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TENSOR PRODUCTS OF CATEGORIES OF

EQUIVARIANT PERVERSE SHEAVES
by Volodymyr LYUBASHENKO

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQ UES
Volume XLIII-1 (2002)

RESUME. On ddmontre que le produit tensoriel introduit par Deligne
des categories de faisceaux pervers equivariants constructibles est encore
une catégorie de ce type. Plus pr6cisdment, le produit des categories
construites pour une G-varidtd complexe algébrique X et pour une H-
variété Y est une cat6gorie correspondante a la G x H-vari6t6 X x Y -
produit des espaces constructibles.

1. Introduction

The main result of the author’s paper [10] is that the geometrical exter-
nal product of constructible perverse sheaves is their Deligne’s tensor
product. In the present paper we extend this result to equivariant per-
verse sheaves.

Let us recall the details. Given a perverse sheaf F on a compactifi-
able pseudomanifold X with stratification X and perversity p : X - Z
and a perverse sheaf E on a compactifiable pseudomanifold Y with strat-
ification 2j and perversity p : X - Z, we can construct their product
F 0 E = pr* F 0 pr* E which is a perverse sheaf on X x Y, equipped
with stratification X x y and perversity

The C-bilinear exact in each variable functor

makes the target category into the Deligne tensor product [6] of categories-
factors of the source category. In a precise sense 0 is universal between
such C-linear exact functors.
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Our goal is to generalise this result to the following setup. Let

a complex algebraic group G (resp. H) act on a complex algebraic
quasi-projective variety X (resp. Y). View X and Y as constructible
spaces X, and £ equipping them with the filtering inductive system
of all algebraic Whitney stratifications and with middle perversities.
The corresponding categories PervG (X) and PervH (Y) of equivariant
constructible perverse sheaves were defined by Bernstein and Lunts [3].
We will prove that there is the external product functor

which makes the target category into the Deligne tensor product of
categories-factors of the source category.

The idea of proof is to reduce the result to non-equivariant one.
By one of the definitions of Bernstein and Lunts [3] PervG(X) is an

inverse limit of categories of the type Pervc(Z), (non-equivariant) per-
verse sheaves on algebraic variety Z, viewed as a constructible space. In
turn, Pervc(Z) is an inductive filtering limit - a union of its full subcat-
egories of the type Perv(Z, Z, mp), where mp is the middle perversity.
Manipulating with these limits one gets the desired results.

Acknowledgements. I am grateful to S. A. Ovsienko for fruitful and
enlightening discussions. Commutative diagrams in this paper are drawn
with the help of the package diagrams . tex created by Paul Taylor.

2. Preliminaries

2.1. Fibered categories

Let us recall the notion of fibered category. Let J be an essentially
small category. A fibered category A/J assigns a category A(X) to an
object X of J, assigns a functor A(f) : .A(Y) - A(X) to a morphism
f : X - Y of J, so that A(1x) = IdA(X) (in a simplified version), to a
pair of composable morphisms X -f -Y g Z of J assigns a natural
isomorphism
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such that natural compatibility conditions hold: for a triple of compos-
able morphisms X f - Y g - Z h- W we have an equation

and A( f,1) = 1, A(1, g) = 1.
The inverse limit A = lim A(X) of the fibered category A/J is

the following category. An object K of C consists of functions

such that for any pair of composable morphisms X f Y g Z of
J we have

and for any ob j ect X of J we have

A morphism 0 : M - N of A is a family of morphisms O(X) : M(X) -
N(X) E A(X), X E Ob J, such that the following equation holds

2.2. Equivariant derived categories

Our interest in inverse limit categories is motivated by the definition
of the equivariant derived category as such a limit, given by Bernstein
and Lunts [3]. Let G be a complex algebraic group algebraically acting
on a complex quasi-projective variety X. Consider J = SRes(X, G)
- the category of smooth resolutions of X, whose objects are G-maps
p : P - X, which are smooth, that is, locally homeomorphic to the
projection map V x (Cd - V for a constant d depending on p. The

