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ON A GENERALIZED SMALL-OBJECT ARGUMENT
FOR THE INJECTIVE SUBCATEGORY PROBLEM

by J. ADÁMEK*, H. HERRLICH, J. ROSICKý~ and W. THOLEN

CAHIERSDETOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XLIII-2 (2002)

RESUME. Nous d6montrons une generalisation de t’argument de
l’objet petit connu dans la th6orie des homotopies. Elle s’applique à
chaque ensemble de morphismes H non seulement dans des catego-
ries localement de pr6sentation finie mais aussi dans la cat6gorie
des espaces topologiques. Elle dit que la sous-cat6gorie des objets
H-injectifs est faiblement r6flexive et, en plus, que des r6flexions
faibles sont H-cellulaires.

I. Introduction

One of the classical questions of category theory is the "orthogonal sub-
category problem" : given a class 1-l of morphisms of a category A, when
is the full subcategory 1-l.L of all objects orthogonal to 1-l reflective? In
algebraic homotopy theory an equally important problem is the follow-
ing "injective subcategory problem" . Given a class 1-l of morphisms in
A, we can form the full subcategory

of all objects A injective w.r.t. 1-l (i.e., such that hom(A, -) : A -&#x3E; Set

maps members of 1-l to epimorphisms). Typically, this subcategory is
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not reflective, but we can ask about the existence of weak reflections
(defined like reflections, except that factorizations are not required to
be unique). Furthermore, if weak reflections exist, they are not unique,
and we may ask about the "quality" of the weak reflection morphisms.
Homotopy theorists need weak reflections to be 1-l-cellular, i.e., to be-
long to the closure of 1i under isomorphisms, pushouts and transfinite
composition (or, equivalently, under multiple pushouts). The "injec-
tive subcategory problem" , then, is the question of whether, for a given
class 1-£ of morphisms of A, every object of A has an 1-l-cellular weak
reflection in H-Inj .

We present a solution which generalizes the well-known Small Object
Argument already present in Gabriel-Zisman [7], Chapter VI, Proposi-
tion 5.5.1. In that argument, an object A is called small w.r.t. 1-l

provided that there exists an infinite cardinal A such that hom(A, -)
preserves colimits of A-chains of 1-l-cellular morphisms. Suppose that
A is cocomplete and 1-£ is a set of morphisms such that every object is
small w.r.t. A; then the injective subcategory problem has an affirma-
tive answer. Thus, in locally presentable categories we conclude that
the answer is affirmative for all sets of morphisms. But what about such
basic categories as the category Top of topological spaces? We intro-
duce here the concept of locally ranked category: it is a cocomplete and
cowellpowered category such that every object A has rank, i.e. there
exists an infinite cardinal A such that hom(A, -) preserves unions of
A-chains of strong momomorphisms. Since A-presentable objects have
that property, we have

locally presentable =&#x3E; locally ranked.

But also Top and other topological categories are locally ranked. Our
main result is the following

Generalized Small-Object Argument. For every set of morphisms
in a locally ranked category, the injective subcategory problem has an
affirmative answer.

What about the orthogonal subcategory problem in locally ranked
categories? G. M. Kelly proved [10, Theorem 10.2] that the answer is
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affirmative not only for sets of morphisms, but also for those proper
classes such that all members but a subset are epimorphisms. It is
not known to us whether our result above holds for such classes too.

However, we do know that for each such class H the subcategory H-Inj
is almost reflective, i.e., every object has a weak reflection into 1-l-Inj,
and 1-l-Inj is closed under retracts. Moreover, 7t-Inj is naturally almost
reflective in the sence of [2], i.e., there exists an endofunctor R : A -&#x3E; A

together with a natural transformation e : Id - R such that for every
object K of A

(*) ok : K e RK is a weak reflection of K in H-Inj.

What we do not know is whether one can choose the weak reflection to
be H-cellular.

