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FORBIDDEN FORESTS IN PRIESTLEY SPACES

by Richard N. BALL and Ale0160 PULTR

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XL V 1 (2004)

Dedicated to the memory of Japie Vermeulen

RESUME. . Les auteurs pr6sentent une formule du premier ordre
caract6risant les treillis distributifs L dont les espaces de Priestley P(L) ne
contiennent aucune copie d’une for6t finie T. Pour des algebres de
Heyting L le fait qu’il n’y ait pas d’ordre fini T dans P(L) est caracterise
par des 6quations ssi T est un arbre. Ils donnent une condition qui
caract6rise les treillis distributifs dont les espaces de Priestley ne
contiennent aucune copie d’une for6t finie avec un seul point additionnel
a la base.

1. Introduction

Priestley duality provides an important link between distributive lat-
tices and (special) ordered topological spaces. Some properties of dis-
tributive lattices L are well-known to be expressed in forbidden config-
urations in the order structure of the corresponding spaces P(L). Thus,
for instance, L is a Boolean algebra iff P(L) has just one layer, that is,
if it contains no non-trivial chain. Or L is relatively normal iff P (L) is
a forest, that is, if it contains no copy of the three element set of Figure
1; see Proposition 4.2. Or there are the distributive lattices of Adams
and Beazer characterized by non-existence of an n-chain in P(L).
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FIGURE 1. A poset is a forest iff it contans no copy of this poset.

The question naturally arises as to whether, given a finite poset T,
the lattices L for which P(L) does not contain a copy of T can be char-
acterized by a first order condition in the language of lattice theory. In
this article we answer this question in the positive for trees and forests
T, and for their duals. Moreover, for Heyting algebras L we show that
trees are precisely the forbidden configurations which determine sub-
varieties (or, equivalently, subquasivarieties) of the variety of Heyting
algebras.
The authors continue to investigate the general problem: to find

"nice" conditions characterizing those lattices whose Priestley spaces
admit no copy of a given poset. In this article, the techniques devel-
oped for forests are modified to treat forests with a single additional
point at the bottom; this is Theorem 6.6. The condition that arises,
however, is not first order on its face, and we do not know if a first
order condition exists. Many more types of posets can be handled simi-
larly, and in fact a solution to the general problem seems possible. But
these results constitute another article in preparation.

2. Preliminaries

A Priestley space is an ordered compact space (X, T, ) such that for
any two x, y E X with z $ y there is a closed open increasing U C X
such that x E U and y / U. The category of Priestley spaces and
monotone continuous maps will be denoted by

PSp.
There is the famous Priestley duality (see, e.g., [9], [10]) between PSp
and the category

DLat

of bounded distributive lattices. The equivalence functors
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can be given as

x is a proper prime ideal on L},
clopen decreasing

P(L) is endowed with a suitable topology and partially ordered by in-
clusion ; in this article we will be concerned solely with the partial order.

Finite Priestley spaces are the finite partially ordered sets (with the
discrete topologies). Note that, however, the functor D associates with
a finite (X, ) the (lower) Alexandroff topology (not the discrete one)
and that thus the restriction of D to the finite case coincides with the
restriction of the open-set-lattice functor Q : Top Frm to finite To-
spaces. (Frm is the category of frames, that is, complete lattices with
the distributivity (V ai) A b = V(ai A b).)
The full subcategory of DLat consisting of the Heyting lattices, i.e.,

those lattices of DLat admitting the Heyting operation, will be denoted
by

HLat.

We will also consider the variety of Heyting algebras with Heyting ho-
momorphisms and denote it by

Hey.

The letters a, b, c and d, often decorated by subscripts or primes, will
be reserved for the elements of the distributive lattices. The prime
ideals on such lattices L (elements of P(L)) will be typically denoted
by x, y, z. For a subset A C L we use

Ao for some finite . and

Ao for some finite .

to designate the ideal and filter, respectively, generated by A. The set
of all proper ideals on L (ordered by inclusion) will be denoted by

Definition 2.1. If A is an ideal and B a filter on L we set
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Obviously, A | B is an ideal and A t B is a filter. For general subsets
A, B C L we write A | B meaning Id1(A) | Fltr(B). For elements

a, b E L we write a|B and A| b for {a} | B and At {b}. Thus for
instance a | b = {c | b A c  a}. The dual conventions apply to A | B
and a | b.

