgorie équivalente à une souscat6gorie
pleine de Con°°, la cat6gorie des espaces convenables avec leurs
applications lisses. R6ciproquement, toute souscategon*e pleine de
Con’ qui contient l’objet R satisfait les 3 axiomes. Dans les sec-
tions 8 a 13 on trouve des remarques sur le calcul convenable.

Introduction.
Convenient calculus generalizes Banach space calculus and has several

useful advantages. An obvious default of Banach space calculus is the fact
that many of the involved function spaces belong to a larger class: C°° (R, R)
e.g. is a Frechet but not a Banach space. This is a serious deficiency since
function spaces play an important role in modem mathematics. A good cal-
culus should introduce, for 0  k  oo, "maps of class Vk " from E to F
which are k-times differentiable, and such that they form a function space
Vk (E, F) belonging again to the class of spaces one started with.
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For a long time the choice of the "appropriate spaces" was rather ambigu-
ous and hence was influenced by personal preferences. Various ambiant cat-
egories have been tried; we just mention locally convex spaces, convergence
spaces, bomological spaces, compactly generated spaces, smooth spaces.

Our axiomatic approach avoids such an arbitrary choice. We suppose that
we have any class F of structured real vector spaces, and for all E, F E r a
set S(E, F) of maps E --&#x3E; F, called "smooth" maps. For these function
spaces three simple axioms are imposed. They imply that (r, S) is a cate-
gory. Examples satisfying the axioms are: (1) f the class of Banach spaces
and S(E, F) - Coo(E, F); (2) the category Con’ having the convenient
vector spaces as objects and the infinitely differentiable maps as morphisms,
cf. [7]; (3) any full subcategory of Con°° which contains R. The main result
is: Every model of our axiom system is equivalent (as category) to a full
subcategory of Con°° containing R.

For those not familiar with convenient calculus we recall some of its

main features.

(A) The structure of a convenient vector space includes no irrelevant in-
formation ; it provides exactly what is needed for calculus.

(B) The convenient vector spaces with their linear morphisms (cf. 5.3)
form a complete, cocomplete and symmetric monoidal closed category Con.

(C) For 0  k  oo one has function spaces Dk (E, F) formed by the
k-times differentiable maps E - F with some regularity condition on the
last derivative. All these spaces are again convenient. More generally one
gets convenient function spaces 1)k(X, F) for rather general spaces X .

(D) Whether a map f : E - F is of class Dk can be tested by composing
with smooth curves JR -t E and linear smooth functions I : F --&#x3E; R; so the

question of Vk -ness of f becomes reduced to the case of functions R - R.

(E) The category Con’ is cartesian closed.

(F) Convenient calculus involves more hard analysis than classical cal-
culus. But it is worth the effort; one obtains a very powerful tool. For elegant
applications cf. [9].

The axiomatic part of the paper ends with section 7. The following sec-
tions bring various remarks and comments. Section 8 deals with the Uniform
Boundedness Principle which has fundamental consequences for convenient
calculus. As its name indicates, the Uniform Boundedness Principle is actu-
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ally a bomological result. We refer to a bomological version which is very
appropriate for beeing applied to convenient calculus since both work with
bomologies.

The bomologies which are actually used are "linearly generated". Since
this notion is probably not generally known, we give in section 9 various
conditions for a vector space bornology to be linearly generated.

In classical analysis the notions of "continuously differentiable" and of
"Ck -map" are so important that it is difficult to convince the reader that

"Lipschitz-differentiable" and "Lipk-map" are more important. We give in
section 10 several arguments.

The category of convenient vector spaces embeds in many ambiant cate-

gories, in particular into that of bomological vector spaces, of dualized vec-
tor spaces, of convergence vector spaces, of smooth vector spaces, of locally
convex spaces. Each such embedding yields a different axiomatic definition
of the "same" convenient vector spaces (just as one gets the "same" topologi-
cal spaces if one uses "open sets" or "neighborhoods" for defining them). By
far the best known of the mentionned ambiant categories is the last named.
It is therefore a great merit of A.Kriegl and P.Michor to have chosen it for
their outstanding monograph [9]. By using locally convex spaces and by giv-
ing numerous interesting examples they convinced a much larger public that
convenient calculus is useful. But unfortunately the locally convex topology
behaves very badly. We show in section 11 why the best behaved ambiant
objects are the much less popular bomological vector spaces.

In order to calculate limits and colimits in the category of convenient
vector spaces (they all exist), it is good to know the left adjoint retraction
functor to the inclusion into the bomological vector spaces. Section 12 gives
an explicite description.

The last section gives two simple examples: a (convex) bomological vec-
tor space which is not linearly generated; and a dualized vector space which
is not bomologically generated.

It is a great pleasure for me to express my gratitude to my colleague
and friend CLAUDE-ALAIN FAURE. He read carefully the manuscript and
made very valuable suggestions which considerably improved the paper.
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1. The axiomatic approach.

