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FREE EXTENSIONS OF DOUBLE CATEGORIES
by R.J.M. DAWSON, R.PARE and D.A. PRONK

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XLV-1 (2004)

RESUME. Dans cet article, les auteurs dtudient les categories
doubles obtenues en ajoutant librement de nouvelles cellules ou
flèches a une catdgorie double existante. Ils discutent plus
sp6cifiquement la d6cidabilit6 de 1’6galit6 de cellules dans la
nouvelle cat6gorie double.

Introduction

Extending a category C by a free arrow x (either an endomorphism
or an arrow between two existing objects) is a very straightforward
construction. The composable strings of the new category consist of
composable strings from the original category, alternating with instances
of the new element:

where any of the strings fi0 fimi may be empty, cod(fimi) = dom(x) for
i  k, and dom( fio) = cod(x) for i &#x3E; 0. (Of course, if x is not an
endomorphism, this forces all but the first and last strings ,fi0fim; to be
nonempty!)

Two of these strings may represent the same morphism of C[x]. Be-
cause the free morphisms x isolate the strings fiOfimi absolutely within
the arrangement, there is a canonical form for the morphisms of C[x]
in which each string has been composed to a single arrow:

We may, of course, repeat this construction, adding further free ar-
rows. It is easily shown that the order in which they are added does not
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matter, even if some objects appear as domains or codomains of more
than one arrow. We can conveniently represent such a system of arrows
with shared objects as a (directed) graph G. The resulting category
C [xi, x2, ... , 7 Xnl can also be thought of as the free extension of C by
the category F(G) freely generated by G. This is actually the pushout
of the Cat diagram

where D is the discrete category on the objects of G, and the maps are
the obvious inclusions.

The free extension of a group H is slightly more complicated be-
cause the new element has an inverse; cancelling inverse pairs xx-1 or
x-1x within a string may bring composable elements of H together; and
this in turn may permit further cancellations. However, this process is
strictly length-reducing, and there is still a canonical form

where only ho and hp may be identities, np &#x3E; 0, but p may equal 0.
For the free extension R[x] of a ring, we have the further complication

of two operations, which can be used alternately to yield arbitrarily
complicated expressions. However, the distributive law allows every
such expression to be put in the canonical form of a polynomial over
R. (If the ring is finite, the polynomial functions R -&#x3E; R form a proper
quotient ring of R[x] - for instance, over Z2, x and x2 are different
polynomials but the same function - but that will not concern us here.)

Consider, now, a double category - that is, a category object in the
category Cat of categories. This may conveniently be thought of as a
set of morphisms (more aptly described as ’cells’ than ’arrows’) forming
(an objectless presentation of) a category under each of two different
composition operations (which we may write as o and *). These are
linked by the middle-four interchange axiom, which plays a role slightly
similar to that of the distributive law in a ring.

The cells which are the identities of the vertical composition opera-
tion themselves form a category under horizontal composition, and it is
usual to call them the horizontal arrows of the double category; they of
course correspond to the vertical domains and codomains of the cells.
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The subcategory of vertical arrows is similarly defined, and these form
horizontal domains and codomains of cells. We will find it useful to clas-

sify cells on the basis of which (if any) of their domains and codomains
are identities in the appropriate arrow category.

If there is an isomorphism between the horizontal and vertical arrow
categories, we call the double category edge-symrraetric. Brown and
Mosa introduce [3] the idea of a connection structure on such a double
category (see also [5] and [19]), consisting of two sets of cells indexed by
’the’ arrow category. For each pair of arrows (h, v(h)), of a horizontal
arrow h and its corresponding vertical arrow v(h), the cell y(h) has h
as its vertical domain, v(h) as its horizontal domain, and identities for
the two codomains; -y’(h) has identities as domains and h and v(h) as
codomains.

The indexing is natural in h, and q(h) o-y’(h) = eh, while ,(h) * -f’(h) =
iv(h). They show that the category of 2-categories may be embedded in
the category of double categories, so that the image is the symmetric
double categories with connection.

In this paper, we will consider various free extensions of double cat-

egories, both by arrows and by cells. There is, of course, no difficulty
in constructing the composable arrangements of the new double cate-
gory. However, determining whether two such arrangements represent
the same cell may be, under some circumstances, undecidable, contrary
to what was the case for rings and categories. We will give some con-
ditions under which there is undecidability, and other conditions under
which canonical forms exist for the composable arrangements (which
implies that the equivalence relation is decidable). These conditions
will usually involve the existence or absence of of cells with three or
four identity arrows as domains and codomains.

This work is motivated by the importance of some free or near-
free constructions in higher dimensional category theory. One example
of this is the free adjoint construction which we introduced in [8]; it
was shown there that the 2-category obtained by freely adding adjoints
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to arrows of a category C was equivalent to a quotient 2-category of
a certain 2-category of diagrams in C. It was shown in [9] that the
equivalence relation is in general undecidable. The results in this paper
reveal different aspects of this undecidability problem. We want to

emphasize that although the work of this paper is presented in the
context of double categories, many results also apply to 2-categories.

Another example of a near-free construction arises from the con-
struction of a left adjoint to the embedding 2 - Cat - D-Cat (see,
eg, Brown and Mosa [3]). A. and C. Ehresmann [10] gave an explicit
construction for the left adjoint, together with a way to construct such
functors for higher dimensional categories.

The resulting 2-category has arrows corresponding to both the hori-
zontal and the vertical arrows of the original double category, and com-
positions of these; the category of horizontal arrows has in effect been
freely extended by the category of vertical arrows. The distinction be-
tween the original horizontal and vertical composition has likewise been
lost; this corresponds to the free addition of ’connection’ cells. Thus,
the study of free extensions sheds light on this left adjoint construction,
a point that the authors intend to consider in future work.

