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A CLASSIFICATION OF DEGREE n FUNCTORS, I
by B. JOHNSON and R. McCARTHY

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XLIV-1 (2003)

RESUME. Utilisant une thdorie de calcul pour des foncteurs de

categories pointees vers des categories abdliennes qu’ils ont

ddveloppde prdcddemment, les auteurs prouvent dans la Partie II de
cet article que les foncteurs de degrd n peuvent 8tre classifies en
termes de modules sur une algebre gradude diff6rentielle Pnxn, (C).
Dans cette partie, ils developpent les structures du calcul
ndcessaires pour prouver ceci et des rdsultats apparentds. Ils
construisent aussi une filtration par rang pour des foncteurs de

categories pointees vers des categories abdliennes et ils comparent
les foncteurs de rang n et les foncteurs de degrd n.

The Taylor series of a function is a tremendously important tool
in analysis. A similar theory, the calculus of homotopy functors de-
veloped by Tom Goodwillie ([Gl], [G2], [G3]), has recently been used
to prove several important results in K-theory and homotopy theory.
In [J-M3], we defined and established the basic properties for a theory
of calculus for functors from pointed categories to abelian categories.
Given a functor F : C - ChA where C is a pointed category and A is
a cocomplete abelian category, we showed that by using a particular
cotriple one could construct a tower of functors and natural trans-
formations (see figure 1). For each n, the functor PnF is a degree n
functor in the sense that its n+ lst cross effect as defined by Eilenberg
and Mac Lane ([E-M2]) is acyclic.

In this paper and its sequel [J-M4], we show that by using the
models for Pn given in [J-M3], degree n functors can be classified in
terms of modules over a differential graded algebra Pnxn (C) . We also

The second author was supported by National Science Founda-
tion grant # 1-5-30943 and a Sloan Fellowship.
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show that homogeneous degree n functors, i.e., degree n functors G
for which Pn-1G = *, can be classified in terms of modules over three
different differential graded algebras. One of these classifications was
inspired by Goodwillie’s classification of homogeneous degree n func-
tors of spaces ([G3]). These classifications extend a classification of
linear functors proved in [J-M1]. As part of the development of these
classifications we also show that all degree n functors arise naturally
as functors on a particular category PnC, following a similar result
for strictly degree n functors due to Pirashvili [P]. (A strictly degree
n functor is one whose n + lst cross effect is isomorphic, rather than
quasi-isomorphic, to 0.) t In addition, we develop a "rank" filtration
of F, i.e., we look at approximations to F that agree with F on a
specified collection of objects.

figure 1

t For those familiar with [J-M2], degree n functors in this paper
correspond to homologically degree n functors in [J-M2], and strictly
degree n functors correspond to degree n functors in [J-M2].
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The papers are organized as follows. This paper comprises sec-
tions 1, 2, and 3. Sections 4, 5, 6, and the appendix form [J-M4].
We begin in section 1 by reviewing the Taylor tower of [J-M3] and
describing some natural transformations arising from the tower to be
used in this work. We then start developing the framework needed to
state and prove the classification results.

The sequence of results forming this framework were motivated
and can be understood by considering a classification result for addi-
tive functors proved independently by Eilenberg and Watts:

Theorem ([E], [W]). Let F be an additive, right continuous (preserves
cokerzcels and filtered colimits) functor from the category of right R-
modules to the category of right S-modules for some rings R and S.
Let G be the functor given by

G( -) = - OR F(R).
There is a natural transformation n : G -&#x3E; F that is an isomorphism
on all R-modules. That is, additive, right continuous functors are
characterized by R - S bimodules F(R).

To prove this result, one first establishes that F(R) has the re-
quired bimodule structure and constructs the natural transformation
q. The isomorphism is then proven in stages using various proper-
ties of the functors. The first stage is the observation that q is an
isomorphism at R. Additivity of the functors then establishes the
isomorphism at all finitely generated free R modules. From there,
the fact that both functors preserve filtered colimits guarantees that
q is an isomorphism on all free R modules. Finally, since every R
module has a resolution by free R modules and the functors preserve
cokernels, an isomorphism for all R modules is ensured. In essence,
this probf depends upon two properties: the category of R modules
has a generating object R and the functors behave well with respect
to the operations needed to generate all R modules from R.

We will prove a similar result for degree n functors from a base-
pointed category C to ChA for some abelian category A. When con-
sidering this more general setting, one notices immediately that C
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lacks the generating object that was so useful for the classification
of additive functors. This leads us to consider instead subcategories
of C generated by objects C in C. We call such subcategories "lines
generated by C" and develop the notion of "functors defined along C"
in parallel with the right continuous property used in the Eilenberg-
Watts result. This material will be developed in section 2. The prin-
cipal result will be the following.

Theorem 2.11. Let F, G : C - ChA be degree n functors defined
along an object C in C. A natural transformation 77 : F -&#x3E; G is an

equivalence if and only if 11 is an equivalence at nc = vi:: 1 C.

The theorem allows us to prove classification results by simply
establishing equivalences at the object nc. In general, the class of
functors that are determined by their value at nc is strictly larger
than the class of degree n functors defined along C. We refer to the
functors that are determined by their value at nc as rank n functors
and explore the properties of such functors in section 3. In particular
we show that any functor F from C to ChA has a filtration of functors

{LkF}k&#x3E;0 of rank k, and show that degree n is a strictly stronger
condition than rank n.