We suppose given: a class r of structured real vector spaces; and for all
E, F E r a set S(E, F) of maps f : E --&#x3E; F, called smooth maps.

1.1 Notation. 1° For a vector space E, the algebraic dual is noted E*;
2° For E E r, we put E’ := S(E, R) n E*.

We consider for the function spaces S(E, F), where E, F E r, the fol-
lowing axioms.

1.2 Axioms for smooth maps.

1.3 Remark. One has 1

2. Consequences of the axioms (Si) and (S2),
2.1 Lemma. (Let E E r, c : R --&#x3E; E a curve, f : E --&#x3E; R a function.

Then one has:

Proof. 1° By axiom (S2) one has: c E S(R, E) iff 1 o c o cp E
C°°(R, R) for all l E E’ and all cp E S(R, R). Using axiom (S1) this
simplifies to the stated condition.

2° Similarly (S2) implies: f is smooth iff 1 o f o c E C°°(R, R) for all
I E R’ and all c E S(R, E). Since 1 E R’ is just multiplication by a constant,
cf. 1.3, this condition simplifies to the one given above. 0

2.2 Proposition. Let E,F E F and f : E --&#x3E; F. Then each of the
following conditions is equivalent with f E S(E, F):

for all l E F’ and
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Proof. (1 ==&#x3E; 2). Let c E S(R, E). One has to show that f*(c) =
f o c E S(R, F). This is by 1° of 2.1 equivalent with hypothesis (1).

(2 ==&#x3E; 3). Let g E S(F, R). Using 2° of 2.1 and (2) one has for all
c E S(R, E):
( f * o g) o c = g o ( f o c) E C°°(R, R) and hence f*(g) E S(E, R).

(3 4). This is trivial since F’ C S(F, R) by definition 1.1.

(4 =&#x3E; 1). By hypothesis (4) one has o f E S(E, R) for all l E F’. By
2° of 2.1 this implies 1 o f o c E COO(JR, R), as to be shown. D

2.3 Corollary. 1 ° r together with the smooth maps is a category.
20 S is completely determined if one knows E’ := S(E, R) n E* for all
EEr.

2.4 Lemma. S(E, F) is a vector space (for the natural operations).
Proof. Let f, 9 E S(E, F). Then f + g E S(E, F) follows from

(82) since C°°(R, R) is closed under addition. Similarly one shows that
Af E S(E, F). 0

2.5 Corollary. E’ is a vector subspace of E* for every E E r. This

means that (E, E’) is a so-called dualized vector space.
These and the associated bomological vector spaces play an important

role for differentiation theory. We give some elementary aspects.

3. Bornological and dualized vector spaces.
3.1 Definition. 1° A dualized vector space is a couple (E, E’)

where E is a vector space (over R) and E’ is a subspace of the algebraic
dual E* of E. Since we consider E’ as a structure on E, we often write
E = (E, E’), just as one uses to write "let G = (G, -) be a group".
2° DVS is the category of dualized vector spaces and has as morphisms
from (E, E’) to (F, F’) the linear maps f : E --&#x3E; F satisfying f * (F’) 9 E’.
30 BVS is the category of bomological vector spaces with the linear bomo-
logical maps (also called "bounded linear maps ") as morphisms.

3.2 Proposition.
1 ° For any dualized vector space E the collection
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is a vector bomology on the vector space E, i. e. ( E, BE) is a bomological
vector space; we denote it by (3E. If f : E1 --&#x3E; E2 is a morphism of DVS,
then B E BEl implies f (B) E BE2- So we get a functor /3 : DVS - BVS
by defining /3(f) :== f.

2° Similarly we get a functor b : BVS --&#x3E; DVS; it associates to a

bomological vector space F = (F,13) the couple (F, F’) where F’ is the
bornological dual:

3° Both functors preserve the underlying vector spaces and the underlying
maps. They form a so-called Galois connection, i.e. the identity maps
bBE --&#x3E; E and F --&#x3E; BbF are morphisms of DVS respectively BVS. It fol-
lows that 8 is left-adjoint to B and that bB8 = 6 and Bd8 = (3.
4° The objects E of DVS satisfying dBE = E form a full subcategory
bg.DVS of DVS. Its objects are called bornologically generated du-
alized vector spaces. In [7] they were called preconvenient vector
spaces. The functor dB gives a retraction and is right-adjoint to the in-
clusion bg.DVS --&#x3E; DVS.

5° Similarly, the objects F of BVS satisfying BbF = F, called linearly
generated bomological vector spaces, form a full subcategory denoted by
lg.BVS. The functor Bd yields a retraction and is left-adjoint to the inclusion.
6° The categories bg.DVS and 19.BV S are isomorphic: The functor (3 re-
stricts to an isomorphism bg.DVS --&#x3E; Ig.BVS. The inverse is obtained by
restriction of 8.