Our proof, for sets 1i of morphisms in locally ranked categories uses
substantionally a technique developed in the disseration of J . Reiterman
[13] and published in [11]. A weak reflection of an object K into H-
Inj is constructed iteratively; the first step of iteration is presented
by a pointed endofunctor, i.e., an endofunctor C : A -&#x3E; 4 together
with a natural transformation 77 : Id -&#x3E; C. That is, we start from
nK: K -&#x3E; C(K) and then iterate:

using chain-colimits on limit steps. We prove that there exists an ordinal
t such that Ci(K) is H-injective, and then K - Ci(K) is an 1-l-cellular
weak reflection. However, the pointed functor we use does not in general
satisfy the equation 77C = Cq. Hence, there is an alternative "obvious"
iteration, viz.,

This leads to natural weak reflections (not only for sets 7t, but also
for the above-mentioned classes); however, these weak reflections are
probably not H-cellular. This brings us to the following:

Open Problem. Given a set 1£ of morphisms of a locally ranked
category, does there exist a pointed endofunctor p : Id --&#x3E; R satisfying
(*) and such that each oK is 1-l-cellular?
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In the last section we apply the Generalized Small-Object Argument
to extend the theorem on weak factorization systems constructed from
a given set of morphisms from locally presentable categories to locally
ranked ones. This has been formulated earlier for locally presentable
categories by T. Beke, see [4].

II. Generalized Small-Object Argument

II.1 Convention. All categories throughout our paper are supposed
to be locally small, i.e., hom-sets are (small) sets.

II.2 Definition. Given a class 1-l of morphisms of a cocomplete cate-
gory A, we denote by

cell (1-l)
the least class of morphisms containing 1-l and all identity morphisms
which is pushout-stable and closed under transfinite composition, i.e.,
contains the colimit cocones of all chains in cell (H). Members of cell (H
are called 1-l-cellular morphisms.

Remark. Pushout stability means, of course, that in any pushout,
opposite to an H-cellular morphism is always an H-cellular morphism.
Observe that closedness under transfinite composition can be substi-
tuted by closedness under (i) composition and (ii) multiple pushouts
(meaning that for every small discrete cone of H-cellular morphism the
colimit cocone is formed by ’1-l-cellular morphisms).

Example. (1) Let A = Set and let H consist of the single morphism
0 -&#x3E; 1. Then cell (1-l) = monomorphisms. In fact, by pushout stabiltity
we get that the inclusion A -&#x3E; A + 1 is in cell (H) for every set A, and
transfinite composites then yield all monomorphisms A -&#x3E; B.

(2) Let A = Top, the category of topological spaces and continuous
maps, and let 1-£ consist of the single embedding
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of the discrete two-element space into the unit real interval. Then
cell (H) consists of the extensions of topological spaces A obtained by
iteratively glueing new paths to pairs of elements of A.

II.3 Subcategories R-Inj. Given a class 1-l of morphisms of A, an
object A is said to be 1-l-injective provided that for every member h :
H -&#x3E; H’ of H -&#x3E; and every morphism f : H -&#x3E; A there exists f’ : H’ -&#x3E; A
with f = f’ - h. We denote by

the full subcategory of all 7i-injective objects of A.

Example: A = Set, 1i = f 0 -+ 1}, then 1-l-Inj is the full subcategory
of all nonempty sets. If A = Top and 1-l = {e} above, then 1-l- Inj is

the full subcategory of all pathwise connected topological spaces.

11.4 Weak Reflections Constructed by Iteration. Given an object
Ii of A we are going to construct a transfinite chain

which will be proved to approximate a weak reflection of K in 1-l-Inj in
the sense that, for every ordinal i,

if Ki is H-injective, then K0 -&#x3E; Ki is a weak reflection of K;

Moreover, all members of that transfinite chain are H-cellular mor-

phisms.

The first step of our construction, K = Ko - K1, will be performed
by a pointed endofunctor of A, i.e., by an endofunctor together with a
natural transformation from IdA. The subsequent steps will consist of
iterating that endofunctor.

Notation. Let H be a set of morphisms in a cocomplete category A.
We define a pointed endofunctor
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of A as follows.

For every object K of A form a colimit of the following small diagram

consisting of all spans ( f, h) where h : H -&#x3E; H’ is any member of H and
f E hom(H, K). We denote a colimit cocone of that diagram as follows:

(Since f’ depends on f and h, this is a slightly imprecise notation.)
To define C on morphisms u : K -&#x3E; K of A, observe that there

exists a unique morphism

for which the diagrams

commute for all ( f, h) in the diagram above.
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11.5 Example. Let A = Set and ?i = {0 -&#x3E; 1}. Then C(K)=K +1;
more precisely, C is a coproduct of Id Set and the constant functor with
value 1.