G-variety P is supposed to be free, that is, the quotient map qp : P -
Pdef= GBP is a locally trivial fibration with fibre G. Morphisms of J
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are smooth G-maps f : P- R over X. To define a fibered category
D/J set the category D(P) to Dbc(P), set the functor D(f) to f *[df] :
Dbc(R) - Dbc(P), where f : P - R is the map of quotient spaces, and
d f is the complex dimension of a fibre of f or 1. The category Dbc(Z) is
the union of strictly full subcategories Db,cz(Z) C Db(Z), consisting of
Z-cohomologically constructible complexes over all algebraic Whitney
stratifications Z. The isomorphisms D ( f, g) : f * [df]g*[dg] - g f * [d9 f]
are standard, clearly dgf = d j +dg . And the equivariant derived category
is defined as

In the original definition of Bernstein and Lunts [3] the shifts [d f] are
not used. These definitions are clearly equivalent. The one with the

shifts is convenient when dealing with perverse sheaves.
Let us discuss a t-category structure of Db,cG(X) . For a variety Z with

algebraic stratification Z define the middle perversity as the function
mp : z -3 Z, mp(S) =- dime S, dime is the half of the topological
dimension. This perversity turns D,(P) into a t-category, union of full
t-subcategories mpD b,cP(P) (see [1, Proposition 2.1.14).

Denote by T = Tx the trivial resolution prx : G x X - X with the
diagonal action of G in G x X. The quotient space T is X with the
quotient map qT : T = G x X - X = T, (g, x) - g-i.x. The following
statement is essentially from [3].
2.3. Proposition. The category DG°(X) has the following t-structure

This proposition gives also a description of the heart PervG(X) of
Db,cG(X) - the category of equivariant perverse sheaves
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The corresponding fibered category A/J is defined as a such subcate-
gory of D/J that A(P) = Pervc(P, mp), which is the union of its full
subcategories Perv(P, S, mp) over all algebraic Whitney stratifications
8 of P; A(f) = f*[df] etc. All functors DP : Db,cG(X )- mpDbc(P), K-
K(P) are t-exact, so all the functors Ap : PervG(X) - Pervc(P, mp),
K - K(P) are exact. As in general case of fibered abelian cate-
gories, for o : M - N E PervG(X) its kernel and cokernel can be

computed componentwise: (Kero)(P) = Ker(§(P) : M(P) - N(P)),
(Coker 0) (P) - Coker (o (P) : M(P) - N (P)).

2.4. Tensor product of abelian C-linear categories

In this section we consider only essentially small C-linear abelian cate-
gories and C-linear functors. Let A, B be such categories. A category
C equipped with an exact in each variable functor DD : A x fl3 - C is 
called tensor product of A and B, if the induced functor

between the categories of C-(bi)linear right exact in each variable func-
tors is an equivalence for each C-linear abelian category D [6]. We will
need the following classes of abelian categories for which tensor prod-
uct exists. Categories equivalent to the category of finite dimensional
modules A-mod over a finite dimensional associative unital algebra A
are called bounded [8]. (They are also called of Artin type in [11] or
rigid-abelian in [9].) Tensor product of bounded categories exists and
is bounded by Deligne’s Proposition 5.11 [6]. Categories with length
are those whose objects have finite length and Hom(-,-) are finite di-
mensional. Examples are categories of perverse sheaves Perv (X, x, p)
on a stratified space. Tensor product of categories with length exists
and is a category with length by Deligne’s Proposition 5.13 [6]. Locally
bounded category C is a union of its strictly full abelian bounded subcat-
egories with exact inclusion functor. A category with length is locally
bounded, as follows from loc. cit. Proposition 2.14. Therefore, a cate-
gory which is a union of its strictly full abelian subcategories with length
is locally bounded. An example of such a category is Perv,(Z, mp) =
Uz Perv(Z, Z, mp), union over algebraic Whitney stratifications Z. A
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related example of a locally bounded category is PervG(X). Indeed, the
forgetful functor For = AT : PervG(X) - Pervc(X, mp), K- K(T) is
exact and faithful (since all A (f ) are).

For a stratification x of X let

be the preimage category. It is a strictly full abelian subcategory with
length, since For is faithful and Perv(X, X, mp) is with length.
2.5. Proposition. Tensor product of essentially small locally bounded
categories exists and is locally bounded.