We will classify degree n functors defined along an object C by
showing that any such functor F is equivalent to the functor

where Pn(C, -) = PnZ[Homc (nc , - )] and Pnxn(C) is the differential
graded algebra Pn Z[Homc (nc, nc)]. (The symbol L*c indicates the
resolution of a functor along C and is defined in section 2.) Construct-
ing such a functor requires that Pn(C, -) be given certain differential
graded algebra and module structures. The properties underlying
these structures are developed in section 4, although the actual alge-
bra and module structures are not specified until section 5. In section
4, we use the prop erties that must be established for the algebra and
module structures to construct a category PnG through which all de-
gree n functors must factor. This extends a result due to Pirashvili

([P]) for strictly degree n functors.
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In section 5 we state and prove our classification theorems using
the results of the previous sections. We present four classification
theorems, one for degree n functors defined along C, and three for
homogeneous degree n functors defined along C:

1) degree n functors defined along C are classified by modules over
the DGA Pnxn (C)

2) homogeneous degree n functors defined along C are classified by
modules over a DGA Dnxn (C), modules over a DGA D1 (C), and
modules over a wreath product Dl x 1 (C) J En.

In section 6, we consider various natural operations developed in
[J-M3] that change the degree of a functor and determine their ef-
fect on the classification results of section 5. In particular, we look
at differentiation, the structure maps in the Taylor tower, composi-
tion, and the inclusions from degree n to higher degree functors and
from homogeneous degree n to degree n functors. We also include
an appendix explaining the relationship between the three different
classifications of homogeneous degree n functors.

1. The Taylor tower

This section reviews the construction of the Taylor tower in [J-
M3]. We also add some new natural transformations to the tower
that will be needed for defining differential graded algebra and module
structures later in this paper. Throughout this paper, unless otherwise
indicated, we will let C be a pointed category (a category with an
object * that is both initial and final) with finite coproducts. We will
let A be a cocomplete abelian category and F be a functor from C to
ChA.

We start by recalling the ideas necessary to understand the degree
of a functor. Key among these is the concept of cross effect.

Definition 1.1. [E-M2] Let F be a functors from C to ChA. We say
that F is reduced if F(*) = 0. The nth cross effect of F is the functor
crnF : Cxn -&#x3E; ChA defined inductively for objects M, M1,... , Mn by



7

and in general,

is equivalent to

The nth cross effect of a functor F satisfies the following properties.

Proposition 1.2. Let F : C - ChA, and M1, M2, ... , Mn, M be
objects in C.

1) crnf is symmetric with respect to its rt variables, i. e., for ev-
ery o E En, the nth symmetric group, crnF(M1, ... ,Mn) = 

if any .

and

2vhere crpF(M) denotes crpF(M, ..., M).

Considering crn F as a functor of a single variable, i.e.,

one can show that crp(crqF) = cr,(crpF) for all p and q. For details,
see remark 1.3 in [J-M3]. For examples of cross effects and alternative
definitions of cross effects, see section 2 of [J-M2].
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The nth cross effect functor can also be realized as a right adjoint
to the diagonal functor from functors of a single variable to functors
of n variables. This adjoint pair, described below, is fundamental to
the Taylor tower construction.

Remarks 1.3. (THE ADJOINT PAIR (A*, crn+1 ) ) Let Func* (Cxn+1, A)
be the category of functors of n + 1 variables from C to A that are
reduced in each variable separately. Let A* be the functor from

Func* (Cxn+1,A) to Func* (C,A) obtained by composing a functor
with the diagonal functor from C to Cxn+1. The (n+1)st cross effect‘ 
is the right adjoint to A* . The natural isomorphism

is defined as follows. For objects M1 , ... , Mn+1 in C, let i from

F(M1, ... , Mn+1 ) to crn+1 (F o A) (M1, ... , Mn+1) be the composite

where i 1, ... , in+1 are the natural inclusions and 7r is the projection of
FoA(Vn+1 i=1Mi) ontoits summand crn+1 (FoA) (M1, ... , Mn+1). Then,
the isomorphism ( 1.4) takes a natural transformation B : F o A -&#x3E; G
to the composite

And, for an object M in C, a natural transformation a : F - crn+1G
is sent to the natural composite

where inc denotes the inclusion of crn+1 G(M, ... , M) as a direct sum-
mand of G ( Vn+1i=1 M) and + is the fold map. We set pn = cokernel [A* o
crn+1 coa1j id ] where coadj denotes the counit of the adjunction.
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Cross effects are used to define the degree of a functor.

Definition 1.5. A functors F from C to ChA is degree n if crn+1F is
acyclic. We say that F is strictly degree n if CTn+lF is isomorphic,
rather than quasi- isomorphic, to 0.

Note that crn-4-,F - 0 if and only if crk F = 0 for all k&#x3E; n + 1
or, equivalently, if crnf is a degree 1 functor in each of its n variables
separately. If a functor is degree n, then we consider it to be degree
k for all k &#x3E; n as well. When one composes a degree n and a degree
m functor, the result is a functor of degree n. m, as proved in [J-M3],
1.5.

The adjoint pair (A*, crn+1) of remark 1.3 produces the cotriple
used to create the Taylor tower. We next review the cotriple properties
that will be needed to describe the tower.

Definition 1.6. A cotriple (or comonad) (L, E, 6) in a category A is
a functor L: A -&#x3E; -4 together with natural transformations E :L=&#x3E; idA
and a :L-&#x3E;LL such that the following diagrams commute:

Cotriples often arise from adjoint pairs.

Example 1.7. Let (F, U) be a pair of adjoint functors and L= FU.
Let e bd a counit and q be a unit for the adjoint pair. Let qu be
the natural transformation that for an object B is given by 1/U(B) :
U(B) -&#x3E; UF(U(B )). Then (..L, c, F(nU)) is a cotriple. In particular,
the adjoint pair of remark 1.3 yields the cotriple 0* o CTn+l.

Cotriples yield simplicial objects in the following manner.
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Remark 1.8. Let (1, e, 6) be a cotriple in A and let A be an object
in A. Then L*+1 A is the following simplicial object in A:

Observe that L*+1 is augmented over idA by e. In particular, if

we consider (idA, id, id) as the trivial cotriple, then c gives a natural
simplicial map from .l *+1 to id*+1 where id*+’ is the trivial simplicial
A-object.

