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ORDERED GROUPOIDS AND ETENDUES

by Mark V. LAWSON and Benjamin STEINBERG

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XLV-2 (2004)

R6sum6

Kock et Moerdijk ont montre que chaque 6tendue est engendr6e
par un site dont tout morphisme est monic. Dans cet article

nous donnons une caract6risation alternative des 6tendues en ter-

mes de group6ides ordonnes. Specifiquement, nous définissons un
site d’Ehresmann comme 6tant un groupoide ordonn6 muni de ce
que nous nommons une ’topologie d’Ehresmann’ - c’est essentielle-
ment une famille d’id6aux pour l’ordre, stable par conjugaison -

et de cette façon nous pouvons définir la notion de faisceau sur un
site d’Ehresmann. Notre r6sultat principal est que chaque etendue
est 6quivalente a la cat6gorie des faisceaux sur un site d’Ehresmann
appropri6.

1 Introduction

Kock and Moerdijk proved that each 6tendue is generated by a site in
which every morphism is monic. In this paper we provide an alternative
characterisation of 6tendues in terms of ordered groupoids. Specifically,
we define an Ehresmann site to be an ordered groupoid equipped with
what we term an ’Ehresmann topology’ - this is essentially a family
of order ideals closed under conjugation - and in this way we are able
to define the notion of -a sheaf on an Ehresmann site. Our main result
is that each etendue is equivalent to the category of sheaves on a suit-
able Ehresman site. In this section, we outline the background to this
equivalence.

At an informal level, a topos can be regarded as a ’generalised space’
[12], whereas an 6tendue is a topos T which is ’locally like a space’. More
precisely, an etendue is a topos containing an ob ject E E T such that the
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unique map from E to the terminal object of T is an epimorphism and
such that the slice topos T/E is equivalent to the category of sheaves
on a locale [1]. Kock and Moerdijk [5] proved that every 6tendue can be
presented by means of a site whose morphisms are monic, what we call a
left cancellative site (see Section 2.3 for the full definition). Conversely,
by Theorem 1.5 and Proposition 1.3 of [14], Rosenthal proved that the
category of sheaves on a left cancellative site is an 6tendue.

This work highlights left cancellative categories and their presheaves.
Such structures had been studied independently in inverse semigroup
theory. In [5], Lausch generalised classical group cohomology to inverse
semigroups. Subsequently, Loganathan [10] showed that this cohomol-
ogy was the same as the cohomology of an associated category. Leech
[9] studied this category in more detail and proved that it was left can-
cellative with extra structure. Now inverse semigroups can be regarded
as special kinds of ordered groupoids, a result that goes back to Ehres-
mann [2], and has more recently been important in inverse semigroup
theory [7]. It was therefore natural to generalise Leech’s work from
inverse semigroups to ordered groupoids. This was done by the first
author [8] who obtained a correspondence between ordered groupoids
and left cancellative categories. This work is summarised in Section 2.2.
Loganathan’s work on inverse semigroup cohomology was based on the
fact that certain types of actions of an inverse semigroup corresponded
to actions of the associated category. This result had been investigated
by the second author, who had realised that inverse semigroups acting
on presheaves of structures played an important role in inverse semi-
group theory (for example, in [13]).

At this point, it was natural to ask if these two strands of work, topos
theoretic on the one side, and ordered groupoid theoretic on the other,
could be related. This is indeed the case and is the basis of our paper.
Specifically, we define what we term an ’Ehresmann topology’ on an
ordered groupoid. An ordered groupoid equipped with an Ehresmann
topology is called an ’Ehresmann site’. We prove two main results:

(1) Each left cancellative site can be constructed from some Ehresmann
site (Theorem 3.10).

(2) Each 6tendue is equivalent to the category of sheaves defined on
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some Ehresmann site (Theorem 4.5).

2 Background
In this section, we describe the background results needed to read this
paper.

2.1 Ordered groupoids 
We shall regard a category C as a a generalisation of a monoid: amongst
the morphisms are the distinguished morphisms known as identities de-
noted by Co. If x E C then d(x) is the unique identity such that
xd(x) = x and r(x) is the unique identity such that r(x)x = x. We
usually write d(x) 1 r(x). The product xy is defined if and only if
d(x) = r(y). The opposite category to C is denoted COP. A left can-
cellative category is one in which every morphism is monic. Dually a
right cancellative category is one in which every morphism is epic. A
category which is both left and right cancellative is termed cancellative.
An element x of a category is said to be invertible or to be an isomor-
phism if there is an element y such that yx = d(x) and xy = r(x). If
such an element y exists it is necessarily unique and is denoted by x-1.
If e and f are identities and e 1 f is an isomorphism then we say that
e is isomorphic to f. A groupoid G is a category in which every element
is invertible. The set of isomorphisms Iso(C) in a category C forms a
groupoid. A subcategory D of C is said to be full if Do = Col; it is said
to be dense if each identity in C is isomorphic to one in D. For any
undefined terms see [11].