Further interest in free extensions of double categories arises from
the syntax of the category D-Cat of double categories itself. Free
extensions form a special kind of pushout in this category, and the work
of this paper can be viewed as a first step in describing the properties of
pushouts in it. Also, the construction of free extensions is a good way
to create new examples of double categories.

1 Double Categories
Ehresmann [11] introduced the concept of a double category, defined to
be a category object in the category Cat of categories, i. e. a diagram

of categories and functors. A double functor is an internal functor be-
tween the category objects. We write D-Cat for the category of double
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categories and double functors.
With this notation, we consider the objects of Do to be the ob-

jects of the double category and the arrows to be the vertical arrows
in D. We draw these arrows as -O-&#x3E;. We write Do = (Dv, D·, *), 
i.e. the symbol * will indicate vertical composition. Identity arrows in
this category are denoted by IA. We also write DI = (Do, DH, *). The
objects of DI are considered to be the horizontal arrows of D drawn
as -&#x3E;. These arrows receive their domain and codomain in D. from
the arrows do and d1 in diagram (1). We write hl o h2 for m(hl, h2).
They can be composed using the arrow m from the diagram. We will
indicate this horizontal composition by the symbol o. We will indicate
the horizontal identity arrows by IA. The arrows of DI are the cells of
D. The domain, codomain and composition in Dl give their vertical
domain, codomain and composition respectively. Note that their verti-
cal domain and codomain are horizontal arrows. The arrows do and dl
in diagram (1) give their horizontal domain and codomain respectively
(which consist of vertical arrows), and the arrow m gives their horizon-
tal composition, which we will indicate by o again. We use eh and iv for
vertical and horizontal identity cells respectively, and draw them as:

It is required that eIhA = iIvA and we denote this cell by iA.
We draw a general cell in D as:

where A, B, C, D E D., the Vi = dz (a) are vertical arrows, the hi =
dvi(a) are horizontal arrows and a is a cell. Functoriality of the arrows
in diagram (1) gives us:
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1. The vertical composition of the horizontal domains (or codomains)
of cells forms the horizontal domain (or codomain resp.) of the
vertical composition of the cells. This justifies using the symbol *
also for the vertical composition of cells.

2. The middle four interchange law for a diagram of cells

which reads

Note that this only holds when both sides of the equality are well-
defined.

3. Taking horizontal and vertical domains and codomains for a cell
a commutes in the sense that

which justifies the way the cell cx above is drawn.

Finally note that the horizontal category (DH, D., o) could also have
been used to serve as Do in the description of D, in which case we
would have defined the vertical composition from the internal category
structure in diagram (1).

Examples

1. Every category can be viewed as a double category by the inclu-
sion functor IH: Cat -&#x3E; D-Cat where IH (M, O, o) is the double

category with Do the discrete category with objects O, and Di
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is the discrete category with objects M. A diagram of the form

A-fB-g-C in a category C is sent to a diagram of the form

in the double category IH(C). This is the free double category
generated by a category in the sense that this functor is left adjoint
to the forgetful functor U: D - Cat -&#x3E; Cat, which sends D to
(DQ, DH, o).

2. Another way to embed the category of categories into the cat-
egory of double categories, is by taking the double category of
commutative squares in the original category.

3. Analogously to the case for categories, we can embed the category
of 2-categories in two ways into the category of double categories.
Let T be a 2-category. In the first case cells in the new double

category IH(T) are of the form:

where f and g are 1-cells in T and a: f =&#x3E; g is a 2-cell in T.

For the second case, cells of D(T) are of the form

where f , g, h and k are 1-cells and a: g o f =&#x3E; k o h is a 2-cell in
T.
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Later in this paper we will need the following terminology for the
two dimensional analogies of the notion of endomorphism in a double
category.

Definition 1.1 (i) We will call a cell which has only identity arrows
as domains and codoTnains a zero-sided cell.

(ii) A cell which has identity arrows as at least three of its domains
and codomains will be called one-sided (note that zero-sided cells are
a special case of this). We may call a one-sided cell that is not zero-
sided horizontal or vertical according to the direction of its non-identity
arrow. Note that for a one- (or zero-)sided cell a all the objects didj(a)
are the same. We will call this unique object the base of a.
(iii) A cell whose horizontal domain and codorriain are identities will
be called a vertical two-sided cell. Horizontal two-sided cells are defined
analogously.

It is part of the folklore that if a and 3 are both zero-sided cells
based at A,

Similar, but more limited, results hold for one-sided cells that have non-
identity edges in different locations; for instance, if -y has a non-identity
arrow as its vertical domain, and J has one as its vertical codomain,
then

2 Free Extensions by Cells

2.1 Free Extensions Given a double category D, and a square of
arrows

we may create another double category D[X] with the same objects and
arrows as D, but 2-cells consisting of the elements of Do, the cell X, and
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those arising from these by composition. The new cells are equivalence
classes of composable rectangular arrays such as that in Figure 1, under
the axioms of double categories and composition in D.

Figure 1: A composable rectangular array in D[X].

This double category is a free extension of D, in the same sense that
a polynomial ring R[X] is a free extension of R:

Proposition 2.1 For any double functor F: D -&#x3E; E and any cell a in
E with boundary

there is a unique double functor Fa: D[X] - E, extending F, such that
Fa(X) = a.

Determining the structure of D[X], however, is somewhat more diffi-
cult than this analogy might lead us to assume. For any (commutative)
ring R, there is a canonical form £g r;,Xi for R[X] such that two poly-
nomials over R are equal if and only if their canonical forms are the
same. Similarly, if we extend a category C by a free arrow x : a -&#x3E; b,
the arrows of C[x] can be put into the canonical form foxf, ... fn-1Xfn
where the fi are arrows of C with dom fi = b (except possibly when
i = 0) and cod fi = a (except possibly when i = n). In contrast, we
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shall see that equivalence of composable arrangements may be undecid-
able in D[X]; it follows that there is no computable canonical form for
elements of D[X].

