
CAHIERS DE
TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

JAN KUBARSKI

TOMASZ RYBICKI
Local and nice structures of the groupoid of
an equivalence relation
Cahiers de topologie et géométrie différentielle catégoriques, tome
45, no 1 (2004), p. 23-34
<http://www.numdam.org/item?id=CTGDC_2004__45_1_23_0>

© Andrée C. Ehresmann et les auteurs, 2004, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_2004__45_1_23_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


23

LOCAL AND NICE STRUCTURES OF THE GROUPOID
OF AN EQUIVALENCE RELATION
by Jan KUBARSKI and Tomasz RYBICKI

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XLV-1 (2004)

The first author would like to thank prof Ronald Brown for internet discussions
which mobilized us to write this note

RESUME. L’article propose une comparaison entre les concepts de
structure locale et de bonne structure sur le group6fde d’une re-
lation d’6quivalence. On montre que ces concepts sont 6troitement
lies, et qu’ils caract6risent g6n6riquement les relations d’equivalence
induites par des feuilletages r6guliers. Le premier concept a ete in-
troduit par J.Pradines (1966) et 6tudi6 par R.Brown et O.Mucuk
(1996), alors que le second a ete donn6 par le premier auteur (1987).
L’importance de ces concepts en g6om6trie non-transitive est in-
diqu6e.

1. LOCAL AND NICE STRUCTURES OF EQUIVALENCE RELATIONS

Let R c X x X be any equivalence relation on a connected paracom-
pact Coo-manifold X of dimension n. R becomes a topological groupoid
on X with the topology induced from X x X, namely

where a = (pr1)|R’ B = (pr2),R’ , : Ra x,6 R - R, ((x, y) , (z, x)) -&#x3E;

(z, y) . Let 6 : R xa R - R, ((x, z) , (x, y)) H (y, z) . According to the
definition of Brown and Mucuk [A-B], [B-M1], [B-M2] (following the
original definition of J.Pradines [P]) R is called a locally Lie groupoid if
there exists a subset W C R equipped with a structure of a manifold
such that
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3) a) w,6 = (W xa W) n d-1 [W] is open in W xa W,
b) the restriction of 6 to W6 is smooth,

4) the restriction to W of the source and the target maps a and B
are smooth and the triple (a, (3, W) is smoothly locally section-
able,

5) W generates R as a groupoid.
W satisfying 1)-5) will be called a local smooth structure of R.

Remark 1.1. The second part of 4) implies that a|w : W --+ X is a
coregular mapping. Therefore W XQ W = (a|W, a|W)-1 [OR] is a proper
(i.e. embedded) submanifold of W x W.

Let F be a k-dimensional foliation on X and A = {(Ul, Ol)} be an
atlas of foliated charts. The equivalence relation on X determined by
the leaves of F is denoted by RF. For a chart (Ua, ol) we write Ra for
the equivalence relation on ul whose equivalence classes are the plaques
of Ux

Qa denotes the plaque of Ua passing through x. We write

Brown and Mucuk in [B-M2] proved the following
Theorem 1.1. If X is a ParacomPact foliated manifold, then a foliated
atlas A may be chosen so that the pair (RF, W (A)) is a locally Lie
groupoid.

Clearly W (A) is a n + k-dimensional proper submanifold of X x X
and W (A)x := (a|W(^))-1 (x) is a connected k-dimensional submanifold
of W (A). The crucial role in the proof is played by Lemma 4.4 from
[T].

On the other hand, in [K2] there is a second approach to the groupoid
of an equivalence relation characterizing the fact that the family of all
equivalence classes forms a k-dimensional foliation.

Theorem 1.2 (J.Kubarski [K2, Th. 3]). If X is a paracompact mani-
fold, then the following conditions are equivalent:
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(1) the family of all equivalence classes of R is a k-dimensional fo-
liation,

(2) there exists a subset W C R such that
(i) OR eWe R,
(ii) W is a proper n+k-dirnensional C°°-submanifold of X x X,
(iii) a|W : W -&#x3E; X is a submersion,
(iv) For (x, y) E R, the set

is open in the manifold Wx = (a|W) (x), where D(x,y) :
I?y ---+ R.,,,, (y, z) -&#x3E; (, z),

(v) W generates R as a groupoid,
(vi) the manifolds Wx are connected.