Let (P, ) be a poset. A subset X C P is an order ideal if y  x E X
implies that y E X. For each x E P we denote by x != {y E P: y  x}
the principal order ideal determined by x.

An ordered groupoid (G, ) is a groupoid G equipped with a partial
order  satisfying the following axioms:

(OG1) If x  y then
1 The term wide is often used.
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(OG2) If x  y and  y’ and the products xx’ and yy’ are defined
then xx’  yy’.

(OG3) If e E Go is such that e  d(x) there exists a unique element
(x|e) E G such that (x|e) x and d(x|e) = e.

(OG3)* If e E Go is such that e  r(x) there exists a unique element
(e|x) E G such that (elx) x and r(e |z) = e.

It can proved that (OG3)* is a consequence of (OG1)-(OG3) (Propo-
sition 4.1.3 of [7]).

An ordered functor between ordered groupoids is simply an order-
preserving functor. An ordered embedding is an injective functor 0: G -
H such that 9  g’ =&#x3E; 0(g)  0(g’) .

Let G be an ordered groupoid. A connected component of the un-
derlying groupoid of G is called a D-class by analogy with inverse semi-
group theory. If g, h E G then we write g j h if there exists g’ E G
such that g D g’  h. If e, f E Go then e j f means precisely that
there is x E G such that e 1 e’  f . In the case G comes from an
inverse semigroup then this definition of j agrees with the usual one
(see Proposition 3.2.8 of [7]).

We say that G has maximal identities if there is a function Go -&#x3E; Go
denoted by e -&#x3E; e° such that the following two conditions hold:

(2) If e  i°, j° then i° = j°.

It follows that the identities e° are maximal.
Let x, y E G and suppose that in the poset (Go, ), the greatest

lower bound e = d(x) A r(y) exists. Then define x O y = (x I e)(e y).
The partial product O, which extends the categorical product in G,
is called the pseudoproduct. It can be proved that if x O (yO z) and
(x O y) O z are both defined then they are equal (Lemma 4.1.6 of [7]).

The theory of ordered groupoids is due to Ehresmann [2]. What
we call an ’ordered groupoid’ is what Ehresmann termed a ’functorially
ordered groupoid’. The terminology we use is now standard in inverse
semigroup theory where ordered groupoids find useful applications [7].
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2.2 Left cancellative categories and ordered group-
oids

The aim of this section is to describe the relationship between left can-
cellative categories and ordered groupoids. The details may be found
in [8]. In particular, we outline the proof that each left cancellative
category is equivalent to one constructed from an ordered groupoid.

Let C be a left cancellative category. Put

Define a relation - on U as follows:

for some

where (a’, b’ ) u = (a’u, b’u) . Then - is an equivalence relation on U. We
denote the equivalence class containing (a, b) by [a, b], and the set of
equivalence classes by G(C). Define

and

If d[a, b] = r[c, d] define the partial product

where u E Iso(C) is such that b = cu. Finally, define a relation  on
G(C) by

for some ,

where (c, d)p = (cp, dp). Then G(C) is an ordered groupoid. If 0: C -
D is a functor between two left cancellative categories we may define
an ordered functor G(0): G(C) -&#x3E; G(D) by G (0) ([a, b]) = [0(a), 0(b)].
The proof of the following may be found in [8].
Theorem 2.1. The construction G is a functor from the category of left
cancellative categories and functors to the category of ordered groupoids,
with maximal identities and ordered functors preserving maximal iden-
tities. 13
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Remark The identities of G(C) are {[a, a]: a E C} and the maximal
identities are {[e,e]: e E Co}. For each [a, a] E G(C)o, we have that
[a,a]° = [r(a), r(a)] is the unique maximal identity above [a, a]. Fur-

thermore, [a, a] D [d (a), d(a)].

Let G be an ordered groupoid. Put

Define
and] 

and define a partial product on C(G) as follows: if d(e, x) = r( f, y) then
(e, x)( f, y) = (e, x O y), else it is undefined. Then C(G) is a category.
If 0: G-&#x3E;H is an ordered functor between two ordered groupoids, we
may define a functor C (0): C(G) - C(H) by C(0)(e, x) = (B(e), 9(x)).
The following is proved in [8].
Theorem 2.2. The construction C is a functor from the category of
ordered groupoids and ordered functors to the category of left cancellative
categories and their functors. 0

The identities of C(G) are f (e, e) : e E Go}, and the groupoid G is
isomorphic to the groupoid

under the map x H- (r(x), x). Put

Then every element of C(G) can be uniquely factored as a product from

The following is proved in [8).
Theorem 2.3. Let C be a left cancellative category. Then

defined by
is an injective functor which embeds C in CG(C) as a full dense sub-
category. In particular, C and CG(C) are equivalent. D

The above theorem tells us that up to equivalence every left can-
cellative category can be constructed from an ordered groupoid.
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2.3 Sites

We recall some standard definitions from topos theory [12J.
Let C be a category and e an identity of C. A sieve S on e in C is

a subset of C satisfying S C eC and SC C S. Evidently if S is a sieve
then in fact S = SC. Let S be a sieve on e in C, and let fa-&#x3E; e. Define

Then a*S is a (possibly empty) sieve on f in C. If a is an isomorphism
then a*S = a-is.