2.2 Undecidability As observed above, the cells of a free extension
D[X] are equivalence classes of composable rectangular arrangements
involving X and the cells of D. In this section we will show that this
equivalence relation is, in general, undecidable.

If products in a group G (or indeed compositions in any category) are
computable, one can easily solve the word problem for a free extension
G[X] since (as observed above) there is a normal form for G[X]. The
normal form depends on the one-dimensional nature of composition in a
category. The greater combinatorial complexity of the two-dimensional
composition in a double category D allows the equivalence problem for
composable arrangements in D[X] to be undecidable in some cases.

Theorem 2.2 There exists a double category. D for which the equiv-
alence problem for composable arrangements can be solved (in a time
linear in the length of the word), but such that, if a cell X with a cer-
tain boundary is freely added, the corresponding problem for D[X] is

undecidable.

Proof A reversible rewrite system consists of a finite alphabet A =

f A1 ... Am} and a set R of rewrite rules {R1, ... , Rn}, each Rk consisting
of a pair

of mutually substitutable words of A. The word problem for (A, R)
consists of determining whether one specified word of A can be obtained
from another by a sequence of "moves", each replacing a word of the
form UVW by one of the form UV’W, where V and V’ are (in either
order) the two words of a rewrite rule.

The word problem for groups can be expressed as a special case of
the word problem for reversible rewrite systems; so the latter is clearly
undecidable in general. Given an arbitrary reversible rewrite system
(A, R), we will construct a double category D(A,R) such that the equiv-
alence problem for composable arrangements in D(A,R) can be solved
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by inspection of the (finite) list of rewrite rules, while the problem for
D (A,R) [X] is equivalent to the word problem for ( A, R) .

It will be useful to be able to assume that for any two words w, and

W2 and any single rewrite rule, one can determine in a finite amount of
time, whether repeated use of this rule and its inverse could transform
the first word into the second word. This seems to be a difficult prob-
lem for general rewrite systems; the problem arises when a substitution
makes a partially-overlapping inverse substitution possible. However,
any rewrite system is embedded, in an obvious fashion, in one in which
this cannot happen, constructed as follows.

First, we extend the alphabet by two new symbols ’L’ and ’R’. Every
existing rule

is replaced by the rule

and we add two new rules, (L H 0) and (R -&#x3E; 0). Any substitution
of the old system can be performed in five steps in the new system by
first inserting an L to mark the beginning of the string to be changed
and an R to mark the end, applying the corresponding substitution
from the new set, and then removing the two delimiters. The words of
the old system are also words of the new system; and two of them are
equivalent in the new system precisely when they were equivalent in the
old system.

We show now that this system satisfies our requirements. Let wi
and W2 be any two words, and a a rewrite rule in this system. If a
is the rule (L - 0), one can check whether wl and W2 are equivalent
under this rule, by removing all occurrences of L in both words. w1

and W2 are equivalent under a if and only if the resulting words are the
same. A similar argument can be used if a is the rule (R - 0). If a
is a replacement of an old rule, the number of new words one can make
out of wl by repeated applications of a is bounded by 2n where n is the
number of matching LR-pairs in wl. So one can determine in a finite
amount of time whether W2 is one of those words. We shall henceforth
assume that the system (A, R) has this property.
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Under this assumption, we construct the double category D = D(A,R) .
It has five objects, {a,b,c,d,e}, and horizontal arrows f : b -&#x3E; c and

f’ : d - e. It has vertical arrows u" : a -&#x3E; c, v : b -&#x3E; d, v’ : c -&#x3E; e,
and n + 1 distinct vertical arrows u, uk : a -&#x3E; b where the arrows uk

correspond to the rewrite rules.
The cells of D are generated by the following:

9 A set of m cells {ai : i = 1... m} corresponding to the letters
of the alphabet. These all have vertical domain ib and vertical
codomain id and horizontal domain and codomain both equal to
v.

o A set of n cells {yk : k = 1... n}, corresponding to the rewrite
rules. The vertical domain of all of these cells is ia, and their
vertical codomain is ib. The horizontal domain of each qk is u,
and the horizontal codomain is U.

o A set of n cells IJk : k = 1... n}, also corresponding to the rewrite
rules. The vertical domain of all of these cells is ia, and their
vertical codomain is f . The horizontal domain of each ’Yk is ?,ck,
and the horizontal codomain is u".

The fact that ia is not a vertical codomain, nor id a vertical domain
(except of course, trivially, of their own identity cells) restricts the pos-
sibilities for composition. In fact, the only composable arrangements in
D are, up to middle-four interchange:

. 7k o Jk; these are all equal and the composition will be denoted by
B.

9 ail o ... o ain ; the compositions of these are free (that is, equal
only if the arrangements are equal).

. qk * (ail o...0 ain); two such compositions, say yk* (ai1, o...o ain)
and -yk * (ajj o ... o ai’n,), are defined to be equal if k = k’ and the
string Ai1... Ain can be converted to Ai’1... Ai,, using only the
rule Rk. 
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We note that the equality defined above is an equivalence relation,
and closed under compositions; so no further equalities occur. Moreover,
due to the properties that we have assumed for the rewrite system,
equality can be checked in a time linear in the size of the arrangement.