Using L*+1 A and the augmentation one can construct the fol-
lowing chain complex when A is an abelian category.

Definition 1.9. Let (L, e,d) be a cotriple on an abelian category A
and let A be an object in A. Then C*L(A) is the chain complex with

and an : CnL (A) -&#x3E; C*-1 (A) is defined by

The chain complex C*L(A) is the mapping cone of the composition

where C(L*+1 A) and C(id*+lA) are the chain complexes associated
to .1 *+1 A and id*1A, respectively, and N(id*+l A) is the normalized
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chain complex associated to id*+1A. (See [We], §8.2-3 for definitions
of C and N.)

The Taylor tower is defined as follows.

Definition 1.10. Let Ln+1= A* o crn+1 be the cotriple on the cat-
egory Func*(C, ChA) obtained from the adjoint pair (0*, crn+l) of
remark 1.3. We define Pn to be the ,functor from Func*(C, ChA) to
Func* (C, ChA) given by

where N is the associated normalized chain complex of the simplicial
object. We let Pn : id -&#x3E; Pn be the natural transformations obtained
from the mapping cone.

Note that for a functor F in Func*(C, ChA), PnF is naturally
chain homotopy equivalent to the chain complex C*Ln+1 (F). Both of
these models will be important for subsequent results. We will use
them interchangeably.

We extend the definition of PnF to all functors F from C to ChA
as follows. Every functor F is naturally isomorphic to F(*)+ crif
where crl F is reduced. We define

Furthermore, we define

Remark. Recall that we use pnf to denote HOP,,F. By the above,

where, by remark 1.3, the natural transformation E is determined by
the composite

The functor pn is left adjoint to the forgetful functor from degree n
functors to all functors and is also known as the Passi functor.
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The following properties of Pri F are proved in section 2 of [J-M3].

Remarks 1.11.

1) The functor PnF is degree n.

2) If F is degree n then pn : F -&#x3E; Pn F is a quasi-isomorphism.

3) The pair (Pn, pn) is universal up to natural quasi-isomorphism
with respect to degree n functors with natural transformations
from F.

4) If F" -7 F -&#x3E; F’ is a short exact sequence of functors (that is,
short exact upon evaluation at any given object) then Pn (F") -&#x3E;
Pn(F) - Pn (F’) is a short exact sequence of chain complexes.

5) The functor Pn preserves quasi-isomorphisms of functors.

The natural transformations that make up the Taylor tower of F
are defined in the next remark.

Rem,ark 1.12. Given a natural transformation of cotriples 11 from
..Ln+l to Ln, we can define a natural transformation from Pn to
Pn-1 by using the chain map given by 1J([kJ) =Lkn-1 (lI.1.n+l)O Lnk-2
n+l o ... o nLkn+1 . Then qn : P n --t Pn-1 is the natural transfor-
mation qn determined by the natural composite:

Theorem 1.13. Given a functor F from C to ChA, there is a natural
tower of functors:

The pairs (Pn, pn) are universal (up to natural quasi-isomorphism)
with respect to maps from F to degree n functors.
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We use PooF to denote the homotopy inverse limit of this tower.
Conditions under which the tower converges to PooF are discussed in
[J-M3], §4.

Definition 1.14. For a functor F from C to ChA, we define DnF :
C -&#x3E; ChA to be the homotopy fiber

That is, DnF is the chain complex obtained by shifting the mapping
cone of qnF down one degree. The functors DnF is degree n since
both PnF and Pn-1 F are degree n and crn+1 is exact. We say that a
functor F is homogeneous degree n if it is degree n and Pn-1F = *.

The natural transformations qn :Ln+1-&#x3E;Ln can also be used to
construct natural transformations q : Pt -&#x3E; Pn, E(n, t) : PtPn -&#x3E; Pn
and E (n, t) : Pn Pt -3 Pn for t &#x3E; n. These natural transformations
will be used in sections 4, 5, and 6.

Definition 1.15. For t &#x3E; n, let q :Lt+1-&#x3E;Ln+1 be the natural trans-

formation of cotriples q = qn+l 0 qn+2 0 ... 0 qt :Lt+1-&#x3E;Ln+1 and
for t = n, let q - idj-n+l We will also use q to denote the natural
transformations q : Pt -&#x3E; Pn induced by these maps of cotriples.

Definition 1.16. Let t &#x3E; n. The functor PtPnF is the total com-
plex of the bicoxnplex given by (p, r) -&#x3E;Lpt+1 (Lrn+1 F). Let E(t, n) :
Pt PnF - PnF be the map that in d egree s is given by

The rnap E(n,t) : PnPtF - PnF is defined using +(id) (q[r]).
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It is straightforward to show that E(t, n) and E(n, t) are natural
chain maps, and that the diagrams below commute for u &#x3E; t &#x3E; n.

Using the natural transformations E(t, n) and E (n, t) of definition
1.16, we can define natural chain maps E (t, n) D : PtDn - Dn and
E(n, t) : DnPt - Dn.

Definition 1.18. For t &#x3E; n, E(t, n)D : PtDn - Dn is the mapping
cone of the map of bicomplexes given by

and ED(n,t) : DnPt -&#x3E; Dn is the mapping cone of the map of bicom-
plexes given by
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It follows from the definitions that the following diagrams com-
mute :

It is straightforward to check that the maps E(t, n), E(n,t), E(t, n)D
and ED(n, t) are associative with respect to one another.