A Grothendieck topology on C is a function J which assigns to each
identity e E C a collection J(e) of sieves satisfying the following three
conditions:

and , then

(T3) If S E J(e) and R is any sieve on e such that a*R E J( f ) for all
then

A site is a pair (C, J) consisting of a category C equipped with a
Grothendieck topology J. If C is left cancellative then we shall say that

(C, J) is a left cancellative site.
Let C be a subcategory of C’ and let J and J’ be Grothendieck

topologies on C and C’ respectively. For each e E Co, there are two sets
J(e) and J’(e). We write

If J(e) = C n J’(e) for each e E Co, we shall say that the Grothendieck
topology J’ extends the Grothendieck topology J.

The proof of the following is straightforward.

Proposition 2.4. Let C’ be a category containing C as a full dense
subcategory.

(i) Suppose that J is a Grothendieck topology on C. Then there is ex-

actly one Grothendieck topology J’ on C’ which extends J.



89

(ii) Suppose that J’ is a Grothendieck topology on C’. For each e E 00
define J(e) - J’(e) n C. Then J is a Grothendieck topology on C.

0

We now recall the definition of a sheaf on a site. We refer the reader
to [12] for sheaf theory background. Throughout this paper Set is the
category of small sets. Let C be a category. Then a presheaf on C is
a functor F : Cop-&#x3E; Set. The category of presheaves, denoted Set,
has presheaves as objects and natural transformations as morphisms.
If C is a partially ordered set (P, ) then a presheaf F over P can be
equivalently defined as follows: for each e E P there is a set F(e), and
for each pair f &#x3E; e in P there is a function pe : F(f) -&#x3E; F(e), called a
restriction map, such that for each e E P we have that pe is the identity
on F(e) and if e &#x3E; e’ &#x3E; e" then pe’e" ,pee’ - Pe" [15].

A presheaf on C may be viewed as a right action of C on a suitable
set in the following way. Let F be a presheaf on C. Put A = UeECo F(e),
where the notation indicates that we are dealing with a disjoint union.
Let a E F(e) and f 4 e, and define

One then verifies:

when

(A3) a. 9 E F(f) and so a e a. 9 is a function from F(e) to F(f).

Right actions arising in this way may be axiomatised as follows [3].
Let C be a category, and let .A be a set equipped with a function 7r: A -
Co and put A(e) = 7r-l(e). Let A x C-&#x3E; A be a partial function where
(a, g) e a . g. We suppose that 3a . g if and only if 7r(a) = r(g). In

addition, the following three axioms hold:

when
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Let (C, J) be a site, F a presheaf on C and let S E J(e). A matching
family for S of elements of F is a function which assigns to each element
d g-&#x3E; e in S an element ag E F(d) in such a way that

for all h in C such that r(h) = d. This definition make sense, because S
is a sieve and so g E S implies that gh E S. An amalgamation of such
a family is an element a E F(e) such that

for each g C S. The presheaf F is a sheaf if every matching family has
a unique amalgamation. The category of sheaves on (C, J), denoted by
Sh(C, J), is the full subcategory of SetCOP whose objects are sheaves.

The following result provides the essential link between our work
and topos theory. The proof follows from the Comparison Lemma of
[5].

Proposition 2.5. Let C’ be a category containing C as a full dense
subcategory. Let J be a Grothendieck topology on C, and let J’ be the
unique extension of J to a Grothendieck topology on C’ constructed ac-
cording to Proposition 2.4. Then the category of sheaves on the site
(C, J) is equivalent to the category of sheaves on (C’, J’).

0

3 Ehresmann topologies on ordered group-
oids

In Section 2.2, we described the correspondence between left cancellative
categories and ordered groupoids. In this section, we investigate what
happens when the left cancellative category in question is equipped with
a Grothendieck topology. The main result is Theorem 3.10.
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3.1 Ehresmann sites

Let G be an ordered groupoid. An Ehresmann topology on G is an
assignment of order ideals T(e) of e’ for each identity e in G satisfying
the following three axioms:

(ETI) e! E T(e) for each identity e.