We can choose W to be symmetric, i.e. W = W-1. The crucial role
in the proof of the theorem is played by the nice covering [H-H, 1981]
and the Frobenius theorem in the version [D, p.86]. The manifold W
satisfying the above conditions (i)-(vi) is said to be a nice structure of
R (thanks to the nice covering used in the proof, see also [K3]). In the
above theorem it is proved that W (A) is a nice structure if A is any
nice covering.
The aim of this note is to explain the relations between the concepts

of local and nice structures of an equivalence relation. It occurs that
under mild assumptions the concepts are not only equivalent but also
identical. Moreover each of them can characterize the (regular) foliation
relations among equivalence relations, and the axioms of a nice structure
are considerably simpler. In the final section it is indicated how these

concepts are related with leaf preserving diffeomorphisms on a foliated
manifold and automorphisms of a regular Poisson structure.

Finally let us mention that in [K2] there is also given a characteri-
zation (by suitable axioms of a subset W c R) of some wider class of
equivalence relations R on X for which the family of all arcwise con-
nected components of all equivalence classes of R is a regular foliation
and every equivalence class of R has a countable number of such com-
ponents. As a consequence a new short proof of classical Godement’s
theorem on division is presented.
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2. LOCAL STRUCTURE =&#x3E; NICE STRUCTURE

First we show that under mild assumptions any local structure is a
nice one.

Proposition 2.1. If W C R is a local smooth structure such that W
is a proper + k-dimensional Coo-submanifold of X x X and W, =
(a|W)-1 (x) are connected then W carries a nice structure. Conse-

quently, the family of equivalence classes of R forms a k-dimensional
foliation.

Proof. We have only to prove the condition (iv). For this purpose fix

arbitrarily (xo, yo) E R and consider the smooth mapping

It is easy to see that

Let , then and i

Wb which means that and

and then

Finally (2.1) implies (iv). 0

3. NICE STRUCTURE =&#x3E; LOCAL STRUCTURE

In view of Theorems 1.2 and 1.1 each nice structure admits a local
structure (as a suitable subset). The problem is whether every nice
structure is a local one.

This problem amounts to reducing the axioms of a local smooth struc-
ture. The first step consists in the following
Proposition 3.1. If W C R fulfils (i)-(iii) and W = W-1 then the
triPle (a, B, W) is smoothly locally sectionable.

Proof. Since /3 = a o l, and the inverse map t : W - W, (x, y) H
(y, x) is a diffeomorphism, B is a submersion, too. For (x, y) E W,
Vl := ker a.(x,y) and V2 := ker B*(x,y) are k-dimensional and Vi n v2 = o.
Choose an (n - k)-dimensional vector subspace V C T(x,y)W such that
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and find a k-dimensional vector subspace % C VI (B v2 transversal to
both V1 and V2. For example if (u1, ..., Uk) and (VI, ..., Vk) are basis
of Vl and V2, respectively, we can take Y0 = Lin Jul + vi, ..., Uk + vk}.
Putting

we have that U n V2 = 0, and this implies that a* : U - TxX is an
isomorphism. Since a : W -&#x3E; X is a submersion there exists a local
cross-section s of a near x such that s.TxX = U. It is clear that

is an isomorphism: if (/3 o s)* (v) = 0y then s* (v) E V2 n U = 0 which
yields v = 0. From this B o s is a diffeomorphism near the point x. 0

To finish the problem of reduction of axioms of a local smooth struc-
ture we have to prove that the conditions (i)-(iv) together with the
symmetry W = W-1 imply condition 3).