Lemma 2.2. Let A, B C L. Then the following, and their duals, hold.

(1) A C A | B.
(2) (A|B)|B=A|B.
(3) A | B is proper iff A n B = 0.
(4) For an ideal A and a filter B such that A | B is proper (that is,

A fl B = 0) there is an x E P(L) such that A C x and x fl B = Vl.

Proof. We leave the proofs of the dual statements to the reader. (1)
1^aa. (2) IfcE(A|B)|B there is a d E A|B and a b E B such
that b ^ c  d. There is an a E A and a b’ E B such that b’ ^ d  a;
hence (b ^ b’) ^ c  a. (3) A|B is proper iff 1 E A|B iff b i. a for
anyaEAandbEB.

(4) Using Zorn’s lemma we obtain an ideal J maximal with respect
to J D A and J fl B = 0. J is prime, for if cl, C2 tfi J it can only be
because there exist bi E Idl (Cï, J) fl B, from which we get 

and this implies that

The symbol

will designate a finite poset. This poset will play a central role in our
considerations. 

Definition 2.3. A map m : T -3 J(L) (resp. m : T -&#x3E; P(L)) is said to
be monotone if

and m is said to be a copy of T if it is monotone and

A mapping a : T -&#x3E; L is a separator of a monotone map m : T -&#x3E; 3(L)
(resp. m : T -&#x3E; P(L)) provided that for all t,T E T,
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We say that a separates m.

We introduce a handy notation.

Definition 2.4. For a map a : T -&#x3E; L define an associated map a’ :
T - L by the rule

Then a separates the monotone map m iff a’ (t) E m (t) and a (t) E
m (t) for all t E T.

Obviously a monotone map with a separator is a copy, whether in
3 (L) or P (L). The converse holds for monotone maps into P (L).
Lemma 2.5. Each copy : T -&#x3E; P(L) has a separator.

Proof. Fix t E T. For each T  t choose a b(T) E x(T) B x(t) and set
a(t) = !B,,-it b(r). Since x(t) is prime, a(t) E x(t). Of course a(t) E z(T)
for all the t  t, which gives a’ (t) E x (t). 0

3. Prohibiting forests

In a poset we will write

and say that r is a descendent of t, or that t is an ascendent of r, if
T  t and if for every s, T  s  t implies that either s = r or s = t.
Denote by

O max(T) the set of all maximal elements of T, and by
O min(T) the set of all minimal elements of T.

A finite poset T is said to be a forest if each t E T has at most
one ascendent. A forest T with exactly one maximal element is called
a tree, and its maximal element will be denoted by eT, or simply by
e. Obviously, forests are precisely the disjoint unions of trees. From
this point until Theorem 5.1 we assume T to be a forest. Without this
assumption the next result, which is crucial for our purposes, does not
hold.

Proposition 3.1. Let a : T - L separate the copy J : T -&#x3E; J(L). If
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then there is a copy x : T -&#x3E; P(L), separated by the same a, such that
z(t) D J(t) for all t.

Proof. First, for maximal elements t of T choose x(t) E P(L) such
that x(t) ;2 J(t) and x(t) n Fltr(a(t)) = 0, by Lemma 2.2(4). Then

a(t) E x(t), and for any other maximal t’ we have a(t’) E J(t) g x(t).
Now suppose J has already been extended as desired on an increasing

subset T’ of T containing max (T). Let T" be T’ augmented by all the
descendents T of elements t minimal in T’. For T E T" w T’ with
ascendent t we have

Indeed, otherwise we would have b A a (T) E J(T) for some b E x(t)
and hence b E J(7) ¡ a(T) = J(T) C J(t) C x(t), a contradiction.
Choose by Lemma 2.2(4) an x(T) in P(L) such that x(,r) =-2 J(T) and
x(T) n Fltr((L w x(t)) U {a(T)} = 0. In particular, a(7) fj. x(T) and
a’ (T) E J (T) C x (T) by construction. When this process is complete,
it is clear that we have a monotone map x : T -&#x3E; P (L) separated by
a. 0

Definition 3.2. Let T be a forest and a : T - L any mapping. Define
Ia : T -&#x3E; 3(L) inductively by setting

Lemma 3.3. If a separates a copy x : T - P(L) then Ia(t) 9 x(t) for
alltET.