Suppose that we introduce a further cell X into D, with boundary

and which composes freely. We consider the following diagram in D[X]:

and ask whether it is equivalent in D[X] to some other diagram

In general, answering this question is equivalent to the word problem for
the rewrite system. It is not hard to see that the nontrivial equations
in D[X] are generated by single rewrite rules Rk as follows.
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It follows that if Ai’1 ... Ai’n can be obtained from Ai1... Aim by a
sequence of such substitutions, the corresponding compositions in D[x]
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are equal. However, while the individual substitution rules can be de-
termined from equations in D in linear time, no composition in D "wit-
nesses" any combination of these substitutions using more than one rule.
Therefore, we conclude that, even though the equivalence problem for
composable arrangements in D is decidable, the corresponding problem
in D[X] is undecidable. I

Note The construction clearly works when the extension element has
two adjacent edges that are not identities. Moreover, the construction
may be adapted to a free extension by an element which has one edge
that is not an identity, or two different and nonadjacent non-identity
edges - note that even if the edge f’ below is an identity, B can still
take part in no composition that does not involve X.

Indeed, if the free element has two equal and nonadjacent non-
identity edges, we can still adapt the construction: consider the double
category suggested by the following arrangement

in which Z composes freely with the ai but all compositions in D in-
volving Z and any 6k (and possibly other cells) are equal. Once more,
it may be verified that composable arrangements in D either contain Z
in which case equivalence is trivial, or cannot contain cells composable
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to B in which case equivalence involves at most one rewrite rule. How-
ever, in D[X], equality of certain arrangements similar to that shown is
undecidable.

The most difficult case is that in which both domains and both
codomains of the new cell are identities. In this case the double category
D which we construct contains two cells Z1 and Z2 as shown below, whose
vertical domains f, and f2 are not identity arrows, and such that Z1 o Z2
acts in the same way that Z acted in the previous construction. The
boundaries of the free cell X are identity arrows on the object x, which
is the domain of f2.

As before, the inclusion of the cell X at the point indicated prevents
the wholesale identification of arrangements of this type.

We conclude:

Proposition 2.3 If we replace any subset of the arrows in (2) by identi-
ties and optionally specify the horizontal (or vertical) arrows to be equal,
there exists a double category D such that the equivalence problem for
the free extension of D by a cell of that shape is undecidable.

The following proposition shows that the absence of a cell in D with
the same boundary as X is not an essential feature of the construction
in the proof of Theorem 2.2. This proposition may be relevant in finding
naturally arising double categories for which free extensions give rise to
undecidability problems. Ordinarily, we do not concern ourselves too
much with the presentations of double categories, and it is tempting to
suppose that we can find the composition of any two cells. Even when
the double category has countably many cells, however, this may require
infinitely many separate pieces of information, enough for instance to
list the halting behaviour of every state of a universal Turing machine.
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In such a case, the assumption that we can know the composition of any
two cells would imply mathematical omniscience. To avoid this, we are
only considering double categories that are given by finite definitions of
some sort or another.

Proposition 2.4 Let D be a double category which may be freely ex-
tended by a cell X, such that the equivalence of arrangements of cells
of D[X] is undecidable; and let F: D -&#x3E; C be a faithful functors, the
action of which on the elements of D is computable. Then C has a

free extension C[Y] in which the equivalence of arrangements of cells is
undecidable.

Proof Suppose that this is not the case. Extend C freely by a a cell
Y whose boundaries are the images of those of X under F. Then F
induces a functor F: D[X] -&#x3E; C[Y]. Two arrangements A and A’ of
D[X] are equivalent if and only if F,A and FA’ are equivalent. This
contradicts our assumption that the equivalence problem is undecidable
for D[X]. I

Observation The argument above cannot be used to show that freely
adding a 2-cell to a 2-category may lead to undecidability for the equiv-
alence relation for the new 2-cells. However, the following argument
shows that this may lead to undecidability by showing how one may
simulate the connectivity problem for an infinite bipartite graph in this
situation. (This problem is known to be undecidable, see [7].) Let G be
a bipartite graph for which connectivity is undecidable. Suppose that A
is a 2-category and the cell X: f =&#x3E; g: A =&#x3E; B is to be added freely. Let
,A contain two arrows F: A -&#x3E; C and G: A -&#x3E; C and a triple ((av, hv, (3v)
for every vertex v in G, where av and /3" are 2-cells as in the following
diagram:
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For each edge vw in G, let there be the following cells and arrows

satisfying

The details of this example are left to the reader.

3 Free Extensions by Arrows
In this section we will consider, not only the free extension of a double
category by one arrow, but also the more general case in which we add
multiple arrows, possibly with non-trivial compositions relating them.
Let D be a double category, and let X be a category with the same
objects as D. We will construct the double category D[X] that is the
pushout of the following diagram in D-Cat

where Disc(D) is the discrete double category (that is, with only identity
arrows and cells) on the objects of D, and IH is as described in Section



53

1. That is, we extend the horizontal arrows of D by x, and we extend
the cells of D by the identity cells on arrows of X, i. e. cells of the form

Note that the cells from D only compose with these new cells along
identity arrows

A case of particular interest is that in which X is the free category
on a graph G. It may be seen that extending D by X is equivalent to
extending D by, in turn, an arrow corresponding to each edge of G.

The components of D[X] can be described as follows. The class of
horizontal arrows is generated by the horizontal arrows of D and the
arrows of X. So without loss of generality we may assume that elements
of D[X] are of the form

with hi in DH and xi in X. The cells of D [X] are generated by the
cells in D and the (vertical) identity cells ix for the new arrows. These
identity cells can only compose with cells of D along vertical identity
arrows, giving composable arrangements of the form

The structure of D[X] therefore depends heavily on the nature of the
cells in D with one or more identity arrows as horizontal domain or
codomain. We will say that two composable arrangements are equiva-
lent when they compose to the same cells in D[X].

Suppose that Do contains no horizontal one-sided cells except for the
identities on objects. Then none of the arrows hi or hi in (5) are iden-
tities. If also none of the xi are identities, we call such an arrangement
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an h- arrangement and the resulting cell in D [X] an h-cell; these exhaust
the new cells in D[X].