Proof. All verifications are straightforward. D

4. Difference quotients and smooth curves.

4.1 Definition. Let c : R ---&#x3E; E be a curve of a vector space E. If
to, ... , tk are k + 1 different reals, then 8kc(t0,..., tk) := Ei (3i . c(ti)
where p2 := k! . IIj#i(ti - tj)-l. If A C R we denote by Ak&#x3E; the set
{(a0,..., ak) / ai E A and ai # aj for i # j }.

We will consider this for k E N0 := N U 101 and remark that 60c = c
and A0&#x3E; = A.

The set Rk&#x3E; will be considered with the bomology having as bounded
sets those contained in Ink&#x3E; for some n E N where In := [ -n, n].
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4.2 Proposition. For a function f : R ---&#x3E; R one has:

f E C°°(R, R) ==&#x3E; 8k f : Rk&#x3E; - R is bornological for all E N.

Proofs can be found in some books on elementary calculus or in [7].

In order to apply this to vector spaces E E r we recall that associated to
E one has the dualized vector space DE := (E, E’) where E’ := S(E, R) n
E*; cf. 1.1. And to DE corresponds the bomological vector space BE : :=
(3DE = (E, BE) where BE := {B C E / L(B) is bounded for all l E E’};
cf. 1° of 3.2.

4.3 Proposition. Suppose E E r and let c : R --&#x3E; E be a curve. Then

c is smooth =&#x3E; 6kC : R kl - BE is bornological for all k E N0.

Proof. By 1° of 2.1 c is smooth iff l o c E C°°(R, R) for all l e E’,
and by 4.2 this holds iff 8k(l o c)(Ak&#x3E;) is bounded (in R) for all k E N0
and all bounded A C R. The linearity of 1 implies 8k (l o c)(Ak&#x3E;) =
l(8kc(Ak&#x3E;)) and so the condition is equivalent with 8kc(Ak&#x3E;) bounded for
all bounded A C R and hence also with 8kc : Rk&#x3E; --&#x3E; E beeing bomologi-
cal. D

5. Smoothness of linear maps.

5.1 Proposition. Let E E F and f E E*. Then
f is bomological =&#x3E; f is smooth.

Proof. ==&#x3E; Suppose f is not smooth. Then by 2° of 2.1 there exists
c E S(R, E) such that l o c E C°°(R, R). Hence there exist k E No and
A C R bounded, with (8k(J o c))(Ak&#x3E;) unbounded in R. By linearity of f
this equals f(8kc(Ak&#x3E;)), and since by 4.3 the set (bkc)(Ak&#x3E;) is bounded
one concludes that f is not bomological.
« Trivially f E E’ and hence f is bomological by the definition of BE. D

5.2 Corollary. For E C r the associated dualized vector space DE =

(E, E’) is bomologically generated. Hence DE and the associated bomo-
logical vector space BE determine each other: one has BE = ODE and
DE = 6BE; cf. 3.2.

5.3 Proposition. Let E, F E T and f : E - F a linear map. Then
the following conditions are equivalent: 
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(1) f is srnooth;

(2) f*(F’) C E’, i.e. f is a morphism of DVS;
(3) f is bomological, i.e. f is a morphism of BVS.
Proof.

(1 =&#x3E; 2) f is smooth iff f*(F’) C S(E, R) iff f*(F’) C E’; cf. 2.2.

(2 =&#x3E; 3) One applies the functor 13 and uses that /3/ = f .
(3 2) One applies the functor b and uses that 6f = f . D

5.4 Proposition. 1 ° If one knows for E, F E 11’ the associated dual-
ized vector spaces DE, DF (or equivalently the duals E’, F’), then one can
recover the set S(E, F).

2° The same holds if one knows the associated bomological vector spa-
ces BE, BF (or equivalently the bomologies BE, BF).

Proof. 1° From E’ (resp. F’)one recovers the smooth curves R --&#x3E; E
(resp. R --&#x3E; F) by 1° of 2.1. Now one applies (2) od 2.2.

2° From the bomological vector space (E, BE) one recovers (E, E’);
in fact, by definition one has (E, BE) = B(E, E’). Hence b(E, BE)
bB(E, E’) = (E, E’); cf. 5.2. D

6. The role of axiom (S3). 
This axiom holds iff the associated bornological vector spaces BE satisfy

a completeness and a separation condition. One can express these conditions
also in terms of the associated dualized vector spaces DE, but for the com-

pleteness property it becomes more complicated.

6.1 Theorem. Axiom (S3) holds for E iff the associated bomological
vector space (E, BE) is separated and Mackey complete.