Proof. We induct on T from the bottom up. If t E min (T) then any
c E Ia(t) satisfies c A a(t)  a’(t) E x(t). Since a(t) E x(t) and x(t) is
prime, c E x(t). Assume that Ia(T) g x(T) for all T « t. If c E Ia(t) we
have

for some b, E Ia (T) C x(T) 9 x (t), T  t. But then since a’ (t) E x (t)
we see that c A a(t) E x(t), and because x (t) is prime and a(t) E x(t),
c must therefore lie in x(t). 0
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Lemma 3.4. Let a : T - L be any map. Then the following hold for
all t, E T.

then .

Proof. (1) yields to a simple induction on T using Lemma 2.2(1), and
(2) follows from Lemma 2.2(2). 0

Theorem 3.5. Let T be a finite forest and let L be a bounded distributive
lattice. Then P(L) does not contain a copy of T iff for each a : T -&#x3E; L
there is a t E max (T) such that Ia(t) is improper.

Proof. Let P(L) contain a copy x : T -3 L separated by a : T - L.
Then by Lemma 3.3 each Ia(t) lies in the proper ideal x(t). On the
other hand, if there is an a : T -&#x3E; L such that Ia(t) is proper for all t
then from Lemmas 2.2(3) and 3.4(2) we can conclude that for all t E T,
a(t) E Ia(t) since otherwise Ia (t) would be improper. Furthermore,
Lemma 3.4(1) shows that a’(t) E Ia(t) for all t. Since Ia is monotone
there is a copy x : T -&#x3E; P(L) separated by a by Proposition 3.1. 0

Our next objective is to show that the absence of a copy of T in
P (L) can be characterized by the satisfaction in L of a specific first
order sentence çT in the language of lattice theory, Corollary 3.10. For
that purpose let us rewrite the formulas of Definition 3.2 in a slightly
more specific form. Recall that a’ (t) is the join of the a (Q)’s with o, 4 t.
Now if Q &#x3E; T for some T  t then o &#x3E; t since T is a forest. Thus

Now those a’ (T)’s with T  t are already in the Ia (T)’s by Lemma
2.2(1). Therefore the formulas of Definition 3.2 can be replaced by

This observation motivates the following definition.



9

Definition 3.6. Let a : T -&#x3E; L be any function. A T-supplement of a
is a function c : T -&#x3E; L such that for all t E T,

A T-complernent of a is a T-supplement c for which c (t) = 1 for some
t E max (T).
The remarks prior to Definition 3.6 make it clear that c (t) E Ia (t)

for all t E T whenever c is a T-supplement of a. This allows us to
reformulate Theorem 3.5 in terms of T-complements in Theorem 3.9.

Example 3.7. Denote by n the chain 10  1 ...  n}. An n-com-
plement of a system (a0, a1,..., an) is a (co, cl, ... , cn) such that

and

Thus, (a,1) has exactly one 1 -complement, namely the (c,1) with c the
complement of a in L.

Observe that if (co, ... , Cn-1, cn) is an n-complement of a system of the
form (ao, ... , an- 1, 1) then it is also an n-complerraent of (ao, ... , an-1) an)
for any an. Thus every system (ao, ... , an) has an n-corrapdement iff for
every smaller system (ao, ... an-1) there is some (co, ... , cn-1) such that

and

Example 3.8. Let T be an antichain. Then a : T -&#x3E; L has a T-

complement iff there is a t E T such that

Theorem 3.9. Let T be a finite forest and L a bounded distributive
lattice. Then P(L) does not contain a copy of T iff each mapping a :
T -&#x3E; L has a T-complement. If T is a tree this in turn is equivalent to
requiring that each a : T -&#x3E; L such that a(eT) = 1 has a T-complement.
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Proof. To use Theorem 3.5 fix a map a : T -&#x3E; L. We have already
remarked that if c is a T-supplement of a then c (t) E Ia (t) for all
t E T. Since the Ia (t)’s are all proper, no c (t) can be 1. On the other
hand suppose that for some to E T we have

Without loss of generality we may assume that to E max (T). Set

c (to) - 1. Then there must be elements c (T), T  to, such that

Now we can proceed inductively. If c (t) has already been chosen in
Ia (t), we have a (t)nc (t)  Y T--(t c (7)VY T--(t a (T) for some c (T) E Ia (T),
t  t. Proceeding thus down to the minimum elements under to, and
defining c (t) - 0 for all t not below to, we obtain a T-complement of
a. 0

We remark in passing that it is not difficult to show that for any mono-
tone map a : T -&#x3E; L and any t E T, To (t) = {c (t) : c T-supplement of a}.