Proof. For each object M of a locally bounded category B there ex-
ists the smallest strictly full abelian subcategory fl3M - B with ex-
act inclusion, containing M. It is a category with length. Consider

(M) C fl3M strictly full abelian subcategory consisting of subquotients
of Mn, n E N. By minimality fl3M = (M), hence it is bounded [6,
Proposition 2.14]. The subcategories BM C B form an inductive filter-
ing system, since for all objects M, N of B we have B M c B MON ) 13 N.
We presented and B as inductive filtering limits, hence, tensor prod-
uct of two locally bounded categories A, B exists by loc. cit. Section 5.1,
and

is an equivalence. Using Lemma 2.6 we conclude that lim-&#x3E; M,N (AMDD BN )
is locally bounded. D

2.6. Lemma. If are exact full em-

beddings, then the functor is an exact full

embedding as well.

Proof. Exactness and faithfulness follow from [6, Proposition 5.14]. Sur-
jectivity on morphisms follows from Lemma 2.7 applied to
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since for all A1, A2 E Ob AM, BI, B2 E B N the map induced by T

is an isomorphism. D

2.7. Lemma. Let A, B be locally bounded abelian categories, let T :
A x B - C be a C-bilinear functor exact in each variable. For all

objects A, A’ E Ob A, B, B’ E Ob B the map induced on morphisms by
T factorises as

Suppose that all 8 are isomorphisms. Then the functor F :
such that

is full and faithful.

There exist X E Ob A, Y E Ob B such
, Since ,

BY -mod, we have Hence, there exist ai :

and exact sequences in

They are exact also in .
It is known that
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is bijective. Hence, the maps induced by F

are isomorphisms. So in the diagram

two vertical maps are bijective, therefore the left is bijective. Hence, in
the diagram

the middle and the right maps are bijective. Hence, so is the left map.
D

3. The external tensor product functor

3.1. Main result

We define the external tensor product functor as follows

Here prl refers to the map of groups G x H - G and to the map of
varieties X x Y - X. The inverse image functor pr*1 is denoted Qprl by
Bernstein and Lunts. Let us describe this functor in details following
[3, Definition 6.5]. Denote I = SRes(X, G), J = SRes (Y, H) . Then

DGXH(Xc x £) is equivalent to the inverse limit
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by loc. cit. Proposition 2.4.4 (note that (G x H)B(P x R) = (GBP) x
(HBR) =- P x R). So in the following by Db GXH(Xc x Yc) we mean
this inverse limit. Let K E Da(X), I 3 P H K(P) E Db c (P) and
L E DH(Y), J :1 R l-&#x3E; L(R) E D6(R). Define pr1* K E DGXH(Xc x Yc)
via a map of resolutions, compatible with the projection of varieties

namely,

The structure isomorphisms (pr*1 K) (P -&#x3E; P’, R -&#x3E; R’) are easy to
construct. Similarly, pr*2 L E ÐGXH(Xc x Yc) is defined as

Thus,

Since mp + mp = mp, the functor

is t-exact by [10, Proposition 2.10]. The restriction of 19 to perverse
sheaves gives a C-bilinear exact in each variable functor

We want to prove

Main Theorem. This functor makes PerVGxH(Xc, x Yc) into the tensor
product of categories PerVG(X) and PervH(Y).
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Since we already know that the tensor product of categories exists,
we can decompose the functor 0 as follows

Our goal is to prove that F is an equivalence. To achieve it we show
first that X D commutes with finite inverse limits. Then we reduce the
involved inverse limits to finite ones.

3.2. Properties of inverse limit categories

Let .A/J be a fibered category and let A = lim - X£J A(X) be its inverse
limit. We have canonical functors AX : A -&#x3E; A(X), K -&#x3E; K(X) for
each object X of J and canonical natural isomorphisms

for each f : X -&#x3E; Y E J which satisfy equations (2.1) and (2.2). Thus
for any functor F : B - A we have composite functors

and functorial isomorphisms

such that for X f -&#x3E; Y g-&#x3E; Z we have
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and B;d = id.
Vice versa, for data consisting of a category B, a functor BX :

B -&#x3E; A(X) for each object X of J, a functorial isomorphism B f :
A(f)BY - -&#x3E; BX : B -&#x3E; A(X) for each morphism f : X - Y of J such
that (3.2) holds and B;d = id, there exists a unique functor F : B - A
such that BX = Ax o F and (3.1) holds. This is a useful way to encode
functors into inverse limits.

Furthermore, assume that B and all A(X) are abelian categories
and A.(f) are exact functors. Then F is exact if and only if all 13 x are
exact. Similar conclusion about C-linearity.

The above considerations extend to morphisms k : F -&#x3E; F’ : B-&#x3E; A.