We can also define natural chain maps from Dn Dt to Dn. How-
ever, for t &#x3E; n, we have

Similarly, DnDt rri *, and so we focus our attention on defining a
chain map ED(n) : DnDn -&#x3E; Dn. To do so, note that DnDn is the
total complex of the square of complexes given by

If we consider Tot of the squares of complexes in figure 2 we see that
the lower square of complexes can be mapped in two equivalent ways
to Dn. Namely, we have (1.21)
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figure 2

To produce the desired map from DnDn to Dn, we may use
either of the maps in (1.21), provided that we are consistent in our
choice. We define ED(n) : DnDn - Dn to be the natural chain map
obtained by composing the map of (1.20) with the left equivalence
of (1.21). From this definition, it follows readily that the diagrams
below commute:

2. Functors on a line

A linear function f from R to R is completely determined by its
values at two points. For example, if f (0) = 0 and the value of f (1)
is known, then the fact that f(x)=xf(1) enables us to find f(x) for
all x. Being able to determine f(x) in this way depends both on a
property of f and properties of R.
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In the introduction, we discussed a similar result proved by Eilen-
berg and Watts that showed that an additive, right continuous functor
from R-modules to S-modules was determined by its value at R. The
proof relied on the facts that R generated the category of R-modules,
and that the functor F preserved the operations used to generate
R-modules from R, namely F preserved sums, filtered colimits, and
cokernels. In order to extend this result to degree n functors in sec-
tion 5, we use this section to develop the analogs of these properties
for a basepointed category C and functors from C to ChA.

In working with the category C instead of a module category, we
may no longer have a single object that can be used to "generate"
the domain category and classify functors. Instead we will work with
collections of objects generated by a single object in C and functors
that behave well with respect to the operations that generate these
collections from C. We will refer to such collections as "lines" and
such functors as "functors defined along a line" . A key result of this
section will be to show that any degree n functor defined along C is
determined by its value at the object Vni=1C.

To understand what we mean by a "line" in the category C, first
consider the real number line and the category of R-modules for a
ring R. The real number line can be generated by the set of natural
numbers N through standard operations such as addition, subtraction,
multiplication, division, and completion. Similarly, we can consider
the category of R-modules being generated, up to quasi-isomorphism,
by the finitely generated R-modules, R, RfÐ2, RfÐ3, ..., via free reso-
lutions and colimits. In considering the category of R-modules as a
"line" , the finitely generated R-modules, R, RfÐ2, R+3, ..., play the
role of the natural numbers, and two points on the line are considered
to be close together if there is a sequence of highly connected chain
maps (ppssibly going in different directions) that relate them.

For an arbitrary basepointed category with finite coproducts C
and an object C in that category, we will consider the line generated by
C. On this line, the role of the natural numbers or finitely generated
free C objects will be played by the objects 1c,2c,3c,... defined
below.
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Definition 2.1. Let C be an object in C and n &#x3E; 0 be an integer.
Let Sets. denote the category whose objects are basepointed sets and
whose morphisms are basepoint-preserving set maps, and * denote the
basepoint for an object in Sets* . Then n is the object in Sets. given
by

and nc is the object in C defined by

We must also develop the idea of resolutions along C. To do

so, we must place some additional conditions on C. As in previous
sections, C will be a basepointed category, but in this section we re-
quire that it have arbitrary coproducts rather than finite coproducts.
Furthermore, we will assume that for any object C in C the functor
Hornc (C, -) : C -&#x3E; Sets. has a left adjoint C A - : Sets. -&#x3E; C that is
natural in C. Hence, for any objects C and C’ in C and based set U,
there is a natural isomorphism

Moreover, for any based set U, C ̂ U rv VUB {*} C, since

Thus, nc = CAn.

To resolve objects with respect to an object C in C, we use the
cotriple associated to the adjoint pair (C^ -, Homc (C, -)).

Definition 2.2. Let C and X be objects in C. We let Lc= (C A
-) o Homc (C,-) denote the cotriple associated to the adjoint pair
(C A -, Homc(C, -)). The resolution of X along C is the simplicial
object L*C X associated to the cotriple Lc.
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By the line generated by C, we will mean the collection of objects
generated from C by means of the functor Cn- and resolutions along
C. Unlike the line generated by R for the category of R-modules, we
lack a means of determining whether or not objects are close together
on the line generated by C since C is not necessarily abelian. However,
since we are interested in functors from C to an abelian category ChA,
we will be most concerned about the image of the line generated by C
under such functors. For that reason we define resolutions of functors

along C.

Definition 2.3. For a functor F : C -&#x3E; ChA, the canonical C-
resolution of F is the simplicial functor L*c F whose value at an
object X inC is obtained by applying F degreewise to L*C X. That is,
L*C F(X) = F(L*C X).

We note that .1å F can also be viewed as the simplicial object
arising from a cotriple on the category Func(C, ChA). The cotriple
in this case, which we will also denote ic, is the one associated
to the adjoint pair (Homc(C, -)*, (C ̂  -)*) where Homc (C, -) * :
Func(Sets*, ChA) -&#x3E; Func(C, ChA) and (C A -)* : Func(C, ChA) -
Func (Sets*, ChA).

Recall from remark 1.8 that a simplicial object arising from a
cotriple is augmented. In this case, for an object X in C, the augmen-
tation map from ic F(X) = F(C A Hornet X)) to F(X) is F(ev)
where ev is the evaluation map. For certain objects this augmentation
has a section and is an equivalence.

Lemma 2.4. Let C be an object in C, F be a functors from C to ChA,
and U be an object in Sets*. Then

Proof. From the adjoint pair (C ̂ -, Homc (C,-)), the unit for the
adjunction gives us a morphism U n-&#x3E; Homc(C, C ̂  U). This yields
the map
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which is a natural section to eVOAU. Thus, 1c F(C A U) F(evcfu)
F(C A U) has a natural section and it follows from propositictn 2.5 of
[J-M3] that

is a simplicial homotopy equivalence.
Thus we see that F and L*C F agree on the subcategory of C

generated by objects of the form C ̂ U for U E Sets* . Moreover, if G
is a functor defined on this subcategory of C, then * G is naturally
a functor from all of C to ChA.

The canonical C-resolution of F agrees with standard free reso-
lutions as follows. 

Exampl es 2.5.