(ET2) Let e and f be identities such that f j e. Then for each x E G
such that f 1 e’  e we have that x-1 O AOx E T(f) for each
A E T(e).

(ET3) Let e be an identity, let A E T(e) and let B C e! be an order
ideal. Suppose that for each f 1 e’  e where e’ E A we have
that x-1O BOx E T( f ). Then B E T(e).

The following definition and result is technical but useful. Let G
be an ordered groupoid with maximal identities in which each D-class
contains maximal identities (cf. Theorem 2.1). A Pre-Ehresrrcann topol-
ogy on G is defined in exactly the same way as an Ehresmann topology
except that the word ’identity’ is replaced everywhere by the phrase
’maximal identity’. The three axioms we obtain in this way are labelled
(PET1), (PET2) and (PET3) respectively.

The following result shows that on ordered groupoids with maxi-
mal identities and in which each D-class contains a maximal identity,
there is a bijection between Ehresmann topologies and pre-Ehresmann
topologies. We omit the routine proof.

Proposition 3.1. Let G be an ordered groupoid with maximal identities
in which each D-class contains maximal identities.

(i) Let T’ be a pre-Ehresmann topology on G. For each identity e E Go
define

where , and

Then T defines an Ehresmann topology on G. In addition, for
each rnaximal identity e E Go, we have that T(e) = T’(e).
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(ii) Let S be an Ehresmann topology on G. For each maximal identity
e E Go, define T’(e) = S(e). Then T’ is a pre-Ehresmann topology
on G. Let T be the Ehresmann topology on G defined by applying
the method of (i) above to T’. Then T = S. 0

3.2 From left cancellative sites to Ehresmann sites

and back

Let C be a left cancellative category. We show first that there is a bijec-
tion between Grothendieck topologies on C and Ehresmann topologies
on G(C) (Theorem 3.5). The proof of the following is routine and
omitted.

Lemma 3.2. Let C be a left cancellative category and e an identity in
C.

(i) Let S be a sieve on e in C. Put

Then [S] is an order ideal of [e, e]!.

(ii) Let A be an order ideal in [e, e]-1-. Put

Then ||A|| is a sieve on e in C.

The operations S-&#x3E; [S] and A t-t IIAII are mutually inverse. It follows
that there is a bijection between the set of sieves on e in C and the set
of order ideals of [e, e]-1- in G(C).

O

The following two lemmas are of a technical character.

Lemma 3.3. Let C be a left cancellative category. Let e and f be
identities in C. For each fa-&#x3E; e, we have that
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Conversely, if

then there is fa-&#x3E; e such that [z, y] = [a, f] .

Proof. Let fa-&#x3E; e in C. Then d(a) = f and so [a, f] is a well-defined

element of G(C). Now (a, a) = (e, e)a, and so [a, a]  [e, e]. It follows
that

as required.
Let

Then d[x, y] = [f,f] and r[x, y] = [b, b]. Thus y = f u and x = bv
for some invertible elements u, v E C. Now [b, b]  [e, e] implies that
b = eb, and so r(b) = e. It follows that [x, y] = [bv, fu] = [bvu-’, f].
Put a = bvu-1. Then fa-&#x3E; e, as required. 0

Lemma 3.4. Let f a-&#x3E; e in C and let S be a sieve on e in C. Then

Proof. Let [x, x] E [a*S]. Then x E a*S and so ax E S. Thus [ax, ax] E
[S]. We now calculate [f, a] Q9 [ax, ax] O [a, f ]. First [f, a] (9 [ax, ax] =
Ix, ax] and [x, ax] (9 [a, f] = [x, x]. It follows that

Conversely, let

Then [y, y] = f, a] 0 [x, x] O [a, f ]. Observe first that because the

pseudoproduct exists, we can assume without loss of generality that
[x, x]  [a, a]. Thus x = ap for some p E C. It follows that [y, y] = (p, p].
Hence y = pu for some invertible element u E C. We therefore have that

ay = apu = xu E S, since S is a sieve. Thus y E a*S, as required. D

Theorem 3.5. Let C be a left cancellative category, and let G = G(C)
be the ordered groupoid associated with C.
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(i) Let J be a Grothendieck topology on C. For each maximal identity
[e, e] E G define

Then T’ is a pre-Ehresmann topology on G.

(ii) Let T’ be a pre-Ehresrnann topology on G. For each identity e E C
define

Then J is a Grothendieck topology on C.

There is a bijective correspondence between Grothendieck topologies
on C and Ehresmann topologies on G(C).

Proof. (i) If e is an identity in C then [e, e] is a maximal identity in G.
Observe that [e, e] = [f, f] if and only if e = f . Thus distinct identities
in C give rise to distinct maximal identities in G.

By Lemma 3.2, the set T’([e, el) is a collection of order ideals of

[e, e]-1-. We show that the three axioms for a pre-Ehresmann topology
hold.