They give rise to functorial morphisms

between the functors

They satisfy the equations

Vice versa, a system of functorial morphisms Ax satisfying (3.6) de-
termines a unique morphism A : F -&#x3E; F’ between functors correspond-
ing to BX, B’X via (3.5), and (3.3) holds. Equation (3.6) is interpreted
as morphism condition (2.3).



60

3.3. Lemma. Let A/J and B/J be filtered categories with locally
bounded abelian C-linear categories A(X), B(Y) and exact C-linear
functors A (f ), B (g) . Then the external tensor products A (X) XD B (Y),
A (f ) XDB (g), A (f’,f")XDB(g’, g") form a filtered category AXD B/(Ix
J). 0

3.4. Lemma. Let E/(I x J) be a fibered category. The categories
C(Y) = lim E£I(X,Y), the functors C(g : Y’ -&#x3E; Y") : e(Y") -&#x3E; C(Y’)- XEI
constructed as lim E(X, g) and canonically constructed functorial iso-- X£I

morphisms C(g’, g") form a fibered category C/J. The restriction func-
tors

together with canonical isomorphisms induce a functor (D which closes
the following commutative diagram of functors.

The functor $ is an isomorphism of categories (bijective on objects and
m orphisms) . 0

The proof is based on the criterion of Section 3.2.

4. Commutation of tensor product of abelian cat-
egories with inverse limits

Let All, B/J be fibered categories with C-linear abelian locally bounded
fibres and C-linear exact faithful functors A(f), B(g).
4.1. Proposition. There exist canonically defined functors
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Proof. Denote
functors

The system of

together with isomorphisms

for each pair of morphisms f : X -&#x3E; X’ E 1, g : Y - Y’ E J de-
fines uniquely functor (4.1) via criterion of Section 3.2. Functor (4.2)
is obtained from it, unique up to an isomorphism. See the following
scheme.

We are going to exhibit some cases in which 2 is an equivalence.
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4.2. A bounded particular case

Now we consider a particular case: I is a one-morphism category, and
 A is bounded.

Proposition. If A is bounded, then

is an equivalence.

Proof. We may assume that = A -mod for a finite dimensional asso-
ciative unital C-algebra A. For a C-linear abelian category D denote
AD the category of objects M of D equipped with an action of A -
algebra homomorphism A -&#x3E; EndD M. The morphisms of AD are those
commuting with the action of A. The functor

turns AD into the tensor product category AXDD [6, Proposition 5.11].
Here the object N Q9 M E D might be described as follows [7]. Let

(vl, ... , vn) be a chosen C-basis of N, then N Q9 M = Mn with canonical
embeddings tj : M -&#x3E; Mn and canonical projections 7ri : Mn ---t M. Let
(e1, ... , ea) be a basis of A. The structure constants nfj of the A-module
N, ai.vj = Ek nfjvk, determine the action of A in N 0 M via

This formula imitates the one for C-vector spaces

I’B;

Consider the beginning of the bar-resolution of M E Ob AD

the maps imitate the differentials in C-vect
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Using the structure constants ak ij of the algebra A we can write this
exact sequence in A D as

where 7r ij : Ma2 -&#x3E; M are the canonical projections, 1  i, j  a.

Another way to write this sequence is

where R(ei) : A -&#x3E; A, a l-&#x3E; aei are endomorphisms of the left regular
module.

Denote B = lim B(Y). Diagram (4.3) which determines X takes- YEJ
the form

Let M be an object of Forgetting the action of A
we can view M as an object of Tensoring it with A
we get an object A D M of C, whose components are (A X M) (Y) =
A 0 M(Y), (A X M) ( f ) = A 0 M( f ). Replacing in (4.4) M with
M(Y) we get exact sequences in AB(Y). Furthermore, the isomorphism

gives for each g : Y -&#x3E; Z E J a
commutative diagram
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with exact rows. Therefore, there is an exact sequence in C

The object A X M = X(A X M) is in essential image of X, thus, the
first morphism is essentially in the image of 2. Hence, M is essentially
in X(AB).

If 0 : L -&#x3E; M is in C we have a commutative diagram with exact
rows

Its left square lies essentially in X(AB), hence so is the right vertical
arrow 0. We proved that X is essentially surjective on objects and
surjective on morphisms.