Corollary 3.10. For any forest T there is a sentence 1bT in the first
order language of lattice theory such that for any bounded distributive
lattice L, P (L) contains no copy of T iff çT holds in L. Moreover, ’OT
is of the form VZo, where 0 is quantifier-free and built up from atomic
formulas by conjunction and disjunction. If T is a tree then 0 is a

conjunction of atomic formulas.

Proof. Let xt, yt, t E T, be syntactic variables. We think of maps a, c :
T -&#x3E; L as assigning values a (t) to variables zt and c (t) to variables
yt, t E T. Furthermore, a look at Definition 3.6 reveals that most of
the inequalities which make c a T-complement of a are combined by
conjunction, with the only disjunction being

where max (T) - ftl, t2, ... , tn}. If T is a tree there is only a single
disjunct, i.e., the formula is atomic. The result follows from Theorem
3.9. D
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Example 3.11 (Example 3.7 revisited). We obtain the characterization
of Adams and Beazer [1] stating that P(L) contains no chain of length
n iff for any ao, a,, ... , an-1 in L there are co, cl, ... , cn-1 in L such that

and

In particular, the order in P(L) is trivial iff L is a Boolean algebra.

Example 3.12 (Example 3.8 revisited). Each antichain in P(L) has
at most n - 1 elements iff for any a,, ... , an in L there is a k such that

Example 3.13. No antichain with at least n elements, n fixed and
&#x3E; 2, has an upper bound in P (L) iff for any al, ... , an E L there are
c’, ... , c’n E L such that for all k, ak ̂ c’k  Vi=k aj, and Vi aj V Vj cj =
1. Replacing the ck by Ck = Ck V Vjlk aj, we see that no antichain with
at least n el ements, n fixed and &#x3E; 2, has an upper bound in P(L) iff for
any al, ... , an E L there are cl, - - - , cn E L such that for all k,

and

Example 3.14. P(L) has no independent system of n 1-chains iff for
any a1, ... , an and bl ... , bn in L there are C1, ... , Cn in L and a ko such
that

and

The characterizations in the theorems above can be easily modified
for dual trees and dual forests. Denote by |P(L) the poset structure of
P(L). A prime ideal in L is a prime filter in L°P, and vice versa. Thus
we have an anti-isomorphism

and

Hence, T°P is forbidden in P(L) iff T is forbidden in P(Lop). For ex-

ample, since T is isomorphic to TOP in Examples 3.11 and 3.12, the
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conditions that arise there must be equivalent to their duals. In fact,
they are self-dual. This is obvious in the case of Exercise 3.11; to see
that the condition of Example 3.12 is self dual, suppose that for any
subset {ai : 1  i  n} g L there is a k such that ak  Vj,4k aj. Apply
this condition to to get a k for which

which shows that ak &#x3E; Ai:ok ai, i.e., L satisfies the dual condition.

4. Normal and relatively normal lattices

We digress for a brief discussion of normal and relatively normal lat-
tices. Most of this material is well-known; we offer proofs only because
the ideas are very close in spirit to those of the rest of this article.

Recall that a distributive lattice L is normal if for any two a1, a2 E L
such that al V a2 = 1 there are cl, c2 E L such that al V c1 &#x3E; a2,

a1 Vc2 &#x3E; aI, and CIÂC2 = 0. This is an extrapolation of the homonymous
notion from topology: a space is normal iff the lattice of open sets
is normal in the sense just defined. The following characterization of
normal lattices in terms of their Priestley spaces is well known and is
essentially due to Monteiro ([7], [8]), who proved it in the context of the
open set lattice of a space.