For a proof we refer to 2.5.2 and 2.6.2 in [7]. There it is shown that the
different notions of a separated as well as those of a complete bornological
vector space E coincide if E is linearly generated, and that

(a) Vc E s(IfB, E) 3v E E such that (l o c) (0) = l(v) Vi E E’ iff the

bomology is Mackey complete.
(b) The vector v in (a) is unique iff the bomology is separated.

6.2 Definition.Let E be a linearly generated bomological space.
1° E is separated if its bomological dual E’ separates points of E.
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2° E is called Mackey complete if every Mackey-Cauchy sequence
is Mackey convergent.

3° A sequence Xl, x2, ... is Mackey convergent to x E E if one
can write it as xn - x + in . bn with reals tn that converge to zero and

{ b1, b2, ...} C E bounded.
4° A sequence Xl, x2, ... is Mackey-Cauchy if one can write:

Xn - Xm = tn,m . bn,m with reals tn,m such that tn,m --&#x3E; 0 for n, m --&#x3E; 00 and
{bn,m / rt, m E N} C E bounded.

7. Models by means of convenient vector spaces.
We saw in 5.3 that if (F, S) satisfies the axioms 1.2, then every E E

IF becomes a bomologically generated dualized vector space (E, E’) and
a linearly generated bomological vector space (E, BE) which is separated
and Mackey complete. E’ and BE determine each other (like open sets and
neighborhoods of a topological space). Either one can be used in order to
describe these objects. In [7], E’ was used. We now give priority to the
bomologies since Mackey complete is a bomological condition. For a more
important argument in favour of bomologies, cf. section 11.

7.1 Definition. A convenient vector space is a bomological vector
space which is linearly generated, separated and Mackey complete.

7.2 Theorem.
1° T’he axioms 1.2 hold for the category Con’ (cf. Introduction).
2° They also hold for each full subcategory of Con 00 which contains R.
3 ° Every model for the axioms 1.2 is equivalent to a full subcategory of

Con 00 containing R.
Proof. 10. We remark that with its usual bomology R becomes a

convenient vector space. From this (Si) follows easily. For (S2) and (S3)
we refer to [7].

2°. This is trivial.

3°. Suppose that (r, S) satisfies the axioms. We saw in 2.3 that (f, S)
is a category. Every object E E f has a natural structure of convenient
vector space. We denote this convenient vector space by Q(E) and the full
subcategory of Con’ containing all the objects Q(E) for E E IF by A.
Remark that E and Q(E) have the same underlying vector space. We first
consider on E E r a linear function 1 : E - R. By 5.1 1 is smooth iff 1
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is bornological. And according to convenient calculus (cf. 2.4.4 in [7]) one
has: I is infinitely differentiable iff I is bomological. Together this gives:
i E 5(£’, lR) =&#x3E; I E Con°° (E, R) = A(E, R). Since by 2° of 2.3 all

morphisms are determined by the linear ones E --&#x3E; R we conclude that

S(E, F) = ConOO(E, F). So we can define Q(f) = f for f E S(E, F) and
this gives a functor Q :-.(f, S) --&#x3E; A which is full, faithful and surjective on
the objects, hence an equivalence of categories. D

7.3 Remark. The theorem shows that Con’ is a maximal modelfor our
axiom system: one takes as F all convenient vector spaces and as "smooth"

maps the infinitely differentiable ones, cf. [7J.

8. Bornological function spaces
The Uniform Boundedness Principle is fundamental for convenient cal-

culus. As its name indicates, it actually should be formulated and proved in
the frame of bomological spaces instead of locally convex spaces. We give
a short survey and refer to [5] for details and the proofs of 8.2 to 8.4. Let
X, Y be bomological spaces and A4 a function space consisting of (certain)
bomological maps X --&#x3E; Y. On A4 one can consider two bomologies:

8.1 Definition. 1 ° The canonical bornology has as bounded sets the
B C A4 which satisfy B (A) bounded in Y for all A bounded in X.

2° The pointwise bornology has as bounded sets the B C A4 which
satisfy B (a) bounded in Y for all a E X .

If E, F are bomological vector spaces, the set of linear bomological
maps E --&#x3E; F with the canonical bornology is noted L(E, F). As special
case we have E’ := L(E, R)

8.2 Theorem. Let E, F, G be bornological vector spaces and suppose
that F is linearly generated. The following conditions are equivalent:

(1) On E’ the pointwise and the canonical bonlology coincide;
(2) On L(E, F) the pointwise and the canonical bomology coincide;
(3) A linear map u : E --&#x3E; L(G, F) is bornological iff ev x o u is so;
(4) A bilinear map b : E x G - F is bomological iff it is partially

boniological.



277

If these conditions hold for E one also says: the Uniform Boundedness

Principle holds for E.

8.3 Theorem. For every Mackey complete convex bomological vector
space E the Uniform Boundedness Principle holds.

One furthermore has to know that the properties linearly generated and
Mackey complete go over from F to L(E, F).