Proposition 3.1 If the double category D has no horizontal one-sided
cells, then each cell a in D[X] is a cell of D or an h-cell.

Proof We will show this by induction on the number of cells involved
in the composable arrangement. If there is only one cell a, it is either
a cell in D, or a vertical identity of an arrow of X (a special case of an
h-cell). Otherwise, without loss of generality, we may assume the last
composition to be vertical, that is, a = a’ * cx". There are four cases
to be considered, depending on the types of a’ and a". We will use the
following lemma:

Lemma 3.2 The dorrtains and codomains of h-cells are not arrows of
D.

Let such a domain or codomain be ho o x, 0 ... 0 Xn o hn. The (non-
identity) factors xi of such an arrow are separated from each other by
(non-identity) factors of the form hj and therefore cannot cancel.

From this lemma it follows that if one of a’ and a" is an h-cell, then
so is the other. If cods’ = dom a", they must have the same length
and their component cells can be composed vertically, to yield another
h-cell. 1

Note The h-arrangements will also be depicted as:

Lemma 3.3 Two h-arrangements in D[X]o are equivalent if and only
if all their corresponding components are equal.
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Proof It suffices to show that no composable arrangement can be
composed in two different ways to yield distinct cells of this form. We
will prove this by induction on the number of cells in the arrangement.

Assume the arrangement A contains only one cell. Clearly this cell
is of the form i.,, where x: B -&#x3E; A is an arrow in x; and the unique
h-cell to which A may be composed is iIB o ’X o iIA .

Suppose that A consists of more than one cell, and that every ar-
rangement smaller than ,A which composes to an h-cell does so uniquely.
At least one of the following three situations occurs:

1. A = ,A’ o ,A", where A’ and A" both compose to h-cells;

2. A = A’ o A", where one of A’ and A" composes to a cell in D
(and hence contains only cells of D) and the other one composes
to an h-cell;

3. A = A’ * A" (which implies that A’ and A" compose to h-cells).

If A may be factored in more than one way, Theorem 1.2 of [4] applied
to the double category of arrangements guarantees that the composition
is independent of the choice. Combining the same theorem (applied to
D) with the inductive hypothesis, we see that in each case A’ and A"
compose uniquely, from which the result follows.

It follows from Lemma 3.2 that h-cells are never equal to cells in Do.
So every cell in D[X] has a unique representation as either an h-cell or
a cell in Do and we can consider this as a normal form for the cells in

D[X]. In particular this shows:

Theorem 3.4 Let D be a double category that does not contain any
non-identity zero- or one-sided cells. If the equivalence of composable
arrangements in D is deczdable, then so is the corresponding problem in
D[X]. I

Remark This result is also applicable to 2-categories without non-
trivial cells with the identity as domain or codomain.



56

4 Horizontal Arrangements
In this section we consider the case where D contains no non-identity
zero-sided cells, but contains (without loss of generality) horizontal one-
sided cells.

4.1 Split Horizontal Cells One can compose the horizontal one
sided cells with cells of the form ix to obtain composable arrangements
of the forms

and

We will call these uh-arrangements and lh-arrangements respectively,
and their compositions uh-cells and lh-cells. We represent these ar-
rangements as

where the cells are

the (straight) arrows are

and ,

and the squiggly arrows are

and
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Note that

If y : A - Cl , y’ : A - C’1, z : Cm - B, and z’ : C’n -&#x3E; B are arrows

in X, such that y o x o z = y’ o x’ o z’, the cells (6) and (7), and the
identities on the arrows y, y’, z, and z’ can be composed as

or as a diagram,

We call these split horizontal arrangements and split horizontal cells, or
sh-arrangements and sh-cells for short.

Theorem 4.1 Let D be a double category without non-identity zero-
sided cells and X any category. The split horizontal cells of D[X] form
a 2-category., with horizontal and vertical corraposition given by pasting.

Proof It is clear that the horizontal domains and codomains of these
cells are identities. It remains to be shown that they are closed under
horizontal and vertical composition.

By middle four interchange for pastings, the horizontal composition
of two split horizontal cells is easily seen to be a split horizontal cell
again:
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In a diagram this can be seen as:

When we vertically compose two split horizontal cells, they paste as
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follows:

Note that the vertical domain of q and the vertical codomain of B’ are

both equal to x’ - x’1 o ... o x’; this follows from (9).
Expanding 7 * B’ yields

As the cells yi * B’i are zero-sided and hence by assumption are identities,
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this simplifies to ix’1o...ox’n, = ix’, and diagram (11) becomes

which is clearly split horizontal.
The middle four interchange law for cells in this 2-category follows

from the corresponding law for pasting diagrams. 1

4.2 H-Arrangements Composing split horizontal arrangements (Ji
horizontally with horizontal cells aj of D yields arrangements of the
form

where oj equals
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We call (12) an H-arrangement if none of the arrows xj,k or yj,k is an
identity arrow and none of the a-cells, with the possible exception of ao
and an, is one-sided. The resulting cell in D[X] is an H-cell.

Note that if the category X has a pair of arrows A -x B 1 A with
x o y = IA, the following diagram gives a composable arrangement which
is not an H-arrangement:

Theorem 4.2 Let D be a double category without non-identity zero-
sided cells, and X any category. The H-cells in D[X] form a 2-category,
with horizontal and vertical composition given by pasting.