1) Let C = Sets* and consider the object S0 = {*, 1} in Sets* . The
functor ,S’° n - is an equivalence and the identity functor, idSets* ,
is its right adjoint. Thus, LSo F = F and L*So F is the trivial
simplicial functor associated to F. It follows that the adjunction
map is a simplicial homotopy equivalence from L*So F to F.

2) Let MR be the category of right R-modules for a ring R. The
functor HomMR (R, -) is equivalent to the forgetful functor, i.e.,
the functor that takes an R-module to its underlying set. The
left adjoint of the forgetful functor is the reduced free R-module
functor R[-] : Sets* -&#x3E; MR that takes a based set X to the R-
module R[X]/R[*]. It follows that LR F(-)= F(R[-]). Thus
for an R-module M, 1R F(M) = F(L*R M) is the simplicial
object obtained by applying F degreewise to the canonical free
R-module resolution of M.

3) Let k be a fixed commutative ring and Commk be the category
of augmented commutative k-algebras (with units). The base-

point in this category is k. As a functor from Commk to Sets*,
Homcommk(k, -) is the forgetful functor and its left adjoint is

k[-] where for a set X , k[X] J is the free commutative k-algebra
generated by -X. Thus Lk F(-) = F(k[-]) and for a commuta-
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tive augmented k-algebra A, L*k F(A) = F(L*k A) is the simpli-
cial object obtained by applying F degreewise to the usual free
commutative k-algebra resolution of A.

4) Let A and C be the category of abelian groups. For n E N,
consider Z/nZ ^ - and its right adjoint Homc (Z/nZ, -). For an
abelian group A, let An = Home (Z/nZ, A). Then I Z/nZ (A)=
Z /nZ[An] J and L*Z/nZ id (A) -&#x3E; = An . It follows that for anyZ/nZ
functor F : C - A, L*Z/nZ F(X) -&#x3E; F(X) is an equivalence
whenever X is n-torsion.

In lemma 2.4, we saw that L*C F agrees with F on objects of the
form C ̂ U. We now wish to consider functors that are completely
determined by their behavior on the line generated by C. To that end
we define two properties of functors related to C. The first property
guarantees that values of the functor at C A U for any basepointed
set U can be expressed in terms of the objects °0, lc, 2C, ... , nc,....
This is analogous to the condition that functors preserve filtered col-
imits in the additive functor classification of Eilenberg and Watts.

Definition 2.6. A functor F from C to ChA satisfies the limit axiom
at C E C if for U E Sets*,

where the structure maps of the colimit are induced by inclusions. This
is equivalent to,

for all k E Z since homology commutes with filtered direct limits.

Example 2.7. Every degree n functor satisfies the limit axiom along C
for all objects C in C. To see this, recall that Hk of a degree n functor
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is a strictly degree n functor. For any strictly degree n functor F, it
follows from proposition 1.2 of [J-M3] that

The next condition guarantees that a functor is completely de-
termined by its behavior on objects of the form C A U and objects
resolved along C, i.e., a functor is determined by its behavior on the
line generated by C. This condition is analogous to the condition of
right continuity in the classification of additive functors.

Definition 2.8. A functor F : C - ChA that satisfies the limit axiom
along C is defined along C if L*C F =-&#x3E; F. If F is defined along C,
we will use F(n) to denote F(nC).

As a consequence of the above definitions, we have the following.

Lemma 2.9. Let C be an object in C.

1) For any functor F : C -&#x3E; ChA, the functor L*C F is defined along
C.

2) Let G, G’ : C -&#x3E; ChA be functors that satisfy the lirrait axiom

along C and n : G -&#x3E; G’ be a natural transformation. The natural
transformation L*C n :L*C G -&#x3E;L*C G’ is an equivalence if and
only if ’fJnc is an equivalence for all n.

3) For any functor F : C -&#x3E; ChA, F is degree n if and only if L*C F
is degree n for all objects C in C.

4) For any functor F : C -&#x3E; ChA, F is homogeneous degree n if and
only if L*C F is homogeneous degree n for all objects C in C.
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Proof.

1) By lemma 2.4,..Lè F(C^U) = F(C^U) for all sets U. It follows
from the definition of 1.0 that LVC(k)L*C F =LC(k) F for all k&#x3E; 1
and so L*C L*C F = L*C F. That 1C F satisfies the limit axiom
follows from the fact that F does. Hence, 1..ê F is defined along
C.

2) Suppose NnC is an equivalence for all n. Since G and G’ satisfy
the limit axiom along C, it follows that 77CAU is an equivalence
for all basepointed sets U. Then, again as in part 1), we have
L*C n :L*C G =-&#x3E; L*C G’. Conversely, L*C G(nc) =L*C G’(nc)
implies G(nc) = G’(nc) for all n by lemma 2.4.

3) Let k be a natural number and C be an object in C. Setting U = k
in lemma 2.4, we see that L*C F(Vki=1 C) =-&#x3E; F(Vki=1 C) . It fol-
lows from the definition of cross effects that crk L*C F(C, ... , C)
is equivalent to crk F(C, ... , C) . Hence, if 1C F is degree n for all
objects C, then crn+1F(C, ... , C) ci 0 for all C. One can show
(see the proof of 2 .11 in [J-M3]) that this is enough to ensure
that crn+1 F(C1, ... , Cn+1) = 0 for all choices of C1, ... , Cn+1 in
C and so F is degree n.

Conversely, if F is degree n, then we know that for any
object C in C, crk 1..ê F(C, ... , C) = 0 for all k &#x3E; n. To con-

clude that crn+1 iz F(C1, C2,... Cn+1) = 0 for any objects
Ci, C2, ... , Cn+1 in C, it will suffices to show that

for any

However, since L*C F is defined along C, the diagonals of its
cross effects are as well, and so by part 2) it suffices to show that
CTn4-1..Lè .F(nc,... , nC) = 0. But crn+1 L*C F(nc,..., nc) is a
direct sum of terms of the form crk L*C F(C, ... , C) where k &#x3E; n

and hence crn+1 L*C F(nc,...,nc’ = 0. Therefore, L*C F is
degree n for all ob j ects C in C.