8.4 Proposition. Let E, F be bornological vector spaces and F lin-
early generated.

1° The bomology of L(E, F) is also linearly generated;
2° If F is Mackey complete, the same follows for L(E, F).
Proofs can be found in [5] or [7].

8.5 Corollary.
1° A map f : Z --&#x3E; L(E, F) from a bornological space Z into the

function space L(E, F) is bomological iff evx o f is bomological for all
x E E.

20 A curve c : R --&#x3E; L(E, F) is smooth iff ev x o f is smooth for all x E E.
3° A map f : G - L(E; F) is smooth iff evx o f is smooth for all x E E.

Proof. 1° is a direct consequence of the Uniform Boundedness Prin-

ciple.
2° follows from 1° since by 4.3 c is smooth iff 6kC is bomological for all k.
3° follows from 2° since smoothness can be tested by smooth curves; cf. 2°
of 2.1.

9. Other aspects of the linearly generated bornologies.
The bomology of a convenient vector space is linearly generated and

this implies that it is a convex vector bomology (the convex hull of every
bounded set is bounded). Example 13.2 will show that the converse fails.
For a better insight of the notion linearly generated, it will be helpful to
know some equivalent characterizations.

9.1 Proposition. Let E = (E, B) be a bomological vector space. The
following conditions are equivalent:
(1) The bomology is linearly generated, i.e. BbE = E;



278

(2) there exists a family G of linear functions l : E - R such that for
B C E one has: B E B =&#x3E; l(B) is bounded Vl E G;
(3) The canonical map j : E - E" is an embedding, i.e. B bounded iff jB
bounded;

(4) There exists a family P of seminorms p : E --&#x3E; R+ such that for B C E
one has: B E B « p(B) is bounded Vp E P;
(5) B is the von Neumann bomology of some locally convex topology T.

Proof. (1 =&#x3E; 2) is trivial.
(2 =&#x3E; 3) The canonical injection j : E - E" is defined by (ja) (1) = l (a)

for a E E and l E E’ . Since E’ = L(E, R) is Mackey complete, one knows
(by the Uniform Boundedness Principle for bomological vector spaces, cf.
section 8), that a subset W C E" is bounded on all bounded subsets of E’
iff it is pointwise bounded. Using this for W := j (A) one gets
(j A) (B) bounded for all bounded B C E’ iff l (A) bounded for all E E’.

The bomology being by hypothesis (2) linearly generated, the right hand
side says that A C E bounded. The left hand side says, by the definition of
the bomology of E", that jA C E" is bounded.

(3 =&#x3E; 4) The space E’ := L(E, R) is a Mackey complete convex bomo-
logical space. Hence by the Uniform Boundedness Principle the canonical
and the pointwise bornology of E’ coincide. So we obtain: A C E bounded
iff j A C E" bounded iff (jA)(B) C R bounded for all B C E’ bounded
iff (jA)(L) = l (A) 9 R bounded for all l E E’. So we can take as semi-
norms {|l|/l E E’}.

(4 =&#x3E; 5) One considers the locally convex topology determined in the
usual way by the family of seminorms. One verifies easily that the subsets
bounded in the sense of von Neumann are exactly those B C E which satisfy
p(B) bounded for all p E P.

(5 =&#x3E; 1) It is a well-known classical result that for any locally convex
space the bounded subsets B are exactly those for which l(B) is bounded
for every 1 E G where G is the set of linear continuous functions; cf. [5] for
a short simple proof. So one has E = (3 D where D is the dualized vector
space D := (E, .c). This implies (38E = E; cf. 3.2. 0
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10. Lipschitz- versus continuous differentiability.
In classical calculus the functions f : E - F which are just differen-

tiable (e.g. in the sense of Gateaux or Frechet) do not form useful function
spaces. Much better are the spaces Ck (E, F) based on the notion of con-
tinuous differentiability. Also in convenient calculus it is good to impose
a regularity condition on the derivative and one might think of a continuity
condition. There are several topologies available. In particular: the usual

locally convex one corresponding to the bomology (cf. [7]), the weak topol-
ogy, the Mackey closure topology. But one would loose the testing property,
cf. 2° of 10.6. In fact, in the finite dimensional case all these topologies co-
incide with the standard one. But there exist simple examples of a function
f : JR2 -t R such that for every C°°-curve c : R - JR2 (even for every
C1-curve) the composite f o c : R --&#x3E; R is a C1-function, but ,f is not C1; cf.
[1].

An important regularity condition for which the testing property holds is
as follows.

10.1 Definition. A map f : E - F is called a Lip°-map if for every
smooth curve c : 1R. -7 E and every function I E F’ the composite l o f o c :
R - R is locally Lipschitzian.