Proof Consider two H-arrangements

and

Suppose that the horizontal codomain of ap is the horizontal domain
of ao, so that 7i and H’ can be composed horizontally. If neither the

vertical domain or codomain of aloa’ 0 is an identity arrow, the horizontal
composition

is ipso facto an H-arrangement. If (without loss of generality) the verti-
cal domain of a p o ao is an identity arrow, the part of the arrangement
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H o H’ around the cell a p o ao is of the form

This can be rewritten as

This is an H-arrangement unless xp,l(p) o x’1,0 = I. In that case, compose
(3p,l(p) and ,B’1,1 horizontally to obtain an H-arrangement. This completes
the proof that H-arrangements are closed under horizontal composition.

Now assume that H and H’ above can be composed vertically. We
prove by induction on l + m (the number of two-sided horizontal cells
in these H-arrangements) that

is an H-cell. If I = m = 1, o-1 and o’1 can be composed vertically since
there are no identity arrows from X in their domains or codomains. It

follows by middle-four interchange that H* H’ = (a0 * ao) o(o1 * o’1) o
(al * a’1) . It follows from Theorem 4.1 that o1* o’1 is an sh-arrangement
and it is obvious that it has no identity arrows from X in its domain
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or codomain, since these are the same as from the original o1 and o’1
respectively. So (15) is an H-cell.

Suppose that the vertical composition of any two H-cells that contain
fewer a-cells than 1-(, and 1-(,’ is an H-cell. Since H and 1-(,’ are vertically
composable, we have cod (H) = dom(H’). Moreover, by the definition
of H-arrangement, each has the same representation as a composition
ho o Y1 ... o Yn o hn, where each of the hi is the vertical codomain of

either a horizontal one-sided cell 7 or a horizontal two-sided cell a. It

is also the vertical domain of either a horizontal two-sided cell a’ or a
horizontal one-sided cell B’. So each a matches up with either an a’ or
a B’. 

If there is an index j with 1  j  p, such that aj matches up
with a cell a’, let IA be the horizontal codomain of aj. In this case

we can rewrite the composition (15) as the horizontal composition of
(a0 oo1 o...ooj oaj) and (iA 0 oj+1 0 aj+1 o ... o
up o ap) * (iA o o’k+1 o a’k+1 o ... o o’q o a§) . By the induction hypothesis,
each of these cells is an H-cell; this implies by the first part of this proof
that (15) is an H-cell.

The only case left is when every a in H matches up with a B in 1-(,’,
and consequently every a in 1-(,’ matches up with a -y in 71. For example,
the vertical composition of



64

and

can be represented by the H-arrangement

In general, the vertical composition will be of the form (ao * ao) o Q o
(a * a’), where Q is an sh-arrangement. I

4.3 Augmented H-Cells It is obvious that not all cells in the
double category D[X] are H-cells. We need to extend the class of

H-arrangements by allowing horizontal composition with three sided
cells from D. We call the resulting arrangement an augmented H-
arrangement.
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This composes to an augmented H-cell in D[X]. If the category X
contains non-trivial factorizations of identity arrows, in general, D[X]
will contain cells which are not augmented H-cells nor cells from D
(cf. diagram 14)). However, we will show in the next section that if
X does not contain such factorizations, every cell in D[X] is either an
augmented H-cell or a cell from D.

5 Decidability Results
In this section we want to discuss some conditions on the category X
that will ensure that the equivalence problem for arrangements in D[X]
is decidable. One would like to be able to decide whether two augmented
H-arrangements are equivalent. The equivalence relation on these ar-
rangements is in general non-trivial; for instance, in (16) a, may factor
as a vertical composition of two one-sided cells, possibly even in more
than one way. If horizontal cells factor at most uniquely into pairs of
one-sided cells, we have (rather uninterestingly) decidability. However,
if two one-sided cells can be composed and then factored into a different
pair, we will need conditions to limit the propagation of this equivalence.
For example, if in (16) we have

the cell 02,1 can be composed with either y2,1 or y2,2, and then subse-
quently refactored, perhaps differently. In Section 6 we will show how

this may lead to undecidability. The equations (18) form one exam-
ple of what we will call an Escher factorization (named in honour of
the creator of such works as "Waterfall’ and "Ascending and Descend-
ing"). (The reader may recall that Ehresmann introduced factorizations
similar to these in the proof of Proposition 52 in [12].)

Definition An Escher factorization is a quadruple ( f , 91, 92, h) of ar-
rows 

such that f = fg1g2, 9192h = h, where at least one of the 9i is not an
identity. We call the object B the base of the Escher factorization. Let
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9 = 9i92. If g = I we call the Escher factorization proper.
Escher factorizations are never found (for instance) in a partial order,

or a category that is generated freely by a graph. On the other hand,
any category with initial and terminal objects and some non-identity
endomorphism has an Escher factorization, as does any category with
a nontrivial idempotent arrow.

Lemma 5.1 Any nontrivial factorization of an identity arrow gives rise
to an Escher factorization.

Proof Let I = kl be a nontrivial factorization (i. e., neither factor
equals I). This gives rise to an Escher factorization (I, k, l, I). 1

Note that the example above with an idempotent arrow shows that
not every Escher factorization arises this way.

In this section we show that the absence of Escher factorizations in X
is sufficient to ensure that the equivalence of composable arrangements
in D [X] is decidable, even when D contains non-identity one- or zero-
sided cells. (It will be shown later (Theorem 5.5) that this condition is
also, in a certain sense, necessary.)
Theorem 5.2 Let D be a double category without non-identity zero-
sided cells and X a category without nontrivial factorizations of iden-
tities ; then each cell in D[X] is either a cell in Do or an augmented
H-cell.

Proof Let A be an arrangement of cells in D[X]o. If A contains only
cells in Do, it is obvious that it composes to a cell in Do. We will prove
by induction on the number of cells in .A that if A contains a cell of
the form ix, then the composition of ,A can be written as an augmented
H-cell.