4) The proof is similar to that of 3).
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Using lemma 2.9, we can prove that degree n functors defined
along C are determined by their values at nc. This follows immedi-
ately from the next result.

Lemma 2.10. For 1/ : F -&#x3E; F’ a natural transformation between
degree n functors, the following are equivalent:

1) LM*C n :L*C F -&#x3E;L*C F’ is an equivalence.

2) nnc : F(nc) =-&#x3E; P’ (nc) is an equivalence.

3) crkn(C) : crkF(C) =-&#x3E; crkF’(C) is an equivalence for all k  n.

Proof. Conditions 2 and 3 are equivalent by the definition of cross
effects. By lemma 2.9.2 and example 2.7, condition 1 implies condition
2. If crkn(C) is an equivalence for all 0  k n, then 1/tc is an

equivalence for all t since F and F’ are degree n. Hence, by lemma
2.9.2 and example 2.7 we see that condition 3 implies condition 1.

Theorem 2.11 If F dnd G are degree n functors defined along C,
then a natural transfomnation n : F -&#x3E; G is an equivalence if and only
if 1/nc : F(nc) - G(nc) is an equivalence.

Proof. By the lemma L*C n is an equivalence if and only if L*C, 1Jnc is
an equivalence. Since F and G are defined along C, L*C n is equivalent
to 1/ and the result follows.

Definition 2.12. (section 5 of [J-M3]) Let F be a functor from C to A,
and X and Y objects in C. We set Fy(X) = ker(F(Y V X) -&#x3E; F(Y))
(equivalent in our setting to the expression f(y+v) - f(y)) and define
the differential of F to be the bifunctor

The differential V xF(Y) plays the role of the derivative of F at Y in
the direction of X .
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From definition 2.12 we can define the derivative of a functor in
the "direction" of a given object X at the point Y. However, if we
consider functions f : R -&#x3E; R, we need not consider derivatives in
different directions - we need only differentiate in the direction of the
real line R. Moreover, the derivative determines the function up to
a constant. Similarly, for functors defined along the line determined
by C, it suffices to study their derivatives in the direction of C. We
define the derivative of a functor in the direction of the line generated
by C below and show that when a functor is defined along C, this
derivative along C determines the functor up to a constant term.

Definition 2.13. Let F : C - ChA be a functor and C an object in
C . We de fine c, F, the d erivative of F along C to be:

Simil arl y, the nt h d erivative of F along C is given by

Remarks 2.14.

a) By corollaries 5.10 and 5.11 of [J-M3], dndCnF is a En-equivariant
functor such that dndCnF(*) = Dn F (1) hEn.

b) If F is degree n, then by proposition 5.4 of [J-M3], ddCF is degree
n -1. Moreover, by proposition 5.18 of [J-M3], we have
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In the next proposition we see that the differential for a functor
defined along C is completely determined by the derivative of F in
the direction of C.

Proposition 2.15.If n: F -&#x3E; G is a natural transformation of func-
tors defined along C then ddCn is an equivalence if and only if V n is
an equivalence of bifunctors.

Proof. If Vn is an equivalence then ddC n = Vn(C, -) is an equiva-
lence. Conversely, note that Vn(*, Y) is linear in its first variable for
any object Y. Hence, since ddCn(Y) = Vn((C,Y) is an equivalence,
Vn(nC,Y) is an equivalence for any n. By lemma 2.9, it follows that
L*C V1J(*, Y) is an equivalence. But F and G are defined along C,
and so VF(*, Y) and VG(*, Y) are also defined along C in *. This
follows from the definition of V, and the fact that the cross effects of
F and G are defined along C. Thus, since V F(*, Y) and VG(*, Y) are
defined along C and L*C Vn(*, Y) is an equivalence, Vn(*, Y) must
also be an equivalence.

Finally, we see that a functor defined along C is determined, up
to a constant, by its derivative in the direction of C. Recall from

[J-M3] that PooF is the homotopy inverse limit of the Taylor tower
for F.

Theorem 2.16. If n : F -&#x3E; G is a natural transformation of functors 
defined along C such that ddCn is an equivalence then

is Cartesiare.

Proof. The result follows from propositions 5.3 of [J-M3] and 2.15.
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3. Filtration by rank

In the previous section, we saw that if a functor is degree n
and is defined along the line generated by an object C, then it is

determined by its value at nc. The converse of this statement is
not true. In this section, we will see that a functor determined by
its value at nC and defined along C (which we will call a rank n
functor) is not necessarily degree n. We will produce for a functor
F a universal sequence of functors {LiF}i&#x3E;0 such that each LiF has
rank i. We will study the relationship between this rank filtration
of F, and the Taylor tower and derivative constructions of section 5
of [J-M3]. We will be working throughout this section with functors
from C to ChA where C is a basepointed category with coproducts,
and A is a cocomplete full and faithful subcategory of the category of
left modules over a ring A.

Our first task is to produce, in a systematic fashion, functors that
are determined by their values at the points 0c, 1C, ... , nC. We do
so by means of left Kan extensions, defined as follows.

Definition 3.1. Let D be a small, full, and faithful subcategory of C,
and let G be a functor ,from D to A. The left Kan extension of G is
the simplicial functor LDG : C -&#x3E; Simp ChA that in degree n is given
by setting LDG([n])(-) to be:

(For a set X , X+ is the associated pointed set with basepoint +.) For
an elerraent, (x; al, ... , O!n;(3), of a direct summand of LDG([n])(-),
the face and degeneracy maps are defined as follows.