Let F be any foliation on a manifold X and denote by Lx the leaf
of F through x. Fix a point xo E X and yo E Lx0. Assume that U and
V are two foliated coordinate neighbourhoods of zo and yo respectively,
and cp : U - V is a foliated diffeomorphism (i.e. cp (x) E Lx) onto an
open subsets of V. Set

Clearly, Rcp is an n + k-dimensional proper submanifold of U x V. Of
course, if U’ c U is any coordinate subneighbourhood of x0 and cpo :
U’ -&#x3E; V and ç1 : U’ -&#x3E; ç [U’] are induced mappings then Repo and Repl
are open submanifolds of Rep.
Lemma 3.1. Let ç, &#x26; : U -&#x3E; V be any foliated diffeomorphisms such
that ç (x0) ç (xo) belong to the same plaque of V, i. e. Qt(xo) = QçV(x0).
If Rcp fl Rç is an open subset of Rç (therefore also of Rç) then there
exists a coordinate neighbourhood U1 such that x0 E Ui C U and cp (x) ,
ç(x) lie on the same plaque of V for all x E U1, i. e. Qç(x)V = Qç(x)V,
xEUI.

Proof. The topology on Rep and Rç is induced from U x V, so there exist
open neighbourhoods W, W’ C U x V such that RçnRç = W n Rç =
0’ n Rç. Then n = 0 n 0’ is an open subset of U x V and



28

Analogously S2 n Rç = Rç n Rç. Therefore

Now we can choose neighbourhoods Ul and Vi such that xo E Ul C U,
cp (xo) E Yi C V and Ul x Vi c S2. We can also assume that cp [U1] c Vl.
Then

Consequently, for all x E Ul we obtain

i.e. cp (x) E Qç(x)V, or equivalently Qç(x)V = Qt(x), x E Ul. 0

The following two propositions describe further properties of nice
structures.

Proposition 3.2. If W C R fulfils (i)-(vi) and W = W-1 then for any
(xo, yo) E W there exist coordinate neighbourhoods Uxo and Uyo of xo
and yo, respectively, and a foliated diffeomorphism 0 : Ux0 - Uy0 such
that Ro C W

Proof. Suppose W C R fulfils (i)-(vi) and W = W-1. Then, by Theorem
1.2, the family of all equivalence classes of R is a k-dimensional foliation,
say F. Observe that FW := a*F is a 2k-dimensional foliation on W,
and Fyy = (3* F.

Let (xo, yo) E W . There exist an open neighborhood Q of (xo, y0)
in W and vector fields Xi,.... Xk, Yi,..., Yk, Z1, ... , Zn-k defined on Q
and spanning T(x0,y0)W at (xo, yo) with the properties that X1, ... , Xk
are sections of the bundle TFW n ker B* and Yl, ... , Yk are sections of
the bundle T Fyy n ker a* . Denote by çXt the local flow of a vector field
X. There is E &#x3E; 0 and Q’, an open subset in Q, such that

is a diffeomorphism and, consequently, an Fw-foliated chart. Here Um =
{t E R- : |ti| E} is the e-cube centered at the origin. It follows that
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and

are F-foliated charts at z0 and yo, respectively. Moreover, a|W’ : n’ -&#x3E; U
and B|W’ n’ -&#x3E; V are foliation preserving submersions. Therefore the
opens Ux0 = U, Vy0 = V and the mapping

satisfy the required condition. 0

Proposition 3.3. Let W C R be a nice structure of an equivalence
rel ation R, such that W = W-1. Take xo E X and yo, zo E Wxo. We
assume that all the points are pairwise distinct and zo E Wy0. Then there
exist coordinate neighbourhoods Uxo, Uyo, Uzo of Xo, Yo, Zo, respectively,
and foliated diffeomorphisms ç : Uxo - Uy0, ç : Uy0 - Uzo, such that

Proof. Denote by Lx the leaf of the foliation determined by R. Take
continuous and without selfintersections arc a : [0, 1] - B [Wx0] C L.0
such that a(0) = x0, cx (1/2) - yo and a (1) = zo. By Proposition 3.2
there exist coordinate neighbourhoods Uo, Ul, U2 of the points xo, yo, zo,
respectively., and foliated diffeomorphisms cp : Ul - U2, 1/; : U2 -&#x3E; U3,
such that R., Ry C W. We will prove that there exists a coordinate
subneighbourhood Ux0 of xo contained in Ul such that Rçoç|Ux0 C W
from which our proposition follows immediately.
Put

where pt : Ut -&#x3E; Ut, ’l/Jt : u; -&#x3E; U3, are foliated diffeomorphisms (into)
such that xo E Ut C Ul, çt (xo) = a (t) , Ot (a (t)) = zo. We prove that
I is nonempty open-closed subset of [0, 1].