(PETI) holds. By assumption, J satisfies (Tl) and so eC E T(e).
It is easy to check that [eC] = [e, e]!. Thus [e, e]! E T’([e, e]).

(PET2) holds. Let [f , f] and [e, e] be maximal identities such that
[f, f] j [e, e]. Let

and let A E T’([e, e]). By Lemma 3.3, there exists fa-&#x3E; e such that
[x, y] = [a, f ]. By definition, there exists a sieve S E J(e) such that
A = [S]. By (T2), a*S E J(f) and so by definition [a* 5] E T’([f, f]).
But by Lemma 3.4, we have that

thus

as required.
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(PET3) holds. Let [e,e] be a maximal identity, let A E T’([e, el)
and let B C [e, el’ be an arbitrary order ideal. Assume that for each

[f, f] [x,y]-&#x3E;[b, b]  [e, e] where [b, b] E A we have that [x, y] - 1O BO[x, y] E
T’([f , f]). We shall prove that B E T’([e, e]). By definition, there is a
sieve S E J(e) such that [S] = A. By Lemma 3.2, R = IIBII is a sieve

on e such that [R] = B. Let f Z e E S be arbitrary. By Lemma 3.3,
we have that

where [a, a] E A. Thus by assumption,

But by Lemma 3.4, [a, f]-1OBO9[a, f] = [a* R] . Hence [a* R] E T’([f, fl)
and so a*R E J( f ). Since (T3) holds, R E J(eJ and so B E T’([e, e]),
as required.

(ii) By Lemma 3.2, the elements of J(e) are sieves. We show that
the three axioms for a Grothendieck topology hold.

(Tl) holds. Observe that ||[e, e]!|| = eC. The result follows by
(PET1).

(T2) holds. Let 4 e and S E J(e). By definition and Lemma 3.2,
[S] = A E T’([e, e]), and by Lemma 3.3, [f , f] [a,f]-&#x3E; [a, a] :5 [e, e]. Thus
by (PET2), we have that

Thus by definition, || [a, f)-l Q9 A Q9 [a, f]|| E J(f). But by Lemma 3.4,
we have that [a,f]-1OAO[a,f] = [a*S]. Thus by Lemma 3.2, it follows
that a*S E J( f ), as required.

(T3) holds. Let S E J(e) and let R be any sieve on e such that
a*R E J(f) for all f a-&#x3E; e E S. By definition and Lemma 3.2, liSt! = A E
T’([e, en and {R} = B an order ideal in fe, e]!. Let [f, f] [x,y] -&#x3E; [b, bl  fe, e]
be such that [b, b] E A. By Lemma 3.3, there exists f a + e such that
Ix, Y] = [a, f]. Now [b, b] = [x, x]= [a, a] and [b, b] E A. It follows by
Lemma 3.2, that a E S. By assumption, a*R E J( f ). Thus [a*R] E
T’([f, f 1) and so by Lemma 3.4, we have that Ix, y]-1OBO [x, y] E
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T’([f, f]). It follows by (PET3), that B E T’([e,e]) and so R E J(e), as
required.

Our final claim is immediate from (i) and (ii) above, Lemma 3.2 and
Proposition 3.1 0

Let G be an ordered groupoid. We show next that there is a bijection
between Ehresmann topologies on G and Grothendieck topologies on
C(G) (Theorem 3.8). The proof of the following is routine and omitted.

Lemma 3.6. Let G be an ordered groupoid and e an identity in G.

(i) Let A be an order ideal of e’ in G. Put

Then Ab is a sieve on (e, e) in C.

(ii) Let S be a sieve on (e, e) in C. Put

Then SO is an order ideal in e!.

The operations A -&#x3E;Ab and S t-t S# are mutually inverse. It follows
that there is a bijection between the set of order ideals of e! in G and
the set of sieves on (e, e) in C(G).

D

The following lemma is of a technical nature.

Lemma 3.7. Let G be an ordered groupoid and C = C(G). Let A be

an order ideal in e! and let (f , f )(e,x)-&#x3E;(e, e). Then

Proof. It is straightforward to check that x-’ (9 A 0 x is an order ideal
of f!.

Let S = Ab. We now prove that
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The result stated in the lemma is then obtained easily by applying
Lemma 3.6. Let ( f, y) E (x-1OAOx)b. Then by definition, (f , y) =
( f, i) (i,y) for some i E x-1O AO x. It follows that there is j E A such
that i = x-1OjOx. It is easy to check that x 0 i = j O x. Thus

But (e, j) E Ab. Thus (e, x) (f , y) E Ab and so

as required.
To prove the reverse inclusion, let ( f , y) E (e, x)*S. Thus by defini-

tion (e,x) (f,y) E Ab, and so

for some i E A. It is easy to check that this implies that y = x-1 O i (8)
eOz= x-1OiOxOx-1Oz. Thus

where and so

as required. 0

Theorem 3.8. Let G be an ordered groupoid. Then there is a bijective
correspondence between Ehresmann topologies on G and Grothendieck
topologies on C(G).