10.2 Definition.

A map f : E - F is called Lipschitz- differentiable if
7. For all (x, v) E E nE, df (x, v) 1. f (x+tv)- f (x) exists.
2. The so defined map df : E nE - F is a Lip°-map.

By w-lim we understand "limit with respect to the weak topology". So
the first of the two conditions means that the curve cx,v : R --&#x3E; F, defined by
t --&#x3E; f (x + tv) has at t = 0 a tangent vector, noted df (x, v); cf. 1.2, (S3).

10.3 Lemma. Suppose f : E --&#x3E; F is Lipschitz-differentiable. Then for
any points x, v, w E E

exists and is equal to df (x, v). M-lim stands for Mackey limit.
For a proof, cf. 4.3.12 in [7].

10.4 Corollary. If f : E - F is Lipschitz-differentiable, then df is
linear in the second variable.
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Proof. df (x, t - v) - t - df (x. 1)) follows trivially. For the additivity
one uses

By the lemma this gives df (x, v) + df (x, w). D

10.5 Proposition. If f : E - F is Lipschitz differentiable, then
f’(x) :== df (x, -) E L(E, F) and the map f’ : E - L(E, F) is Lip 0
The converse is trivial.

Proof. (a) We just saw that df (x, -) is linear. Furthermore, it is LipO.
But for a linear map this is equivalent with bomological; cf. 2.4.4 in [7]. This
proves that f’(x) := df (x, -) E L(E, F).

(b) A map g : G - L(E, F) is Lipo iff evx o g is Lip° for all x E E.
The proof of this is like that of 3° in 8.5. For 9 = f’ one has (evx o f’)(v) ==
df (x, v), i.e. evx o f’ = df (x, -) and this is Lipo. 0

10.6 Summary. Lipschitz- differentiability has the following use-
ful properties wlzich fail for continuous differentiability.

10 Imposing the condition Lipo on df or on f’ is equivalent.
20 The testing property holds: A map g : E ---&#x3E; F is Lipschitz differen-

tiable iff f := l o g o c : R --&#x3E; R is Lipschitz-differentiable for all smooth
curves c : R --&#x3E; E and all 1 E F’. For f : R ---&#x3E; R one has a simple
criterion by means of difference quotients: 8i f must be bomological for
0  i  2. Equivalent is: f must be differentiable and its derivative f
locally Lipschitzian.
More generally one can recursively define maps g of class Lipk as follows:
Lipl is the same as Lipschitz differentiable. And g is of class Lipk+1 if it
is of class Lipl and g’ (or equivalently dg) is of class Lip k . For all these

function spaces the testing property holds. Moreover, they all have a natural
structure of convenient vector space. Let us remark that, more generally, one
obtains convenient function spaces Lipk(X, F) if one replaces E by a set X
endowed with a so-called ’Lipk_structure". In particular, X may be a subset
of E or a differential Lipk-manifold modelled on convenient vector spaces.

10.7 Remark. One might say that 01 is more important since it is
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an essential hypothesis for the inverse function theorem of classical Banach
space calculus. However, the standard proof establishes in fact two results:

1 ° If f : E --&#x3E; F is continuously differentiable in a neighborhood of a
point p E E, then f is strictly differentiable at the point p;

2° If f is strictly differentiable at a point p E E and if the derivative f’ (p)
is an isomorphism E --&#x3E; F, then the standard conclusion on local bijectivity
of f holds, and f-1 is strictly differentiable at the point q := f (p), with
(f-1)’(q) = (f’(p))-1.

We recall that f is called strictly differentiable at a point p if there exists
l E L(E, F) such that the remainder function r(x) := f (p+x) - f (p) - l(x)
satisfies

Obviously 1° and 2° together prove the inverse function theorem. The proof
of 1° is based on the mean value theorem which estimates for a curve c :

[a, bJ --&#x3E; E of a of a Banach space E the increment c(b) - c(a) in terms of
the values c (t) for t E [a, b]; see e.g. [2], (8.5.1), p. 153. The result 2° fol-
lows from the fixed point theorem.. This shows that for the inverse function
theorem strict differentiability is the adequate hypothesis. Continuous differ-
entiability only plays a role since 1° is a useful lemma. The essential result
is 2°. Furthermore, Lipschitz-differentiability implies strict differentiability.

Finally we remark that using a Lipschitz-type condition is a special case
of using a general H61der condition; cf. [3] and [4].

11. The most convenient description of Con.

Besides the two possible descriptions of convenient vector spaces con-
sidered in section 7 there exist many more.

For the category Con embeddings into various categories of structured
vector spaces are described in [7]. Those which allow an efficient access to
differentiation should be prefered. This is the case if one uses bomological
or dualized vector spaces: the smooth curves (analogous results hold for
Lipk-curves) can be described easily; cf. 4.3, resp. 2.1, 1°.