We claim that for arbitrary A-modules P, Q E A -mod and arbitrary
objects M, N of B the map

is injective. Indeed, let Ek Øk X Yk be given from the source, where (0k)
is a C-basis of HomA(P,Q), Yk : M -&#x3E; N E B. Assume that this sum
is mapped to 0, then for each Y E J

Complementing (0k) to a basis of Homc(P, Q) and passing to the stan-
dard basis we deduce that all qbk (Y) = 0. Therefore, qbk = 0 for all k. It
remains to apply Lemma 2.7 to deduce that 2 is full and faithful. D

4.3. A locally bounded particular case

Proposition. Let A be a locally bounded category. Then

is full and faithful. If J has finite set of objects, then X is an equivalence.
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Proof. Consider an exact C-linear functor F :A. -&#x3E; A’ between locally
bounded categories. It combines diagrams (4.3) for A and A’ into the
following diagram.

In particular, there is an isomorphism

and the lower functor is constructed uniquely.
Given a filtered inductive limit A = lim I Ai, we may apply the-&#x3E; i£

above diagram to each exact functor Fii’ : Ai -&#x3E; Ai, from the inductive
system. Also we may apply it to the canonical functors Can Ai: Ai -&#x3E; 
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Taking the inductive limit we get the following diagram.

Now for a given locally bounded we consider its presentation as
an inductive limit lim. IAi of bounded Ai such that all Fii’ : Ai -&#x3E; Ai,-&#x3E; i£I
are exact, full and faithful. It follows from Lemma 2.6 that Fii’ XD1,
lim Fii’ XD1, CanAi, Cani, Can’, lim CaniA XD1 are also exact, full and
- J --

faithful. We deduce that O is exact, full and faithful as well. From

Proposition 4.2 we know that the leftmost E is an equivalence, so the
middle lim. E is an equivalence. The right top horizontal functor is an-&#x3E;iEI

equivalence, hence, the rightmost X is full and faithful.
Now assume that Ob J is finite. We have to show that O is essentially

surjective on objects. Let K be an object of lim - Y£J AXD(Y). For each
Y E Ob J there is an i E I such that K(Y) E Ai XD B(Y) -&#x3E; AXD B(Y).
Take i’ E I bigger than all such i (Y) . Then K(Y) E Ai’XB(Y)
determine an object K’ of lim Ai, XD B(Y) such that O(Cani’K’)=- YEJ

K . We deduce that the rightmost lll is essentially surjective on objects
as well. D

4.4. The general case

Proposition. For all I, J the functor lll from (4.2) is full and faithful.
If Ob I and Ob J are finite, the functor X is an equivalence.

Proof. The idea is to reduce the result to the particular case consid-
ered in Proposition 4.3. In diagram in Fig. 1 all functors are already
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Figure 1: Repeated vs. double inverse limits
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constructed, except To get it one varies Y and checks com-

patibility conditions (3.2). Consider both directed paths of 4 arrows in
this diagram starting with ) and ending
with

The both composite functors are isomorphic. Moreover, the isomor-
phisms satisfy the compatibility conditions when X varies, hence, the
subpaths of 3 arrows ending with lim (A(X)XDB(Y)) are isomor-
phic. Again, the isomorphisms satisfy the compatibility conditions when
Y varies, hence, the subpaths of length 2 ending with

give isomorphic bilinear functors. By the universal property of I:8jD we
get the top face isomorphism repeated below.

The right vertical functor is an isomorphism by Lemma 3.4. The left
vertical and the bottom functors are full and faithful by Proposition 4.3,
hence, so is the top functor.

If Ob I and Ob J are finite, then the left and the bottom functors
are equivalences, hence, so is the top functor. D

5. Reduction to finite case

Consider an interval N = {x E Z l a  x  b} C Z. Denote
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For a stratified space (Z, Z) the full subcategory of Perv(Z, Z, p)

is additive, C-linear, closed under direct summands and extensions. In-
deed, 0 -&#x3E; A - &#x3E;B -&#x3E; C -&#x3E; (1)-&#x3E; in Perv(Z, Z, p) extends to a distinguished
triangle A - B -&#x3E; C -&#x3E; (1), and A, C E DN ( Z ) implies B e DN ( Z )
by the long cohomology sequence. Similarly, for an algebraic variety Z

is additive, C-linear, closed under direct summands and extensions.
For a finite family 8 of isomorphism classes of simple objects of

the category Perv(Z, Z, p) there is an interval N C Z such that all

S E 8 are in DN(Z). Denote /8/ the strictly full subcategory of
Perv(Z, Z, p) consisting of objects whose simple subquotients are from
S. Then /8/ C PervN(Z, z,p) since all objects of /8/ are obtained by
repeated extension from S. This shows that Perv(Z, Z, p) is a union of
its abelian subcategories, contained in PervN (Z, Z, p) for some N C Z.
Indeed, for an object K E Perv(Z, z,p) denote by 8 the set of its simple
subquotients, then K E /8/.