Proof. Let T be an Ehresmann topology on G. For each (e, e) E C
define

By Lemma 3.6, J(e, e) is a collection of sieves on (e, e) in C. We show
that J is a Grothendieck topology on C.

(Tl) holds: By (ETI), we have that e! E T(e). Thus (e!)b E
J((e, e)). By definition, (e!)b = (e x (e!))C. Let (e, x) E (e, e)C. Then
(e, x)= (e, r(x))(r(x), x). But r(x) E e4. and so (e, x) E (e4.)b. Thus

(e.J.)b = (e, e)C, and the result follows.
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(T2) holds: Let ( f, f ) --t (e, e) and S E J((e, e)). vVe prove that

(e, x)*S E J((f, f)). By definition, S = flb for some A E T(e). Also

f £ r(x)  e Thus by (ET2), we have that x-1O A 0 x E T (f). By
Lemma 3.7 and Lemma 3.6,

This proves the claim.

(T3) holds: let S E J((e, e)) and let R be any sieve on (e, e) such
that (e, a)*R E J(( f, f )) for all (f, f) (e,a)-&#x3E;(e, e) E S. We shall prove
that R E J((e, e)). Put A = SO E T(e) and B = RO C e.t. and let
f x-&#x3E; e’  e where e’ E A. It follows that (e, x) E S. By assumption,
(e, x) * R E J((f, f)) and so ((e, x)*R)# E T(f). But then by Lemma 3.7
we have that x-1 O BOx E T( f ). It follows by (ET3), that B E T(e)
and so R E J((e, e)). Thus given an Ehresmann topology T on G, we
have constructed a Grothendieck topology J on C.

Let J be a Grothendieck topology on C. For each e E Go define

We prove that T is an Ehresmann topology on G.
(ET1) By (Tl), we have that S = (e, e)C E J((e, e)). By definition

S# E T(e), and S# = {f E Go : (e, f ) E SI. But this is precisely e! as
required.

(ET2) Let f 5 e’  e and A E T(e). By definition, A = SO
where S E J((e, e)), and ( f, f ) (!4) (e, e). Thus by (T2), we have that
(e, x)*S E J((f,f)). So by definition ((e, x)’S)d E T(f). However,
((e, x)*S)# = x-1O AO x by Lemma 3.7. Thus x-1O A 0 x E T ( f ) as
required.

(ET3) Let A E T(e) and let B C e.1. be an arbitrary order ideal.
Suppose that for each f x-&#x3E; e’  e where e’ E A we have that X-I 0
B 0 x E T( f ). We shall prove that B E T(e). Put S = Ab E J((e, e))
and R = Bb a sieve on (e, e). Let (J,1) (4) (e, e) be arbitrary such
that (e, x) E S. Then ((e, z)*R)# = x-’ 0 B Q9 x by Lemma 3.7, and
x-1 OBOx E T( f ) by assumption. Thus (e, x)*R E J((f, f)). By (T3),
we have that R E J((e, e)). Hence B E T(e).
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The fact that Ehresmann topologies on G are in bijective corre-
spondence with Grothendieck topologies on C(G) now follows from
Lemma 3.6. 0

We are now ready to return to 6tendues. Let (C, J) be a left can-
cellative site. By Theorem 2.3, there is an injective functor

which is full, faithful and dense. By Theorem 3.5, J induces an Ehres-
mann topology T on G(C), and by Theorem 3.8, T induces a Grothendieck
topology J’ on C’.

Lemma 3.9. With the above notation, we have t(J(e)) = J’(¿(e))n¿(C)
for every e E Co

Proof. By Theorem 3.8, we have that S E J’(t(e)) if and only if S = Bb
where B E T([e, e]). By Theorem 3.5, we have that B E T([e, e]) if
and only if B = [A] where A E J(e). Thus S = [Alb. We prove that
c(A) = [A]b fl i(C), which will prove the lemma. Let a E A. Then

t(a) ([e, e], [a, d(a)]). But

where ([e, e], [a, a]) E {[e, e]} x [A]. Thus t (a) E [All n ¿(C).
A typical element of [All n t(C) has the form ([e, e], [ap, x]) = t(b),

for some b E C. But then there is an invertible u E C such that ap = bu
and so b = apu-1 which implies b E A, as required. 0

It follows from the above lemma and Proposition 2.4, that if we
identify C and t(C), then J’ is the unique extension of J to C’. But
then by Proposition 2.5, the category of sheaves on (C, J) is equivalent
to the category of sheaves on (C’, J’). The main theorem of this section
is the following.