In section 6 we saw that in order to be suitable for differentiation theory
the spaces must have a certain completeness property, namely Mackey com-
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pleteness. This property is of bomological nature and thus bomologies seem
to be the most natural structures for general calculus.

There is still another reason in favour of bomologies. The category Con
is complete and cocomplete, i.e. all categorical limits and colimits exist. But
a simple, efficient way for calculating them is desirable. There is one if one
uses an ambiant category Z in which all limits and colimits are known, and
which contains Con as reflective (coreflective) subcategory, i.e. such that

the inclusion functor Con --&#x3E; Z admits a left (right) adjoint retraction. It

is well known that then any limit (colimit) in Con coincides with the limit
(colimit) taken in i, and colimits (limits) in Con are obtained by applying
the retraction functor to the colimit (limit) formed in Z.

We first consider the category BVS of bomological vector spaces as am-
biant category. In BVS limits (colimits) are easy to describe: one forms
them in the category of vector spaces and endows these with the initial (fi-
nal) vector bomology; cf. [8], 2:6.

LFrom BVS one can get to Con in several steps by restricting the objects
successively by the conditions: the bomology has to be linearly generated;
it has to be separated; finally it has to be Mackey complete. So we get the
following inclusion functors:

The nice thing is that all these inclusion functors and hence also their com-
posite admit left adjoint retraction functors. These are: the completion func-
tor and the separation functor (for these one can refer to [7]), and the functor
(3 0 8 (cf. 3.2). For the inclusion functor Con - BVS we give an explicit
description of its left adjoint retracting functor w : BVS --&#x3E; Con in section
12.

By the results on reflective subcategories one now obtains:

11.1 Theorem. The category Con is complete and cocomplete. Lim-

its in Con can be formed in BVS. Colimits are obtained by applying the
functor w to the colimit taken in BVS. In particular, if Ei are convenient
vector spaces, the product of the underlying vector spaces endowed with the
product bornology is a convenient vector space E which (together with the
projections 7ri : E --&#x3E; Ei) is the product in Con of the given objects Ei.
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11.2 Proposition. If F C E is a vector subspace of a convenient vector
space E, then F endowed with the subspace bornology (B C F is bounded
in F iff B is bounded in E) is also convenient.

If one would however choose DVS as ambiant category the inclusion
Con - DVS would decompose into inclusions of reflective and coreflec-
tive subcategories. This would make the construction of limits and colimits
more complicated than with BVS as ambiant category.

12. The left adjoint retraction to Con --&#x3E; BV S.

12.1 Remark. We already saw in section 11 that the inclusion functor

admits a left adjoint retraction functor. We give an explicit description of
such a functor BVS - Con.

12.2 Proposition. A left adjoint retraction w : BYS --&#x3E; Con of the
inclusion functor Con --&#x3E; BVS is obtained as follows.

We first consider the (contravariant) duality functor of BVS. It associates
to an object E of BVS its bomological dual E’, endowed with the canonical
bomology, cf. 8.1; and to a morphism f : E - F it associates the map
f* : E’ --; F’. The square of this functor is the covariant biduality functor
with E - E" and f - f**. The canonical maps jE : E --&#x3E; E" are
morphisms. They form a natural transformation j of the identity functor into
the biduality functor. In fact, one verifies that for any morphism f : E --&#x3E; F

the following diagram commutes:

By T= TE we denote the Mackey closure topology of E ", i.e. the topology
which is final with respect to the Mackey convergent sequences (equiva-
lently : with respect to the smooth curves) of E". Though T is in general
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not a vector space topology (addition is partially continuous), the closure of
a vector subspace is a subspace and we define w ( E) . - j ( E) . Since E " is
linearly generated and separated, the same holds for w(E). In order to show
that w(E) is Mackey complete, let aI, a2, ... be a Mackey-Cauchy sequence
of j (E). Considered in E" it is a Mackey-Cauchy sequence of E ". Since
E" is Mackey complete, the sequence is Mackey convergent in E" to some
a E E ". But Mackey convergence implies 7=convergence. So a E j (E) and
Mackey completeness of wE is proved.

We consider now the functor w on a morphism f : E --&#x3E; F of BVS.

According to the above diagram, the morphism f ** : E" --&#x3E; F" restricts
to a morphism f : jE (E) ---&#x3E; jF (F) . Furthermore, morphisms are continuous
with respect to Mackey closure topology, and this implies that f ** ( jE (E)) C
3F(F). So we can define wf : wE - wF to be the restriction of f**.
Functori ali ty of w is obvious.

We now show that the functor w is a retraction to the inclusion.

Let E be convenient. Then jE(E) is closed and hence wE = jE(E).
Furthermore, jE : E --&#x3E; jE(E) is injective and E is linearly generated. By
9.1 jE : E --&#x3E; E" is an embedding and so one deduces that E - wE is an
isomorphism.