Proposition 4.1. The following are equivalent.
(1) L is normal.
(2) Every point of P (L) lies below a unique maximal point.
(3) In P (L), any pair of elements with a common lower bound must

have a common upper bound.

Proof. The equivalence of (2) and (3) is clear upon reflecting on a general
fact about Priestley spaces: every point lies below a maximal point and
above a minimal point. That is because the family of prime ideals of
a distributive lattice is closed under both the union and intersection of
chains.

Suppose that L is normal, and assume for the sake of argument that
P (L) contains a point X3 which lies below two distinct maximal points
x, and x2. Since Idl (Xl, X2) is improper, there are a, E x, B X2 and
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a2 E X2 B x, such that al V a2 = T. Find ci, c2 E L for which al V c2 =
cl V a2 = 1 and CIÅ c2 = 0. Then because X3 is prime, it contains either
ci or C2. But if ci E X3 then 1 = ci V a2 E X2 and if c2 E X3 then
1 = al V cz E xl, a contradiction in either case. We conclude that every
point of P (L) lies below a unique maximal point.
Now suppose that L is not normal; this means we have elements a,

and a2 for which al V a2 = 1 but Fltr (al t a2, a2 T al) is proper. Let
7 designate the set of pairs (F1, F2) of filters on L with the following
properties.

O al fix a2 C Fl and a2 t al C F2.
O Fltr (al fi Fl, a2 t F2) is proper.

Note that 7 is nonempty because it contains (al fi a2, az T al) by
hypothesis. Also note that, when ordered by the rule

and .

7 is closed under joins of chains and so contains a maximal element
(K1, K2). Observe that Kl = al t K1 and K2 = a2 f K2 by maximality,
so that al ft Kl and a2 ft K2 lest the filters be improper. We claim that
Kl and K2 are prime. To verify this claim consider b, b’ E K1. This

implies that there are elements ki, k’ E Kl and k2, k’ E K2 such that

But if we set k"1 = k1 ^ k’1 E Kl and kg = k2 V k’2 E K2 we get

which implies b V b’ E K1. The proof that K2 is prime is similar.
Let Xl, X2 be maximal elements of P (L) containing the prime ideals

L B Kl and L B K2, respectively. Then a, E Xl B X2 and a2 E X2 B xl,
so the maximal elements are distinct. Let X2 be maximal among ideals

disjoint form Fltr (K1, K2) . Then X3 is a common lower bound for x1
and x2 in P(L). 0

A lattice L is relatively normal if for any two al, a2 E L there are
cl, c2 such that a, V c1 &#x3E; a2, a2 V c2 &#x3E; al, and ci A c2 - 0. In topol-
ogy this corresponds to the requirement that each open subspace of the
space in question is normal. Relative normality plays a fundamental,
though sometimes unacknowledged, role in several areas of mathemat-
ics. For example, the lattice of cozero sets of a topological space is



14

always relatively normal [6], and it is no accident that relative normal-
ity is the key ingredient in the construction of what are called Wallman
covers of topological spaces [5]. A second example is the penetrating
and beautiful structure theory of lattice-ordered groups (t-groups for
short), developed by Conrad and his students ([3] is the best general
reference), based on the lattice of convex i-subgroups. This lattice is

algebraic, i.e., complete and generated by its compact elements, and the
compact elements themselves form a relatively normal sublattice. The
class of just such lattices, devoid of any group structure, was subse-
quently extensively investigated by Tsinakis and his students ([4], [11],
[12]). Their work shows that a large part of the t-group structure the-
ory comes directly from the lattice theory, and in fact from the relative
normality of the sublattice of compact elements of the lattice of convex
t-subgroups.
We content ourselves here with the observation that the relative nor-

mality of L is equivalent to P (L) being a forest. This is essentially due
to Monteiro ([7], [8]), who proved it in the context of the open set lattice
of a space.

Proposition 4.2. L is relatively normal iff P(L) is a forest.