Theorem 3.10. Every 6tendue is presented by a site constructed from
an ordered groupoid equipped with an Ehresmann topology. 0
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4 Sheaves

In the previous section, we described a correspondence between sites on
left cancellative categories and Ehresmann sites. We now turn to the
correspondence between sheaves on a site and sheaves on an Ehresmann
site. The main theorem of the whole paper is Theorem 4.5

4.1 Sheaves on Ehresmann sites

Let G be an ordered groupoid and let F be a presheaf over over (Go, ).
Recall that there are functions pf from F( f ) to F(e) whenever f &#x3E; e.

Let X = LIeECoF(e) and let 7r: X - Go be the function which maps
elements of F(e) to e. Suppose in addition that there is a right action of
the groupoid G on the set X (defined via 7r) which satisfies the following

9 h

compatibility condition (CC): if g  h where f’ f- e’ and f - e then
for each a E F(f) we have that

We say in this case that the ordered groupoid G acts on Set on the right.
We shall also say that G acts on the right on the presheaf F with values
in Set. Observe that if a E F(e) and f -4 e then the map a H a - g
from F(e) to F( f ) is a bijection.

In the case of categories, right actions correspond to presheaves.
We now give the ’presheaf definition’ corresponding to our ’right action
definition’ above.

First we need some notation. Let C ( Go) be the category whose
morphisms are the ordered pairs (e, f ) such that e &#x3E; f . It will be useful
to regard C (G0) as a category with objects G° so that (e, f): f -&#x3E; e.2

Let G be an ordered groupoid. A prestaeaf on the ordered groupoid
G with values in Set is a pair of functors (Fl , F2 ) where Fl : GOp -t Set
and F2 : C (G°0)op-&#x3E; Set, where G°p is the opposite category of the

2Note that C(Go) is the just usual category associated to the partially ordered
set Go [11] and so the construction C(G) can be viewed as a generalisation of this
standard construction. Also observe that C (Go) is exactly the subcategory of C(G)
denoted Mono(C(G)) in Section 2.3.
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groupoid G, such that Fl (e) = F2 (e) for each e E Go, and such that the

following compatibility conditions (4.1) holds: suppose that e -&#x3E;h f and
e’ ..it f’ and g  h. Then

commutes. Presheaves are equivalent to right actions; this becomes

apparent when we observe that when e &#x3E; f the function F2 (e,f) is

precisely p’. Our usual notation will be to write F instead of Fl. We
normally write F: (G, )op -+ Set to denote the presheaf (or right
action) with values in Set.

Now let G be an ordered groupoid equipped with an Ehresmann
topology T, and let F be a presheaf on G. A matching family {ai}iEA
for an order ideal A E T(e) is a choice of ai E F(i) for each i E A such
that

if then ,

An amalgamation of such a family is an element a E F(e) such that

for all 

The presheaf F is a sheaf if every matching family has a unique amal-
gamation.

The category of presheaves of the ordered groupoid G in Set, denoted
Set (G,)op, is a subcategory of SetGop x SetC(Go)OP. The objects are the
pairs (F1, F2 ) with Fl (e) - F2 (e) for each e E Go which satisfy the
compatibility condition (CC). The morphisms of Set(G,)op consist of
those morphisms in SetGop x SetC(Go)op of the form

such that, for each e E Go, the components

and 
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are equal (recall: Fl(e) = F2 (e) and Hl(e) = H2(e)). The morphisms
are therefore the natural transformations of the form (r¡, 77). Equiva-
lently, the family q = {ne}eEGo is simultaneously a natural transforma-
tion from Fl to HI and from F2 to H2. We normally call a morphism
in Set(G,)op a natural transformations and just denote it by q: F-&#x3E; H.

There is a component arrow rJe: F(e)-&#x3E; H(e) for each e E Go.
The category of sheaves on (G, T), denoted Sh(G, T), is the full

subcategory of Set(G,)op whose objects are sheaves.

4.2 Ehresmann sheaves to Grothendieck sheaves

and back

Let G be an ordered groupoid equipped with an Ehresmann topology
T. Our goal is to prove that Sh(G, T) is isomorphic to Sh(C(G), J)
where J is the Grothendieck topology constructed in Section 3. We

may then deduce, by Theorem 3.10, that every 6tendue is equivalent to
the category of sheaves on an Ehresmann site.

We show first (Theorem 4.3) that right actions of an ordered groupoid
G correspond exactly to right actions of C(G); that is Set(G,)op=
SetC(G)op. We then show that Ehresmann sheaves in the former corre-
spond exactly to Grothendieck sheaves in the latter (Theorem 4.4).

The category C(G) has identities the elements of the form (e, e)
where e E Go. It will sometimes be convenient below to regard C(G)
as a category whose objects are Go in line with the way categories are
usually regarded rather than the ’generalised monoid approach’ which
we have used in most of this paper.