II.6 Remark. As announced above, we are going to construct a weak
reflection of an object K in 7t-Inj by iterating the above pointed end-
ofunctor C. There are, however, two "natural" possibilities of iteration
: either

or

It turns out that each of them has its advantages: the first one leads

to an 1-£-cellular weak reflection, the latter to a natural one (see 11.17
below).

This makes a fundamental difference between the present injective-
subcategory problem and the orthogonal-subcategory problem: in the
latter, the corresponding functor C is well-pointed, i.e., Cq = 77C (see
[10]). Here, this equation does not hold in general, e.g., in the preceding
example we have C"l =I nC.

II.7 A Weak-Reflection Chain. Let 1-£ be a set of morphisms of
a cocomplete category A. For every object K we define a transfinite
chain of objects Ki (i E Ord ) and 1-£-cellular morphisms kij : Ki -&#x3E; Kj
(i E j ) by the following transfinite inductions:

First step: K0 = K;

Isolated step: Ki+1 = C(Ki) and ki,i+1 = nKi

Limit step: Kj = colim Ki for every limit ordinal j, with a colimit
cocone kij ( i  j).

To prove that the chain consists of H-cellular morphisms, it is obviously
sufficient to verify that 77K is 1-l-cellular for every object K. In fact,
suppose that we form a pushout of each span of the diagram defining
C(K):
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Then h E 1i implies h* E cell (H), and nK is obtained as a multiple
pushout of all the morphisms h*, thus, nK E cell (1-£).

11.8 Lemma. The above weak-reflection chain is an approximation of
a weak reflection of K in H-Inj in the following sense:

(a) every W-injective object is {k0i}-injective for all ordinals i,
and

(b) if, for some ordinal i, Ki is 1-l-injective, then koi : K -&#x3E; Ki is a

weak reflection in H-Inj .

Remark. In (b), 1-l-injectivity of Ki is equivalent to the property that
the i-th step of the iteration, nKt, be a split monomorphism.

Proof. (a) Given A E 1-l-Inj and a morphism u : K - A, we show that
there is a cocone ui : Iii -&#x3E; A of the weak reflection chain above with

uo = u, by transfinite induction.

Isolated step:

Since A is H-injective, for each span ( f , h) of the diagram defining
C(Ki) there exists f : H’ -&#x3E; A with fh = ui f . These morphisms,
together with ui, form a cocone of that diagram, and we denote by
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ui+l : C(Ki) -&#x3E; A the unique morphism that factors this cocone. In

particular, Ui = ui+1. nki.

(b) follows from (a). D

II.9 Remark. The following corollary, due to Quillen [Q], is known as
Small Object Argument. An object K is called small w.r.t. 1-£ if there
exists an infinite cardinal A such that hom(K, -) preserves colimits of
A-chains of 1-l-cellular morphisms.

II.10 Small Object Argument. Let 1-l be a set of morphisms of a
cocomplete category A such that all objects are small w.r.t. W. Then
1-l-Inj is almost reflective with 1-l-cellular weak reflections.

Proof. There exists an infinite cardinal A such that hom(H, -) preserves
colimits of A-chains of 1-l-cellular morphisms for every domain H of
morphism in 1-£. We show that for every object K of A, the object Kx
is 1-l-injective, which, by 11.8, proves that k0iB : K -&#x3E; Kx is an 1-£-cellular
weak reflection.

For every span ( f, h) with f : H -&#x3E; KiB there exists a factorization
f = kiB . f* for some i  A (since hom(H, -) preserves KiB = colim Ki),

iiB
and this proves the H-injectivity of KiB : the morphism f factors through
h since ’ski - f * = (f*)’. h, hence
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II.11 Remark. It is our goal to present a result of the same type
as the Small Object Argument where, however, smallness w.r.t. 1-l
would be substituted by a (reasonably weak) property of the category
A, independent of 1-l. We call this property "locally ranked" which
is intended to be reminiscent of "locally presentable" as introduced by
Gabriel and Ulmer. The only drawback of this general result is the

requirement that A be cowellpowered (which was not needed for the
Small Object Argument). However, since most "everyday" categories
are cowellpowered, we do not think that this is a real obstacle.

Below, we use the fact that every cocomplete and cowellpowered cat-
egory has (epi, strong mono) factorization of morphisms, see 14.21 and
14C(d) in [1]. Recall that a monomorphism m : A-&#x3E; B is called strong
provided that it has the diagonal-fill-in property w.r.t. epimorphisms.
That is, given a commutative square

where e is an epimorphism, there exist a diagonal morphism Y - A
rendering both triangles commutative.