If A contains only one cell, it has to be of the form ix. This is a spe-
cial case of an sh-cell, so A composes trivially to an augmented H-cell.
Let A contain more than one cell, and assume that every arrangement
with fewer cells than A containing cells of the form ix composes to an
augmented H-cell. The arrangement A must be a composition of smaller
arrangements, either
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In the first case, by the induction hypothesis, A1 and ,A2 compose
to cells that are either augmented H-cells or in Da; it is obvious that in
this case A composes to an augmented H-cell.

In the second case, both .4i and ,A2 compose to augmented H-cells,
A =a0 o o1 o a1 o .... o ol and A2=a’0 o o’1 o ... o om o a’m.
The arrangements A1 - al o al 0 ... o ol and .A2 = o’1 o cxi 0 ... o o’m are
H-cells. Since A1 and A2 are vertically composable, the cells A’1 and
A’2 are also vertically composable, and

It follows from Theorem 4.2 that A’1 * a’2 is an H-cell; therefore A1* A2
is an augmented H-cell. 1

Call an arrangement a0 oo 1 o a 1 o ... o o n an an expanded H-arrangement
if none of the ai with i = 1, ... , n - 1 can be factored as a vertical
composition of two one-sided cells.

Proposition 5.3 Every H-arrangement is equivalent to an expanded
H-arrangement.

Proof If the H-arrangement is not expanded, find a factorization for
each horizontal two-sided a-cell as a vertical composition of two three
sided cells B*,y and use ,Q and I in the place of a and ’disconnect’ them.
I

In a split horizontal arrangement
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the cells Bi and fj are called partners if x0 0 ... o xi-1 = xo o ... o x’j-1
and Xi 0 ... o zm = z’i o ... o x’n. (Note that a cell may possibly have
more than one partner or no partners at all.)

Lemma 5.4 If X has no Escher factorization, then each B-cell in a
split horizontal arrangement in D[X] has maximally one partner.

Proof Suppose that Bi has both fj and lk as partners and that j  k.
Let f = x0 o ... o xi-1, g = x’j o ... o x’k-1 and h = xi o ... o Xm.
The fact that Bi and fj are partners implies that f - x’o o... o x’j-1
and h = x’j o ... o x’n . Now it follows from the fact that Bi and yk are
partners that f - f g and gh = h. Moreover, Xj =1= I , so we have an
Escher factorization in X, contradiction. We conclude that Bi cannot
have more than one partner.

Theorem 5.5 If a category X has no Escher factorizations, and the
double category D has no zero-sided cells except for identities, then the
equivalence of augmented H-arrangements in D[X] is decidable.

Proof We show that under the conditions of the theorem two ex-

panded augmented H-arrangements 1-lI and 1t2 only compose to the
same cells when they satisfy the following requirements

1. H1 and ’H2 have the same domain and codomain, say

and

2. Hi and 1i2 have the same shape, i. e. hi is the domain of an a

(resp. /3) cell in Hi if and only if it is the domain of an cx (resp.
(3) cell in 712 and analogously for the h’i;

3. Corresponding three-sided and two-sided cells from D ( i. e., the
a-cells) in Hi and H2 are equal;

4. Corresponding one-sided cells Bi in Hi and B’i in 1i2 are equal or
they have partners 7j and /j’ respectively and 3i * Tj = 8i’ * ’J.
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Note that since partners are unique if they exist, this makes the equiv-
alence relation on augmented H-arrangements decidable.

To prove our claim we represent the expanded extended H-arrange-
ments H1 and R2 by diagrams as in Figure 2 to emphasize that these
are a composable arrangement of cells.

Figure 2: A composable arrangement in D[X].

The unmarked regions are filled with identity cells for arrows in
X. An arrangement as in Figure 2 can be changed into an equivalent
arrangement by any of the following operations:

O Factoring cells from D;

w Applying generalized associativity for double categories;

O Composing cells from D in D.

If two or more cells of D are factorized vertically along horizontal ar-
rows which are not identity arrows, and the factors are recomposed,
the pairing must (due to the absence of Escher factorizations) preserve
left-to-right order. Thus, the first factor of one cannot then be com-
posed with the second factor of another, (even if the horizontal arrows
are equal) as this would leave some remaining horizontal arrows un-
paired in the interior of the arrangement. The B- and ,-cells don’t have
non-trivial factorizations along identity arrows, since the category D
does not contain any non-trivial zero-sided cells. By assumption, the
arrangements 1tl and R2 are expanded, so the a-cells cannot be factor-
ized. So the only thing one can do is to compose (3- and ,-cells which
are partners and possibly factor them in a different way. Since the fact
that X does not contain Escher factorizations implies that partners are
unique, this implies the last three conditions above.
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Corollary 5.6 Let D be a double category. without non-identity zero-
sided cells and X a category without Escher factorizations. If the equiv-
alence problem for composable arrangements in D is decidable, then so
is the corresponding problem in D[X].

Remark It is obvious that this result also holds when D is a 2-

category.

6 Undecidability Results
Let X be a category with a one-sided inverse pair of arrows gi: B-&#x3E; C,
g2: C -&#x3E; B, with 91 o g2 = IB. Let D be a double category with the
same objects as X and a non-identity zero-sided cell with base C:

Then we have the following composable arrangement in D[X]:

Assume furthermore that D contains a set of cells as in diagram (4)
of Section 2.2, where x = B. The zero-sided cell (20) composes freely
with these cells. There are therefore composable arrangements in D[X],
containing (20) for which equivalence is undecidable.

Theorem 6.1 For any category X containing a non-trivial factoriza-
tion of an identity arrow there exists a double category D such that the
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equivalence of composable arrangements in D[X] is undecidable., whereas
the corresponding problem in D is decidable.

The factorization of the identity arrow used above is an (improper)
Escher factorization; a proper Escher factorization will not work. In the
remainder of this section we present an alternative construction, based
on the abacus model for universal computation, using a proper Escher
factorization.