Proof. The definition of relative normality is the dual of the condition
of Example 3.13 for n = 2. Thus L is relatively normal iff no two
unrelated elements of P (L) have a common lower bound, i.e., iff P (L)
is a forest. D

Thus Proposition 4.2 characterizes the relative normality of L by the
prohibition of the poset of Figure 1 in P (L). The reader may naturally
ask whether the normality of L can be likewise characterized. The
answer is negative. Take a standard example of a normal space A with
subspace B which is not normal, and let L and M be the topologies (sets
of open sets) of A and B, respectively. Let h : L -&#x3E; M be the mapping
which sends U to U n B. This is an onto lattice homomorphism, and
it is easy to check that P (h) : P (M) -&#x3E; P (L) is an order embedding.
Now if normality of a lattice were characterized by the nonexistence of
a copy of a finite poset in its Priestley space then such a copy would
exist in P (M) but not in P (L), a contradiction. 

’
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5. Equations forbidding trees

We show that if L is a Heyting algebra then each map a : T - L has
a largest T-supplement, which we will designate aT . (We order maps
a, b : T - L by declaring that a &#x3E; b if a (t) &#x3E; b (t) for all t E T.) Thus
any such map a will have a T-complement iff aT is a T-complement. This
fact eliminates the existential quantifier in the sentence 1bT of Corollary
3.10. Consequently the Heyting algebra whose Priestley spaces contain
no copy of a given fixed tree form a variety. The surprise is that only
trees have this property; this is the content of Theorem 5.9.

For the rest of this section we assume that L is a Heyting lattice,
i. e., that L is a bounded distributive lattice which admits the Heyting
implication operation -&#x3E;. When actually equipped with this operation,
L becomes a Heyting algebra and the maps are required to preserve -&#x3E;

as well as the lattice structure. We ask the reader to keep in mind the
defining feature of -&#x3E;, namely that for a, b, c E L,

Definition 5.1. Let L be a Heyting algebra. For a : T -&#x3E; L define
aT : T -&#x3E; L inductively as follows.

Lemma 5.2. Let L be a Heyting algebra. For any map a : T -&#x3E; L, aT
is the largest T-suPplerraent of a.

Proof. Compare Definitions 3.6 and 5.1 in light of (*). 0

Corollary 5.3. Let L be a Heyting algebra. Then a map a : T -&#x3E; L
has a T-complement iff aT is a T-complement.

Corollary 5.4. Let L be a Heyting algebra. For any map a : T -&#x3E; L,

for all 

Corollary 5.5. Let L be a Heyting algebra. P (L) contains no copy of
T iff for every map a : T - L we have aT (t) = 1 for some t E max (T).
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Corollary 5.6. Let L be a Heyting algebra and T be a tree with top
element e. Then P (L) contains no copy of T iff aT (e) = 1 for every
map a : T - L.

The condition of Corollary 5.6 can be captured by the satisfaction of
a particular first-order formula in the language of Heyting algebras. For
the aT (t)’s of Definition 5.1 build up to

where pT is a polynomial in V and -&#x3E; into which the values of a are
inserted. Thus we have the following.

Corollary 5.7. For every tree T there is a polynomial pT in V and
with variables indexed by the nodes of T such that a Heyting algebra L
satisfies the equation pT (a) = 1 iff P (L) does not contain a copy of T.
We pause to review the main features of Priestley duality in the con-

text of Heyting algebras. For a subspace U of a Priestley space X,
denote as usual

(The danger of confusing this notation with the use of t and | elsewhere
in this article is minimal, since there they designated binary functions
on subsets of the lattice, whereas here they designate unary functions
on subsets of the Priestley space.)
Remark 5.8. The following facts are well-known.

(1) D (X) is a Heyting algebra iff |U is open for every open U C X.
(2) The Heyting operation in D (X), in terms of clopen downsets U

and V, is then

(3) If D (X) and D (Y) are Heyting algebras then a Priestley map
f : Y - X yields a Heyting homomorphism D ( f ) : D (X ) -&#x3E;
D (Y) iff for all x E X,

The last fact will be crucial in the remainder of this section.
For the rest of this article zve suspend the convention that T is a

forest, and assume henceforth only that T is a finite poset.
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Theorem 5.9. Let T be a finite poset, and let X be the class of Priestley
spaces X such that the Priestley dual of X is a Heyting lattice, and such
that X contains no copy of T. Let V be the class of Heyting algebras with
Priestley spaces (of the underlying lattices) in X. Then the following
statements are equivalent.