We finally show that the functor w is left adjoint to the inclusion Con --&#x3E;
BVS. This follows since we have a natural transformation from the iden-

tity functor of BVS to the functor w, formed by the maps E - jE(E) -7
jE (E) = w E.

13. Two examples.
As we have seen in section 11, convenient vector spaces can be de-

scribed :

(i) as certain bomologically generated dualized vector spaces E;
(ii) as certain linearly generated (convex) bomological vector spaces.
We give an elementary example showing that the condition "bomologically
generated" in (i) is not automatically satisfied, and an other example showing
that the condition "linearly generated" in (2) is not trivial.

Let F be a Banach space. We associate to F a bomological vector space
as follows: it has the same underlying vector space, and its bounded subsets
are those which are bounded in norm. To the dual Banach space F’ then

corresponds the bomological dual and its bomology is the canonical function
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space bomology. For a Banach space the standard map j : F - F" is
always an injective homomorphism. If j is surjective, F is called reflexive.
One has jF C F" C (F’)* and so one has the following dualized vector
spaces: El := (F’, j F) and E2 := (F’, F"). Let 13i be the bomology of
13Ei. For B C F’ one has: B E B1 iff (ja)(B) = B(a) is bounded (in R)
for all a E F which shows that B1 is the pointwise bomology. Furthermore,
B E B2 iff l(B) is bounded (in R) for all l E (F’)’. It is well known that

for a Banach space the bounded subsets are those which are bounded under

every element of the dual Banach space. Applying this to F’ we get B E B2
iff B C E’ is bounded in norm. Hence 132 is the canonical bomology of E’.
Since E is Mackey complete one has B1 = ti2 by the Uniform Boundedness
Principle. So BE1 = BE2. Now one concludes that bBE1 = dBE2 = E2. If
the Banach space F is non-reflexive we have E1 # E2. So we have:

13.1 Example. If F is a non-reflexive Banach space, then the dual-
ized vector space (F’, jF) is not bomologically generated. The associated
bornologically generated dualized vector space is (F’, F").

The following spaces yield an explicite version for 13.1:

They are Banach spaces and satisfy (co)’ = l1 and (co)" = (l1)’ = too.
One can consider Co and similarly loo as subspaces of (l1)*. So (l1, co) and
(l1, £00) are dualized vector spaces. Since co is strictly included in £00 one
has by 13.1:

13.2 Example. Let F be a Banach space of infinite dimension. Then
the compact bornology is a convex vector bomology on the underlying
vector space of F. But this bomology is not linearly generated.

We recall that the compact bomology associated to a topology has as
bounded sets all subsets of compact sets. We leave the verification of the

properties stated in 13.2 as exercise. But one can also combine the following
results. The bomology is a convex vector bomology, cf. [8] 1.3, Example
(3). Let E be the so obtained convex bomological space. It remains to

show: BdE # E. Let v : LCS --&#x3E; CBS be the functor which associates to a
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locally convex space the underlying vector space endowed with the so-called
von Neumann bomology and CB,,5 ---+ LCS its left-adjoint; and, finally
J-l : DVS - LCS the functor which associates to a dualized vector space

(E, E’) the space E structured by the Mackey topology. By [8], exercise
4.E.3, E is non-bomological in the sense of Hogbe, i.e. 1/"Y E =1= E. One has
qE = 4JE and 1/J-lE = ¡3E, cf. (iii) and (iv) of 2.1.21 in [7]. So we obtain
BbE = vubE = 1/"Y E =1= E.

References 

[1] Boman, J.: Differentiability of a function and of its compositions with
functions of one variable, Math. Scand. 20 (1967), 249-268.

[2] Dieudonné, J.: Foundations of Modem Analysis, Academic Press,
New York and London, 1960.

[3] Faure, C.-A.: Sur un théorème de Boman, C. R. Acad. Sci.
Paris Sér. I Math. 309 (1989), 1003-1006.

[4] Faure, C.-A. and Frölicher, A.: Hölder Differentiable Maps and their
Function Spaces, Categorical Topology, World Scientific,
Singapore 1989, 135-142.

[5] Faure, C. A. and Frölicher, A.: The Uniform Boundedness Principle
for Bomological Vector Spaces, Arch. Math. 62 (1994), 270-277.

[6] Frölicher, A.: Applications lisses entre espaces et variétés de Fréchet,
C.R. Acad. Sci.293 (1981), 125-127.

[7] Frölicher, A. and Kriegl, A.: Linear Spaces and Differentiation Theory,
J. Wiley and Sons, Chichester, 1988.

[8] Hogbe, N.: Bornologies and Functional Analysis, North-Holland, 1977.

[9] Kriegl, A. and Michor, P.: The Convenient Setting of Global Analysis,
Mathematical Surveys and Monographs Vol. 53, A. M. S. 1997.

Universite de Genève, Section de Math., C. p. 124, CH-1211 Geneve 24.