Abacuses, first introduced by Lambek [14] and (as "register ma-
chines" ) by Minsky [15], are a class of abstract models for computation,
similar to Turing machines. Like Turing machines, they have finitely
many program states; however, instead of having infinitely many reg-
isters each with finite capacity, they have finitely many registers, each
capable of storing an arbitrary natural number. It is known [15] that
there exists a 2-register abacus which is universal, and hence has un-
decidable halting problem. Because it has a fixed, finite, number of
components, an abacus may be modeled more easily than a Turing ma-
chine or general rewrite system by structures that have, in some sense,
constant size.

6.1 Definition of an abacus For the convenience of the reader we
recall (cf. [9]):

Definition 6.2 An (n-register) abacus consists of
(i) A finite set of states S;
(ii) Variables X1, ..., Xnin N which are considered as the contents of
the registers;
(iii) A function Inst: S’ -&#x3E; {INCX, INCY, DECX, DECY, HALT};
(iv) A starting state so E S;
(v) Transition functions o: S - S and o’: S’ -&#x3E; S’.

In this paper we will only be interested in the notion of a 2-register
abacus, so from now on we will take n = 2 in the definition above, and
use X and Y as variables for the registers. The behaviour of the abacus
is a function S x N x N - S x N x N
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defined as follows

We can represent this by a graph whose nodes are the elements of S
and whose edges are of the form

So the a and Q’ permit branching at nodes s with Inst(s) E {DECX, DECY}.
Here is a simple example which adds the contents of the X-register and
the Y-register and puts the sum in the X-register and 0 in the Y-register.

If one starts with X = 4 and Y = 3, this abacus would go through
the following states: (so, 4, 3) -&#x3E; (s2, 4, 2) -&#x3E; (so, 5, 2) H (s2, 5,1) H
(so, 6, 1) - (S2, 6, 0) -&#x3E; (so, 7, 0) -&#x3E; (si, 7, 0) HALT.
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6.2 The double category DA Let X be a category containing an
Escher factorization A -&#x3E; f B -&#x3E;g B -&#x3E;h C, as in (19), and A a 2-register
abacus. With the notation as above, the double category DA is defined
as follows. The objects of DA are the objects of X . Let B be the
base of the Escher factorization in X. The horizontal arrows of DA are
generated by

If the Escher factorization is not proper, i.e. g - I, its composites
gl: B - D and g2 : D -&#x3E; B are not identities. In this case, the double

category DA also contains an arrow d: D -&#x3E; D
The cells of DA are generated by:

1. For each n E N, two cells

2. For each program control state s, a cell

3. For each instruction p E {INCX, INCY}, two cells

4. For each instruction p E {DECX, DECYI, three cells
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5. A cell

6. If the Escher factorization is not proper, a cell

7. Cells

for k’ E {IB, r} and any arrow k which factors through both c and
either x or y.

The arrows compose freely. The cells compose freely with the fol-
lowing exceptions. Any composable arrangement with domain k and
codomain k’ as in (7) above, involving both a cell of the form C(s) and
a cell of the form X(i) or Y(i), composes to wkl . We also have the
following specific identities:
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It is straightforward to verify that equality in (DA)O is decidable in

linear time.

We will now show that given any initial state of the abacus there are
composable arrangements in DA[X] which are equivalent if and only
if the abacus halts from a certain initial state. Let (so, io, jo) be the
initial state of the abacus A. If the Escher factorization in X is proper,
consider the following composable arrangement in DA[X]:

The upper edge of the central identity cell i fh may be factored as f h in
three formally different ways, viz, f (ggh), (fg)(gh), and ( f gg)h. Thus,
such an arrangement may always be composed as

or

In each case, it may be possible to refactor the central term in a different
way, using the identities above. We will call a refactorization that re-
places the left side of one of these identities by the right side "forward" ,
and one that replaces a right side by a left side "backvvard" .

Examining the identities, we see that after a forward refactorization
involving an X cell, we have only three possibilities.

9 If we compose the resulting O cell with a Y cell, the composite
has no other factorizations.
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9 If we compose the 0 cell with the X cell again, this is backward,
and the inverse of the previous refactorization.

. If we compose the O cell with the C cell, there is a unique refac-
torization, which is again forward.

The possibilities after a forward refactorization that involves a Y cell
are analogous. After a forward refactorization involving a C cell, there
may be multiple backwards options, but there will be a unique forward
refactorization, always involving an X cell or a Y cell.

Refactorizations involving C cells correspond to changes of state in
the abacus, and those involving X or Y cells correspond to register
operations. A pair of forward refactorizations, changing first an X or
Y cell and then a C cell, corresponds to one step in the operation of
the abacus. Backward refactorizations correspond to backward steps in
a reversible abacus; the halting problem for such a machine is known
to be equivalent to that for the corresponding non-reversible machine
(see the proof of Theorem 1 in [9]). Determining whether there exist
integers m and n and a control state s such that the composition of
this arrangement is equal to the composition of the arrangement (21) is
equivalent to the halting problem for the abacus A.

If the Escher factorization is not proper, consider the following com-
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posable arrangement in DA[X]:

Determining whether there exist integers ni and n and a control state
s such that the composition of this arrangement is equal to the compo-
sition of the arrangement (22) is equivalent to the halting problem for
the abacus A.

We conclude:

Theorem 6.3 For every category X containing an Escher factorization
there is a double category D such that the equivalence of composable
arrangements in D[X] is undecidable.

Remark Since all the cells in the constructions of this section have

identity cells as horizontal domains and codomains, it is clear that this
result is also applicable for D a 2-category. Note that this is not true for
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the result of Theorem 6.1. So for 2-categories only the proper Escher
factorizations can cause undecidability.
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