The whole theory below could be performed in any cocomplete cow-
ellpowered category with a proper factorization system (E, M) for mor-
phisms. We give an indication of this in the Remark following 11.14;
but in order to simplify the statement below, here we stick to E = epi
and .Jtit = strong mono, in order to simplify the statements below.

11.12 Definition. A category A is called locally ranked provided that
it is cocomplete and cowellpowered, and for every object K there exists
an infinite cardinal A (called rank of K) such that hom(K, -) preserves
unions of A-chains of strong subobjects.

Remark. Explicitly, K has rank A provided that for every A-chain of
strong monomorphisms, (Ai)iiB, with a colimit cocone ai : Ai -&#x3E; A (i 
iB), every morphism f : K --&#x3E; A factors through ai for some i  iB. Every
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A-presentable (in fact, every A-generated) object has this property, but
not vice versa: recall that e.g. in Top only the discrete spaces are
A-generated.

11.13 Examples. (1) All locally presentable categories (see [6] or [3])
are locally ranked. E.g., all varieties of algebras, the category of posets,
and the category of simplicial sets are locally ranked.

(2) Top, the category of topological spaces and continuous maps,
is locally ranked (but not locally presentable). Here strong monomor-
phisms are precisely the subspace embeddings. Every topological space
K of cardinality smaller than A, where A is an infinite cardinal, has
rank A. In fact, given f : K -&#x3E; A = colim Ai, there exists i such that
f[K] C ai[Ai]; hence f factors as f = ai. f’ in Set, and the continuity
of f implies that of f’ : K -&#x3E; Ai because ai : Ai -3 A is a subspace
embedding.

(3) More generally, all monotopological categories over Set, see [1],
are locally ranked. These include the category of uniform spaces, and
the category of Hausdorff topological spaces.

11.14 Theorem (Generalized Small Object Argument). Given a set

1-l of morphisms in a locally ranked category, then every object has an
H-cellular iveak reflectiort into 1-l-Inj.

Remark. Instead of locally ranked, which refers to (epi, strong mono)-
factorizations, we can formulate and prove our result for categories with
a proper factorization system (£,.M); i.e., E is a class of epimorphisms
and M is a class of monomorphisms both closed under composition
and such that A = ME(i.e., every morphism f of .A factors as f =
me with m E M and e E E) and M-morphisms have the diagonal
fill-in property w.r.t. E-morphisms. Let us call a category A locally
ranked w.r.t. a proper factorization system (£, M) provided that A
is cocomplete, E-cowellpowered, and every object A has an M-rank,
i.e., a cardinal A such that hom(A, -) preserves unions of A-chains of
M-monomorphisms.

The above theorem holds for all locally ranked categories w.r.t. a
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factorization system.

Proof. We prove our results in the general (E, M)-setting of the Remark
above. According to 11.8 we only need to show that for every object
K E A there is i E Ord with Ki E 1-l-Inj. Denote by

and

an (E, M)-factorization of kij : Ki -+ Kj (where Xii = Ki, eii = mij =

id) in A. For each I E Ord we obtain a chain of E-morphisms ejj, :
Xij -&#x3E; Xij, (j  j’ in Ord ) by using the diagonal fill-in:

We obtain a two-dimensional diagram as follows:

where the diagonal morphisms are M-morphisms obtained, again, from
the diagonal fill-in (for all i  i’  j ):
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Since /C is E-cowellpowered, for every ordinal i the chain eiij : K --&#x3E;
Xij (j&#x3E; i) of E -quotients of Ki is strationary, i.e., there exists 1* &#x3E; I
such that all the quotients eiij with j &#x3E; i* are equivalent. In other

words,

We choose, for each i, our ordinal i* so that (-)* : Ord - Ord is
monotone and define the iteration of * as the following function cp : 
Ord - Ord :