From Theorem 2.2, the groupoid G is isomorphic to the groupoid
of isomorphisms of C(G) by a function c: G -&#x3E; Iso(C(G)) defined
by 9 t-+ (r(g), g). The category C(Go) is the category with objects
Go and morphisms (e,f): f - e whenever e &#x3E; f ; this category is
essentially Mono(C(G)) from Theorem 2.2. It follows that a functor
defined on C(G)op restricts to give two functors defined on Iso(C(G))°P
and Mono(C(G))°P respectively. This provides the motivation for the
following definition.

We define a function 0: SetC(G)op - Set(G,)op as follows. If F is
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an object then

where for convenience, w-e set

Note that:

for

for

If 71 is a morphism, where q: F - H is a natural transformation, then
define

It is trivial to see that q is simultaneously a natural transformation from
F o t to Hoi and from F I C(G,,) to H I C(G.) since we are just restricting
F and H to full subcategories of C(G). Hence w(n) = 77: Fa -&#x3E; Ha is
well defined. It is routine to check the following.

Proposition 4.1. The function V) is a functor. D

By Theorem 2.2, each element of C(G) can be uniquely factored
into the product of an element of C(Go) and an element of Iso(C(G)):
namely,

But C(Go) and Iso(C(G)) are the foundations for defining presheaves
on G. This observation lies behind the following definition.

We define a function

as follows. If F is an object, that is F : (G,  )op -&#x3E; Set, then define
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by

If n, is a morphism, where q : F - H is a natural transformation in
Set(G,S)op , then define

The proof of the following is routine.

Proposition 4.2. The function T is a functor. D

It is easy to check that 0 and T are inverses of each other. We
therefore have the following theorem which is a generalisation of a result
first formulated by Loganathan [10].
Theorem 4.3. Set

Suppose now (G, T) is an Ehresmann site and (C(G), J) is the cor-
responding site constructed according to Theorem 3.8. Presheaves on

(G, ) and C(G) coincide. To prove Sh(G, Y) = Sh(C(G), J), it suf-
fices to show that 1jJ and T, defined before Propositions 4.1 and 4.2
respectively, take sheaves to sheaves. This is proved in the following
theorem.

Theorem 4.4. Let (G, T) be an Ehresmann site and let (C(G), J) be the
associated site constructed according to Theorem 3.8. Then Sh(G, T) =
Sh(C(G), J).

Proof. We show first that 1/J maps sheaves to sheaves. Let

We show F# E Sh(G, T).
Suppose {af}tEA is a matching family for A E T(e). We construct

a matching family for Ab . Suppose (e,x) E Ab. Then

with f E A. But (e,f) (f, y) = (e, y) so y = x. Hence f &#x3E; r(x) so
r(x) E A. Define
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Note that ar(x). x E Fd(d(x)) = F(d((e, x)). We show {a(e,x)}(e,f)EAb is
a matching family for AP. Suppose (e, x) E Ab and (e, x)(f, y) is defined
in C(G); note that f = d(x). Then

Let Then

Since ; so

But

by (CC). On the other hand

Putting together (4.3) and (4.4), we see that {a(e,x)}(e,x)EAb is a matching
family for Ab. Hence there exists a unique amalgamation a E F(e) =
Fa(e).

We now show a is an amalgamation for f af IFEA - Suppose f E A.
Then (e, f ) E Ab and

We conclude a is an amalgamation. Suppose b is another amalgamation
for {zf}fEA, we show b is an amalgamation for {a(e,x)}. Indeed

We conclude that b = a and that Fa is a sheaf.
We now prove that T takes sheaves to sheaves. Let F E Sh(G, T).

We show Fb is a sheaf.
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Suppose {a(e,x)}(e,f)ES is a matching family for S E J(e). We con-
struct a matching family for S#. Let f E S#. Then (e, f ) E S. Define

a f = a(e,f). Note that a(e,f) E Fb (f) = F( f ). Suppose f &#x3E; g. Then

so {af}fES# is a matching family for SO. Hence it has a unique amalga-
mation a E F(e) = Fb(e).

We show a is an amalgamation for {a(e,x)}(e,x)ES’ Indeed if (e, x) E S,
then (e,x)(x, x-1)= (e, r(x)) E S and so r(x) E SO. Thus

and so a is an amalgamation. Suppose b E Fb (e) is another amalga-
mation for {a(e,x)}(e,f)ES. We show b is an amalgamation for {af}fES#
Indeed, if f E Sa then (e, f ) E S. Hence

as desired. 0

The main theorem of this section and the whole paper now follows
from Theorems 3.10 and 4.4.

Theorem 4.5. Every etendue is equivalent to the topos of sheaves on
an Ehresmann site. D
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