For a functor F from D to ChA, we will use LDF to denote LD (F/D).
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For any functor F from D to ChA, the simplicial functor LF
is augmented over F. That is, there is a natural transformation

LDF -&#x3E; F given by sending (x; al, ... , an; (3) to F(boano...oa1)(x).
For an object D in D, this augmentation map is a simplicial homotopy
equivalence by sending x E F(D) to (x; idD, ... , idD; idD). Similarly,
if D’ is a faithful and full subcategory of D and F is a functor from D’
to ChA, then LD (LD’F) -&#x3E; LD’F has an inverse defined by mapping
LD’F to LD (LD, F) [0] by means of the map that sends

in

Thus, on C,

We are interested in constructing left Kan extensions using the
following subcategories of C.

Definition 3.3. Let C be an object in C.

1) Sc is the full subcategory of C generated by objects of the form
C A U for U E Sets* . Note that Sc is not small.

2) No is the full subcategory of Sc generated by the set of objects

3) For 0  k  n, NC (k, n] is the full subcategory of So generated
by the set of objects
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Definition 3.4. For a functor F from C to ChA and an object C in C,
we denote the left Kan extensions of F along the categories Nc[k, n]
and N c as follows:

Note that LnCF, LC[k,n]F, and LCF are functors from Sc to the
category of simplicial objects in ChA. Equivalently, by applying the
normalization functor N and taking the total complex (using direct
sums) of the resulting bicomplex, we can consider LCnF, LC[k,n]F, and
LCF as functors from SC to ChA. We will omit the superscript of C
when the context is clear.

By the comments following definition 3.1, we know that L[k,n]F
and F agree on NC[k,n]. In the next lemma, we see that left Kan
extensions along NC[k, n] are determined by their values at nc.

Lemma 3.5. Let C be an object in C, F and F’ be functors from C to
Ch,A., and 11 : F - F’ be a natural transformation. For 0  k  n,
the following are equivalent:

1) L[k,n]n: L[k,n]F --t L[k,n]F’ is an equivalence.
2) Nnc : F(nc ) -&#x3E; F’ (nc ) is an equivalence.

3) crki7(C) : crkf(C) - crkF’(C) is an equivalence for k  n.

Proo, f . Conditions 2 and 3 are equivalent by the definition of cross
effects. Condition 3 implies that 11tc is an equivalence for all 0 t 
n. As a result, L[k,n]n is an equivalence since it is a map of simplicial
chain complexes that is an equivalence in each simplicial dimension.
Condition 1 implies condition 2 since nc is an object in NC[k, n].

With lemma 3.5, we can show that extending along Nc[n,n) is
equivalent to extending along NC[k, n].
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Lemma 3.6. Let F be a functor from C to ChA and C be czn object
in G. For all 0  k  n, the natural map 77: LnF -&#x3E; L[k,n]F induced
by the inclusion N[n,n] 9 N[k,n] is an equivalence of functors on Sc.

Proof. Consider the commuting diagram:

The vertical maps in the diagram are equivalences on Sc by (3.2).
Since nc is an object in NC[k, n] and NC[n, n], it follows that

Hence, the top horizontal map in the diagram is an equivalence by
lemma 3.5 and the result follows.

Although LyyF and L[k,n]F are determined by their values at nC,
they do not necessarily satisfy the limit axiom along C, and hence
may not be defined along C. The reason for this is that the func-
tors Homc (D,*) used in the construction of the left Kan extensions
may not satisfy the limit axiom along C. However, if the functors
Homc(D,*) satisfy the limit axiom, then LnF and LF satisfy the
limit axiom for all functors F. This is because X n - commutes with
filtered direct limits for all objects X in C, as do (D and Tot+. To
remedy the problem in general, we apply the following.

Definition 3.7. For a functor G from Sc to ChA and an object C
in C, we define G°° : Sc - ChA by
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There is a natural transformation from G°° to G that is an equiv-
alence when the functors are restricted to N c . More generally, the
natural transformation is an equivalence if and only if G satisfies the
limit axiom along C.

Our last step in constructing rank n functors from the left Kan
extensions is to expand the domain of these functors to all of C and,
at the same time, guarantee that the resulting functors are defined
along C. We do so by using the resolutions of the functors along C.

Definition 3.8. For a functor F from C to ChA and an object C in
C, the ,functors LCF, LC[k,n] F, and ,CCF from C to ChA are defined
as follows: 

We will omit the superscript of C when the context is clear.

We use Gn and LC[k,n] to produce a filtration of a functor as
follows. 

Definition 3.9. Let F be a functor from C to ChA and C be an object
in C. 

1) The functors CnF fit into a filtered system of functors:
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where the natural transformations are induced by inclusions of
categories and the natural transformations £nF - L[0,n]F are
equivalences by lemma 3.6. We will refer to this system as the
rank filtration of F along C.

2) There are natural transformations ,CnF -&#x3E; F and ,CF -&#x3E; F
induced by the augmentations of the left Kan extensions over
NC[n,n] and NC, respectively. If £nF -&#x3E; F is an equivalence,
we say that F is a rank n functor along C. If ,CF -&#x3E; F is an

equivalence, we say that F is polynomial along C.

We will drop the phrase "along C" when the context is clear.
Note that F is polynomial if and only if F is equivalent to the colimit
of the rank filtration of F.

Remark 3.10. The functor £nF is always a rank n functor. To see
this note that from the definition of ,Cn, we have CnF(nc) - F(nC).
By lemma 3.5, LnLnF = LnF, and so Ln(LnF)=LnF.

Note that rank n functors are completely determined by their
values at nc in that for such a functor F, F(nc) is the only value used
in the construction of ,CnF. More generally, we have the following.

Lemma 3.11. A functor F from C to ChA is defined along an object
C in C if and only if it is polynomial along C.