o 0 E I. Indeed, by Proposition 3.2 we can find coordinate neigh-
bourhoods Uvo and Uzo of yo and zo and a foliated diffeomorphism
Uyo -&#x3E; U zo such that Ry C W. Taking Ux0 = Uyo and po = idu.0 we
obtain the conclusion.

. I is open. Indeed, let to E I and (pto : Ut0 -&#x3E; Uto, 1/Jto : U’t0 -&#x3E; U3
satisfy the properties from definition of I. There exists E &#x3E; 0 such

that if |t - to|  c then a (t) E Qc(to). Consider an arbitrary foliated
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diffeomorphism ct : Uto -&#x3E; Uto such that ct (a (t)) = a (to) . Then we put

. I is closed. Let to E I. Choose arbitrarily coordinate neighbour-
hoods Uto, Uto of xo a (to) respectively, and foliated diffeomorphisms Wto :
Uto -&#x3E; Uto, Oto : U’t0 -&#x3E; U3, such that Wt. (xo) = a (to) , oto (a (to)) = zo,
and Rtpt, Rçt0 c W. We can find t E I such that a (t) E Qc(to) and
çt, çt from definition of I. We can assume that Ut C U’t0, and that
oto (a (t)) E Qbs. Consider on Ut two foliated diffeomorphisms 1/Jt and
ç’t0 = 1/Jto I U£. By assumption, Rp, and lioo (so also Rç’t0) are open
subsets of W. Since a (t) and a (to) lie on the same plaque of Uto and
oto (a (t0)) = zo = 1/Jt (a (t)) lie on the same plaque of U3 we obtain that

Since Røt and Ryj are n+k-dimensional submanifolds of W we see that
Røt n Rç’t0 is nonempty open subset of the manifold Røt as well as of

Rç’t0. By Lemma (3.1 ) there exists a coordinate neighbourhood Ut c Ut
such that lbt and ç’t0 maps each plaque in Ut into the same plaque in

U3. By the well known Lemma 4.4. from [T] we can diminish the set
Ut in such a way that each plaque of Ut° cuts the set Ut along at most
one plaque of U’t. Consider the saturation Ut° of Ut in Ut° by plaques
of the last. Clearly, a (t0) EU’t0, and let Ut0 C Um be a coordinate
neighbourhood of xo such that Wto [Crto] C 6rt’o. The restrictions of (pt.
to Ut° and 1/Jto to U’t0 we denote by Oto and çt0, respectively. Notice

that Rçt0 oçt0 C W. In fact, take (x, z) E Rçt0 oçt0, i.e. x E 6to and
z E Qt:oorpto(x). There exists y E Ut such that y and çt0 (x) lie on theU3
same plaque of U’t0. Therefore, the plaques passing through 1/Jto (y) and
1/Jto (§5m (x)) are the same, and 

which implies that (x, z) E W.
From the above I = [0,1] and our proposition is proved. D

Now we can prove our main result.
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Theorem 3.1. If W C R is a nice structure of an equivalence relation
on a manifold X then W is a local smooth structure of R.