Now let us study the full subcategory

It coincides with

If X is G-free, then PervNG(X)= PervNc(GBX).
One of the important ideas of Bernstein and Lunts [3] is that the

category DG (X ) can be presented as an inverse limit of the diagram
with two arrows only. Let (p : P - X) E SRes(X, G) = I be a
smooth n-acyclic resolution [3, Definition 1.9.1] for n &#x3E; lNl = max{k E
N} - min{k £ N}. Consider a subcategory I(P) of I consisting of three
objects and two morphisms besides identities:
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Here T is the trivial resolution and the morphisms are the projections.
The G-quotient of this diagram is

5.1. Lemma. The restriction functor

is an equivalence.

Proof. Let us construct a quasi-inverse functor. A quasi-inverse functor
to the restriction functor

is constructed in [3, Remark 2.4.3]. We will show that it restricts to

perverse sheaves.
Let s : S -&#x3E; X be a smooth G-resolution. Following the scheme of

Bernstein and Lunts we define

The projection maps

induce a functor between the inverse limits:

Similarly, there is a functor
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The above functor pr*s is a restriction of the functor Pr* : DNG(X, S)-&#x3E;
DG (X, P xX S), which is an equivalence by [3, Corollary 2.2.2]. Notice
that pr*s is essentially surjective on objects. Indeed, let K E DN (X, S)
be such that pr*s K E Perv N(X, P xX S). The properties pr2*K(S) E

proof of Proposition 2.3. Hence, K E Perv N (X, S). Since Perv N(X, S) C
DNG(X, S) and PervNG (X, P x X S) C DNG(X, P x X S) are strictly full sub-
categories, we deduce that prs is an equivalence.

As shown in [3] the composite functor

defines an object V of DG (X ) (the isomorphisms V ( f : S -&#x3E; S’) being
easy to construct). On the other hand, V(S) E PerVc(S), hence, V E
PervG (X). Thus, the quasi-inverse functors

restrict to functors between the strictly full subcategories PervNG (X, P)
and PervG (X), defining an equivalence of these. 0

5.2. Essential surjectivity of Ek on objects

We know that

is full and faithful. Let us prove that it is essentially surjective on ob-
jects. Take an object K of the target category PervGxH(Xc x Y,). The
perverse sheaf K(T) E Perv (Xc x Yc, mp) = Pervc, (X, Mp) XD Pervc(Y, mp)
is contained in some subcategory Perv(X, X, mp)XD Perv(Y, y, mp). More-
over, there exist strictly full bounded subcategories A C Perv(X, X, mp),
B C Perv(Y, 1j, mp) such that K(T) E ANXDB. Let A E A, B E 93 be
projective generators. Let S(A), S(B) be the sets of simple factors of the
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Jordan-H61der series of A, B in categories with length I

the full subcategories consisting of objects, whose sim-
ple subquotients are in the lists

There exist intervals

SRes(Y, H) be n-acyclic resolutions. Then P x Q E SRes(X x Y, G x H)
is also an n-acyclic resolution. Consider the subcategories

5.3. Lemma. There is an isomorphism

Proof. In a slightly more general context we have the following diagram.
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Oriented paths beginning with and ending at
the right bottom corner give isomorphic functors. Section 3.2 implies
the same statement for paths which begin at the same place and end
up with lim (A(R)XD B(S)). Properties of tensor product imply this- IxJ
statement for paths beginning at the top and ending at the same place
as above. D

Now look at the object

We have

5.4. Lemma. Conditions (5.2), (5.3) imply

Proof. First of all, let us prove that

Let

Denote Q the stratification pr2-1 (Q) of Q. Then

by (5.3). We may assume that 8 is finer than X, and T is finer than Q.
Notice that the intersection of subcategories Perv(X x Q, 8 x Q, mp) and
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Perv (X x Q, x x T, mp) coincides with Perv (X x Q, x x Q, mp). Actually,
this is a statement about cohomologically constructible complexes and
it reduces to a similar statement for sheaves, proven in Lemma A.2.