(1) T is a tree.
(2) V is a subvariety of Hey determined by one extra equation in V

and -&#x3E;.

(3) V is a subquasivariety of Hey, i. e., V is closed under products
and subobjects.

Proof. The implication from (1) to (2) is Proposition 5.7, and from (2)
to (3) is trivial. So assume (3) to prove (1). Since V is closed under

products, X is closed under sums and hence T has to be connected.
Now define T as the set of all words iv = tlt2 ... tn in vertices ti of T
such that tn is maximal and ti  ti+l for all i  n. Order t by declaring

iff for some 

Define f : T -+ T by setting

Then

(a) f is monotone and onto,
(b) f (|w) =|f (w), and
(c) if w « w’ then w’ is uniquely determined.

If L and L are the Heyting algebras with Priestley spaces T and T,
we have L isomorphic to a subalgebra of L by Remark 5.8(3). Hence

L 0 V since otherwise L E V and T E X. Thus T contains a copy of T,
and by (c) and the connectedness we see that T is a tree. 0

Restricting ourselves to the finite case we similarly obtain the follow-
ing.

Theorem 5.10. Let T be a finite poset, let X be the class of finite
posets containing no copy of T, and let V be the class of Heyting algebras
with Priestley duals (of the underlying lattices) lying in X. Then the

following statements are equivalent.
(1) T is a tree.
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(2) V is the class of finite algebras of a subvariety V of Hey deter-
mined by one extra equations in V and -. 

(3) V is the class of finite algebras of a subquasivariety of Hey.

6. Forests with a bottom point

The general problem we would like to solve is to find, for any finite
poset T, a "nice" condition on a lattice L which is both necessary and
sufficient to insure that P (L) admits no copy of T. In this section we
make use of our techniques to provide a small step in the direction of
the general problem by treating the case of a forest with one additional
point at the bottom. The result is Theorem 6.6, and the reader may
judge whether the condition on L which arises there is nice. However,
this condition is not first order on its face, and we do not know if a
first-order condition exists.

Throughout this section T designates a finite poset with least element
to such that T’ - T B Itol is a nonempty forest. We retain some of the
notation used heretofore; for example, the map a’ : T - L associated
with the map a : T -&#x3E; L is still given by the rule

Note in particular that a’ (to) = 0, and that as before, a separates a
copy m : T - 3 (L) iff a’ (t) E m (t) and a (t) V m (t) for all t E T. We
must, however, modify slightly the notion of a T-supplement of a map
a: T -+ L.

Definition 6.1. Let a : T -3 L be any function. A T-supplement of a
is a function c : T - L such that

A T-complement of a is a T-supplement c for which c (t) = 1 for some
t E max (T). We let

c is a T-complement of a} .
The distinction between the two notions of T-supplement, i.e., be-

tween Definitions 3.6 and 6.1, is subtle. The crucial difference is that,
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although c (to) appears on the right-hand-side of some of the inequali-
ties displayed in Definition 6.1, it never appears on the left-hand-side of
such an inequality.

Lemma 6.2. Let x : T - P (L) be a copy and let c : T - L be a

T-complerraent of a separator a of x. Then c (to) E x (to).

Proof. Put S - Is E T : c (s) E x (s)}. Since c (t) = 1 for some t E
max (T ), we see that t E S n max (T) = 0. And since for every s E S n T’
we have Vts c (T) V VTs a (T) &#x3E; a (s) n c ( 8) i: x (s) and V,,,, a (T) E
x (s), it follows that there is some ts such that T E S. We conclude
that to E S. 0

Corollary 6.3. If a separates a copy x : T - P (L) then F (a) is a

proper filter.

Proof. Since c (to) V x (to) for any T-complement c of a by Lemma 6.6,
and since a (to) V x (to) by definition of separator, the generators of
F (a) all lie in the proper filter L B x (to). 0

Proposition 6.4. Suppose a : T -3 L is such that F (a) is a proper

filter. Then for any I e 3 (L) such that I n F (a) = 0 there is a copy
x : T -&#x3E; L separated by a such that I C x (to).
Proof. First use Lemma 2.2(4) to find a point y in P (L) such that I C y
and y n F (a) = 0. Then define J : T’ - 3 (L) inductively as follows.