Proof. It remains to prove the property that W5 = (W xa w) n 6-1 [W]
is open in W xa W (it is clear that 6 : Wd -&#x3E; W is smooth). Take

(yo, x0), (yo, zo) E W such that (xo, zo) E W. Then ((yo, xo) , (yo, zo)) E
(W XQ W) n 6-1 [W] and 6 ((yo, xo) , (yo, zo)) = (xo, zo) . By Proposition
4 we can find coordinate neighbourhoods Ux0, Uy0, Uxo of the points zo,
yo, zo, respectively, and foliated diffeomorphisms cp : Ux0 - Uyo, 1/J :
Uy0 -&#x3E; Uzo such that Rç, Rap, Rçoç C W By the symmetry W = W-1
we obtain that R-1ç C W. Clearly

and R-1ç XQ 14 is open in W xa W. From Rçoç C W we have

which implies that

4. FINAL REMARKS

A) Let us observe that the submanifold W that appears in the both
definitions plays a crucial role in constructing a special chart of the leaf
preserving diffeomorphism group of a regular foliation F on X, cf.[R1].
Namely, in the construction of a chart on this group the notion of a
foliated local addition is needed. By a foliated local addition we mean
a smooth mapping 4): TF D U - X such that

(1) (O(0x) = x, and
(2) the mapping (p, iP) : TF C U -&#x3E; U’ C W is a diffeomorphism,

where U is some neighborhood of the zero section, U’ is open in W, and
7r : TF - X is the canonical projection.

Consequently, it is shown that this group carries the structure of an
infinite-dimensional regular Lie group. Next the existence of W enables
as well to show that the group of automorphisms of a regular Poisson
manifold is a regular Lie group. It follows that the flux homomorphism
can be considered for regular Poisson manifolds and a characterization of
Hamiltonian diffeomorphisms can be given. It occurs that under natural
assumption on the group of periods the Hamiltonian diffeomorphisms
form a splitted Lie subgroup (see [Rl] for all this). One can say that the
existence of W usually ensures that nontransitive geometries with the
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set of orbits forming a regular foliations do not differ essentially from
their transitives counterparts.

Analogous problem for foliations with singularities is open as W can-
not be then defined. Similar difficulties arise when the group of foliation

preserving diffeomorphisms (i.e. sending each leaf to a leaf) is consid-
ered.

Introducing Lie group structures on diffeomorphism groups can be
viewed in a more general context of groupoids, cf.[R2]. Namely in the
"non-foliated" case one can consider the group of global bisections of a
Lie groupoid rather than diffeomorphism groups, but this method fails
in the nontransitive case. The reason is the "holonomic imperative"
(see, e.g., [B-M1] ) according to which any Lie groupoid structure over
the equivalence relation R of a foliation F contains the information of
the holonomy of F.
B) What does the "local-nice" problem look like for groupoids? A

forthcoming paper will be devoted to this problem. Here we mention

only that in [K3] there is a generalization of the notion of a nice struc-
ture for groupoids. Hovewer in [K3] there are considered groupoids on
manifolds for which the total space possesses a structure stronger than
topology but weaker than differential manifold, namely the structure of
a differential space in the Sikorski sense ([Sl], [S2]). Hausdorff man-
ifolds carry a natural structure of a differential space consistent with
the topology. Since any subset of a differential space has the induced
structure of a differential space, any equivalence relation R C X x X on
a manifold X or the groupoid DR = (a,B)-1 [R] C O, where O is any
transitive Lie groupoid on X and R is any equivalence relation on X, are
examples of groupoids with the structure of a differential space. More-
over, R and OR are then differential spaces of the class Do ([W1],[W2],
[K-K]) [i.e. locally at a neighbourhood of every point there are extended
to a manifold of dimension equal to the dimension of the tangent space
to this differential space at this point]. To any nice structure W of (D
one can attach a Lie algebroid A(O) on X.
By a nice groupoid [K3] we mean a goupoid 4) on a manifold X

together with nice structures W of O and Wo of the induced equiva-
lence relation RO on X such that the mapping (a, B) : W -&#x3E; Wo is a
submersion. In [K3, Th.4.29] there are given some natural conditions
for a groupoid O of the class Do which imply that it is a nice groupoid.
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Many ideas from [K3] can be realized (in our preliminary opinion) on
abstract or topological groupoids on manifolds as well.

Notice that Aof and Brown [A-B] provide examples of locally Lie
structure of groupoids different that an equivalence relation, e.g. of an
action groupoid. Finally let us observe that the recent paper by Crainic
and Fernandes ([C-F], Example 4.4) shows that there are Lie algebroids
which are not even locally integrable.
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