Proof. Suppose F is defined along C. Since LF -&#x3E; F is an equiva-
lence at tc for all t and F satisfies the limit axiom along C, we have
(LF)°° =-&#x3E; F°° =-&#x3E; F. Then, since F is defined along C, we have

and so F is polynomial. The converse follows from the fact that ,CF
is defined along C.
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The rank filtration of F is universal in the following way.

Proposition 3.12. Let F be a functor from C to ChA and C be
an object in C. The functor LnF is universal (up to natural quasi-
isomorphism) among rank n functors with natural transformations to
F.

Proof. The proof is similar to the proof of lemma 2.11 of [J-M3].

We now wish to consider the relationship between rank and de-
gree for a functor. In particular, we will show that every degree n
functor has rank n whereas a rank n functor need not have finite

degree. We do so by means of the next proposition.

Proposition 3.13. If F : C - ChA is polynomial (resPectively, rank
k) along an object C in C, then PnF is polynomial (respectively, rank
k) along C for all n &#x3E; 0.

Proof. We will prove the proposition in the case that F is polynomial.
The finite rank case can be proved in a similar fashion by using Gk in
place of G.

Note that it suffices to show

since it will follow that the map L(L*n+1 F) -&#x3E;Ln+1F is a map of
simplicial chain complexes that is an equivalence in each simplicial
dimension. Recall from proposition 1.2.3 that for any object X in C
there is a natural isomorphism of functors:
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It follows from the definition that L preserves such direct sum decom-

positions. Hence, the result follows from the commutative diagram:

Remark 3.14. Using a proof similar to that of proposition 3.13,
one can also show that if LF oi F, then LPnF ci PnF. Similarly,
LkF cr F implies that LkPnF=PnF.

As a consequence of proposition 3.13, we can show that ,C and
P,, commute for polynomial functors.

Corollary 3.15. Let F : C - ChA and C be an object in C. If F is
polynomial, then LPnF is naturally equivalent to Pn£F for all n &#x3E; 0.
If F is rank k, then LkPnF is naturally equivalent to Pn£kF for all
n&#x3E;0.

Proof. We prove the result for polynomial F. The rank k case is
similar. Consider the following commutative diagram:

Using proposition 3.13, definition 1.16, and the fact that Pn, preserves
quasi-isomorphisms, one can show that all of the maps above are

equivalences. The result follows.

Corollary 3.16. Every degree n functor F : C -&#x3E; ChA defined along
an object C in C has rank n along C. Moreover, if F is a homogeneous
degree n functor, then F has rank 1 along C.
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Proof. Consider the following commutative diagram:

The two vertical maps are equivalences because F is degree n and Cn
preserves equivalences. To see that Ln Pn F -&#x3E; Pn F is an equivalence,
note that since F is defined along C and F =-&#x3E; PnF, it follows that
PnF is defined along C. Hence by lemma 3.11, PnF is polynomial.
Then by corollary 3.15, Ln PnF = PnLnF, and so Ln PnF is degree n.
Thus, the lower horizontal map is a map between degree n functors
that are defined along C. Moreover, it is an equivalence at nc and
so, by theorem 2.11 is an equivalence on C. Hence, LnF =-&#x3E; F and
F is rank n along C.

Now, suppose F is a homogeneous degree n functor. Then F ci
DnF and so by proposition 3.10 of [J-M3], F = In FhEn where 1-n F
is the diagonal of the functor of n variables, crnf. To show that
F is a rank 1 functor it suffices to establish that in F is rank 1
since ( )hEn preserves equivalences and hence preserves the rank of a
functor. But, crnf is degree 1 in each of its variables since F is degree
n and so by the above, crnf is a rank 1 functor in each of its variables.
Then, letting L1(n) (crnF) denote the functor obtained by applying £1
to each variable of crnF separately, we see that L1(n) (crnF) = crnf.
Moreover, L1 (Ln F) = Diag L1(n) (crnF) where Diag L1(n) (crnF) is

the diagonal of the n-multisimplicial object

Here Lj1[pj] indicates the degree pj term in L1 applied to the jth
variable of cr,,.f. By the Eilenberg-Zilber theorem Diag L1(n)crnF = 
L1(n) crnF = crnF and the result follows.

The converse of,corollary 3.16 is not true, i.e., LnF does not al-
ways have finite degree. In particular, consider the following example.
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Example 3.17. Let C and A be the category of abelian groups and let
C = Z. For any functor F : C - A, and any object A in C, it follows
from definitions 3.1 and 3.3 that

The functor F(Z) ©Z[Z]- is a degree one functor, but the functor
Z[-] has infinite degree. Hence Ho(LIF) and LIF do not in general
have finite degree. It follows that L1F may not have finite degree
although it is a rank one functor.

We can also use proposition 3.13 to show that derivatives along
C preserve the rank of a functor.

Corollary 3.18. Let C be an object in C and let F : C -&#x3E; CM be

defined along C.

1) If F is polynomial (resPectively, rank k), then ddC F is polynomial
(respectively, rank k).

2) If LF =-&#x3E; F (respectively, LkF =-&#x3E; F), then L(ddCF) =-&#x3E; ddCF
(respectivedy, Lk (ddCF) =-&#x3E; ddCF). 

Proof. We will prove the proposition for G. The other cases are

similar. From proposition 3.13, we know that LPnF = PnF. It is

straightforward to show that L preserves fibers, so that LDnF = 
DnF. Now, recall that ddCF(Y) = D1[cr2F(-,Y)J(C)+D1F(C). By
the proof of 3.13, Lcr2F(-,Y)= cr2F(-,Y) for all Y. It follows by
the above that
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Remark 3.19. We will be interested later in applying 3.18.2 to the
functor Z[Homc (nC, *)] : C - Z - Mod. In particular, the augmenta-
tion LnZ[HomC (ne, *)] -&#x3E; Z[Homc (nc, *)] has an inverse by sending
k [a] for a E Homc (nc, *) and k E Z to (k[idnc];idnc,...,idnc;a).
Hence, by corollary 3.18, we have
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