Let (Li) be the following chain:

and the connecting morphisms lij are given by the diagonal fill-in for all
i  j:
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Due to (1) we conclude

and we have a natural transformation

in

Let us show that for every limit ordinal j we have

with colimit cocone

Given a cocone hi : Li -+ H (i  j) the cocone hidi : Kcp(i) --&#x3E; L has

a unique factorization through K,(j) = colimKcp(i). Thus, there is a
a j

unique h : Kcp(j) -+ H with

We conclude that

because di is an epimorphism with

by
by

by

And h is unique because (7) implies (6).
We are ready to prove that Kcp(iB) is M-injective, whenever all do-

mains of M-morphisms have M-rank A. In fact, given

and 
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then since hom(A, -) preserves the colimit Kcp(iB) of the M-chain (Li)iiB,
there exists i  A such that f factors through cif(iB) : Li -&#x3E; Kcp(cp), say

for some

For the morphism

we have g’ : A’ -&#x3E; Ff(i)*+1 with

and we conclude

by i

by 
by 

by

This concludes the proof that Kcp(iB) is M-injective. D

II.15 Remark. Following [2], we call a subcategory D of a category A
naturally almost reflective provided that (i) A has a pointed endofunctor
g: IdA -&#x3E; R such that for every object K of A we have:

(*) e : K -&#x3E; Rlf is a weak reflection of K in B,
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and that (ii) B is closed under retracts in A (which is automatic in
case B = 1-l-Inj). The above proof of Theorem 11.14 does not yield
naturality: the ordinal i for which k0i : K -&#x3E; Ki is a weak reflection

of K in B = 1-l-Inj depends on K. This is a drawback in comparison
with the Small Object Argument (II.10): there we had one ordinal A

for all objects K. Thus, a weak-reflection endofunctor of A is obtained
by A iterations of n : Id - C. That is, define a A-chain in AA by the
following transfinite induction:

First step : Co

Isolated step : Ci+l = C - Ci and Ci+1,j+1 = Ccij;

Limit step : Cj = colimCi for limit ordinals j.
ij

ThenThen

is a pointed endofunctor satisfying (*) for B = H-Inj. This has been

proved in 11.10.

11.16 Open Problem: Is 71-Inj naturally and 1i-cellularly almost
reflective in every locally ranked category A (and for every set 1-l of

morphisms in A)?
That is, does there exist a pointed endofunctor o : IdA -&#x3E; R such

that for every object K, (*) holds for B = 1i-Inj, and ok- is also H-

cellular ?

Example: The answer is affirmative for all locally presentable cate-
gories A. 

II.17 Remark. The above problem is really vexing since, as kindly
pointed to us by Steven Lack, 1-l-Inj is naturally almost reflective in A.
In fact, an object A is 1-l-injective iff nA is a split monomorphism (cf.
Remark 11.8). In the terminology of [10] this is equivalent to A carrying
the structure of an algebra of the pointed endofunctor T = (C, n) of
11.4 above. Thus, we have a canonical forgetful functor V from the
category Alg(T) of all algebras over T into 1-l-Inj. If a denotes a joint
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rank of all the domains and codomains of morphisms in 1-l, then the
functor C preserves colimits of a-chains of morphisms from M (the
right-hand class of our factorization system (£, M)): see Theorem 10.1
of [10] for the analogous argument (in fact, the only modification needed
is to restrict the pushout (10.1) used in [10] to the left-hand summands
only: the resulting pushout is the pointed functor (C, n) above). It

then follows from Theorem 15.6 of [10] that the category Alg(T ) of all
algebras is reflective in the category T j A of all arrows TX --&#x3E; Y.
The natural forgetful functor U : T -J- A -&#x3E; A assigning to each of the
arrows the object X has a left adjoint (sending X to id : TX -&#x3E; TX),
therefore, the functor V, a domain-codomain restriction of U, also has
a left adjoint, and this yields the desired functorial weak reflection.

III. Weak Factorization Systems

111.1. In this section we apply Theorem 11.14 to generalize a result
on weak factorization systems from the realm of locally presentable
categories to all locally ranked categories.

We use the notation

fOg

for the statement that the morphism f : A - B has the diagonal fill-in
property w.r.t. g : C -&#x3E; D, i.e., for every commutative square

there exists a diagonal
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making both triangles commutative. For every class 1-l of morphisms
in 4 we denote by 1-l° and 01£ the classes obtained by the Galois
correspondence induced by 0:

and

111.2 Remark. Observe that an object K is 1-l-injective iff the unique
morphism K -&#x3E; 1 lies in HO.

Conversely, a morphism g : C -&#x3E; D lies in HO iff g as an object of the
comma-category A j D, g is H-injective for the set H of all morphisms

of A -!- D with h E 1-l. (See 12.4.2 in [8].)
The following definition appears in [4].