O For t E min (T’), J (t) m (y, a’ (t)) | a (t).
O For t E T’ B min (T’), J (t) = (Urt J (T) U {VTt a (7)}) | a (t).

We claim that J (t) is proper for all t E T’. For if not, then because J
is monotone there are elements t E max (T) for which J (t) is improper.
In this case we can define a T-complement c for a as follows. For
t E max (T) choose c (t) to be any member of J (t), subject only to the
proviso that c (t) is chosen to be 1 whenever J (t) contains 1. Suppose
now that c (t) has been defined for some t E T’ B min (T’) in such a
way that c (t) E J (t). Since J (t) = (lJT jt J (T) U {VTta (T)}|a (t),
there exist Cr E J (T), T « t, such that Vtt a (t)V VTt cr &#x3E; a (t) Ad (t).
Put c (T) - cr for T  t. Finally, suppose that c (t) has been defined
for all t E min (T’) in such a way that c (t) E J (t) = (y,a’(t)) -!- a (t),
say a (t) A c (t)  bt V a’ (t) for bt E y. Define c (to) = Vmin(T’) bt E y.
The resulting map c : T - L is clearly a T-complement for a such
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that c (to) E y, contrary to the hypothesis that y n F (a) = 0. This
contradiction establishes the claim that J (t) is proper for all t E T’.
The claim shows that a (t) V J (t) for any t E T’, since otherwise

J (t) = J (t) | a (t) would be improper. But then a separates J, since
a’ (t) E J (t) for any t E T’ by construction. Proposition 3.1 then
supplies a copy x : T’ -&#x3E; P (L) of T’ separated by the restriction of a to
T’ such that J (t) 9 x (t) for all t E T’. If we simply extend this map to
T by defining x (to) - y, we get a copy x : T - P (L) of T separated
by a such that I C y C x (to). That a separates this extension of x is
because a’ (to) = 0 E y = x (to) and a (to) fj. y = x (to). 0

Corollary 6.5. Let a : T -&#x3E; L be a map and I an ideal on L. Then there
is a copy x : T -&#x3E; L separated by a such that I C x (to) iff I fl F (a) = 0.
We come to the major result of this section.

Theorem 6.6. P (L) admits no copy of T iff F (a) is improper for
every map a : T -&#x3E; L.

The definition of T-complement of a map a : T -&#x3E; L is certainly
first order in the constants a (t), t E T. But the condition that F (a)
be improper is not first order on its face because there seems to be no
intrinsic bound on the number of generators b which this filter requires.
We close with a simple application of Theorem 6.6. Figure 2 shows

the diamond T = {0, 1, 2, 3}.

FIGURE 2. The diamond

Proposition 6.7. P (L) contains no diamond if

is an improper filter for every pair al, a2 E L.
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Proof. Suppose F (aI, a2) is proper for some aI, a2 E L. Define a : T -&#x3E;
L by setting a (1) - aI, a (2) - a2, ao - aIÅa2, and a (3) = 1. We claim
that F (a) C F (a,, a2). To establish this claim, consider an arbitrary
T-complement c of a. By definition of T-complement we have these
inequalities.

If we set ci = c (1) V a2, c2 - c (2) V al, and b - c (0), we get the
inequalities which define b as a generator of F (al, a2). This shows that
c (0) E F (a,, a2). Since it is clear that al E F (a,, a2) (set cl = 1 and
C2 = 0) and that a2 E F (a,, a2) likewise, we see that a (0) E F (a,, a2)
and hence that F (a) C F (a,, a2). Theorem 6.6 then produces a copy
of T in P (L).
Now suppose that P (L) admits a copy of T. Then by Theorem 6.6

there is some a : T - L for which F (a) is proper. Put al - a (0) V a (1)
and a2 - a (0) V a (2). We claim that F (a,, a2) g F (a). To verify this
claim consider a generator b of F (a,, a2), say cl and c2 satisfy clVc2 = 1,
ci A a1  b V a2, and c2 A a2  b V al. Define c : T - L by setting
C (0) = b, C (1) = cl, c (2) = c2, and c (3) = 1. Then it is routine to

verify that c is a T-complement of a, so that b &#x3E; c (0) A a (0) E F (a)
hence b E F (a). This proves the claim and the proposition. 0
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