111.3 Definition. By a weak factorization system in a category A is
meant a pair of classes L and R of morphisms of A such that

and

That is, every morphisrra of A has a factorization as an £’-morphism
followed by an R-morPhism, and L and R determine each other in
the Galois correspondence induced by the diagonal fill-in relation 0 on
mor A.



101.

111.4 Remark. (1) The above conditions (i)-(iii) are easily seen to be
equivalent to the following:

for all 

and

(iii*) both L and R are closed under retracts in the category A-&#x3E;.

Recall that A -&#x3E; has as objects all morphisms of A, and as morphisms
commutative squares. Thus, (iii*) says that in every commutative dia-
gram of A of the following form

g E G implies f E .C and g E R implies f E R. Or, equivalently, that
the following implications hold:

whenever i - f E L and p - i = id, then f E G

and

whenever f - q E R and q . j = id, then f E R.

(2) In a weak factorization system,

In fact, this follows from (ii) and (iii) only (see [14])

111.5 Examples. (1) Every factorization system in a category (which
can be defined as above except that "diagonalization property" is sub-
stituted by "unique diagonalization property", see [5]) is a weak factor-
ization system, see 14.6(3) in [1].



102

(2) Every Quillen model category, given by morphisms classes

F (fibrations),
C (cofibrations),

and

W (weak equivalences)
has two prominent weak factorization systems:

(G,F0) where F0 = FnW (trivial fibrations)
and

(C0, F) where Co = C n W (trivial cofibrations),
see [12].

(3) In Set, by (1) we have a (weak) factorization system (Epi,
Mono). Also (Mono, Epi) is a weak factorization system. In fact:

(i) Every morphism f : A -&#x3E; B factors as 

(ii) Epi C Mono° because epimorphisms split:
given a commutative square

with Gi = id, extend u to B by using v. i on B - A. Further
Monoo C Epi which is trivial since 0 -&#x3E; 1 is a monomorphism.
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(iii) ’Epi C Mono since for every morphism f : A -&#x3E; B in ’Epi, f is a
split monomorphism due to the following square

111.6 Definition. Let 1-£ be a class of morphisms in a cocomplete cat-
egory A. A morphism f : A - B is called an 1-l-cofibration provided
that, in the comma category A -!- A, it is a retract, of an H-cellular
morphism; that is: there exist f’ : A -4 B’ in cell (H) and commutative
triangles

with r - i = id.

Remark. We denote by

the class of all H-cofibrations. It is easy to show that

for every 1-l, see [8], 8.2.5-9 and 12.2.16. The following theorem gen-
eralizes the result of T. Beke [4] from locally presentable categories to
locally ranked ones:

111.7 Theorem. Let 1-£ be a set of morphisms in a locally ranked cate-
gory. Then (cof(H),HO) is a weak factorization system.

Proof. Put R= 1-l° and L =° R. Then we first prove that (G, R) is a
weak factorization system, and then that G = cof(1-l).

(a) Every morphism f : X -&#x3E; Y of A has an (G, R)-factorization:
The comma-category A j Y is obviously cocomplete and E-cowellpowered,
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where E consists of all morphisms of A -!- Y whose underlying morphism
in A is an epimorphism. Moreover, 4 -!- Y has the proper factoriza-
tion system (E, M) where M consists of all morphisms whose under-
lying morphism in A is a strong monomorphism. Finally, every object
b:B -&#x3E; Y of A -!- Y has an M-rank (see Remark II.14): if B has rank

A in A then (B, b) has M-rank A in A i Y. Consequently, for every
set of morphisms of A i Y weak cellular reflections exist by 11.14. We
apply this to the set Ti of all morphisms whose underlying morphism in
A lies in 1-l. Thus, the object f : X - Y given above has an ’H-cellular
weak reflection

in H-Inj. But H-Inj = HO = R, see 111.2, thus

Also, r E cell (H), i.e., r E cell (1-l), which implies r E cell (L) because
1-l C O(HO) = L and by Remark 111.5 we conclude

(b) G =° R by definition.

(c) R = L’ by definition of N and (a) above.

(d) .C = cof(H). In fact, it is clear that cof(H) is contained in

L -o (1-l°), see Remark 111.5. Conversely, given f : X -&#x3E; Y in ,C,
consider the above factorization f = f*r, where r E cell (1-l). It is

sufficient to show that f is a retract of r in A -!- Y; in fact, we can use
the diagonal fill-in property:
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