Now from

we have to deduce that

By [1] it would imply

It suffices to work with cohomology sheaves of these complexes. We have
to prove that if M E Sh(X x Q) is 8 x Q-constructible and (1 x pi2)*M E
Sh(X x Q) is X x Q-constructible, then M is X x Q-constructible.

Let UaQa = Q be an open cover of Q such that the quotient map
admits a local section To : Qo -&#x3E; Q. Denoting

be the induced stratification of Qa, then

is X x Qa -constructible. Gluing the stratifications we deduce that M is
X x Q-constructible, hence, (5.5) and (5.4) hold.

Recall that C = /S(A)/ c Perv(X, X, rrap) is closed under exten-
sions. Its list of simple objects is S(A). Simple objects of the category
Perv(X, X, Mp) XD Perv(Q, Q, mp) are of the form S 0 T, where S is sim-
ple in Perv(X, X, mp), and T is simple in Perv(Q, Q, mp). In particular,
any simple subquotient of K (Tx xQ) in Perv(X, X, mp) N’ Perv(Q, Q, mp)
is of the form SXT. An arbitrary simple subquotient of (1 rgJqQ)K(Tx x
Q) is of the form SXR, where S is simple in Perv(X, X, mp), and R is a
simple subquotient of qQT i= 0 in Perv(Q, Q, mp). Since (1Xq*Q) K (Tx x
Q) E CXD Perv,(Q), we see that for all simple subquotients S X T of
K(Tx x Q) the object S is in S(A) c e.
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Consider now the strictly full subcategory 8 of the tensor product
category Perv(X, X, mp)XD Perv(Q, Q, mp) - extension closure of the
set of simple objects

We have K (Tx x Q) E Ob S and C X Perv (Q, -Q, mp) C E. These two
categories have the same list of simple objects (5.6). The inclusion

functors induce mappings of Yoneda Ext groups

Since the subcategories are closed under extensions, the above mappings
are bijective for k = 0, 1 and injective for k = 2 [2, Lemma 3.2.3]. Using
Theorem XI.3.1 of Cartan and Eilenberg [5] we see that the composite
mapping

equals to

Mappings B, y are bijective for k = 0,1 and injective for k = 2. Hence,
a has the same property. By [10, Lemma 5.4] we deduce that the
embedding CXD Perv(Q, Q, mp) - S is an equivalence. The lemma
is proven. D

Symmetrical result also holds:
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as a corollary. So the object res K lies in the inverse limit of the diagram,
which represents a fibered category over I(P) x J(Q) - a subcategory
of Pervc XDPervc/I(P) x J(Q).

This fibered category is a tensor product of a fibered subcategory of
Pervc, /I(P)

and of a fibered subcategory of Pervc / J( Q)

Since the bottom X in diagram (5.1) is an equivalence, the object res K
comes from an object

Hence, there is an exact sequence in

objects V, L and morphisms tk (resp. W , M, Sk) define objects V, L
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and morphisms Ik of PervN’G (X) (resp. W, M, sk of PerN"H (Y)) via
Lemma 5.1. So we have the cokernel k E PerVG(X) 0 PervH(Y)

I as well. Lemma 5.1 implies that there is no more than
one object of PervNGxH(Xc x Yc) with given restriction to the diagonal
of diagram (5.7). Thus XK = K. This implies that

is an equivalence. It means that

makes the target category into tensor product of source categories, and
X is a concrete realisation of XD .

A. Some properties of cofistructible sheaves

Let Xl C X, QI C Q be closed submanifolds of complex manifolds.
Denote the open complements Xo = X - Xl, Qo = Q - Ql. We get
stratifications X = I X0, X1 1, Q = {Q0,Q1}.
A.I. Lemma. If a sheaf S on X x Q is X x {Q}-constructible and
{X} x Q-constructible, then it is locally constant on X x Q.

Proof. The statement is local, so we may assume that Xl = cCa (resp.
QI = (Cc) is a linear subspace of X = C’ (resp. of Q = Cd). The
restrictions slxoxQ and SlxxQo are locally constant. Hence, Sl W is

locally constant for a connected open set W = Xo x Q U X x Qo =
X x Q - Xl x Ql. Since 7r1(W) is trivial, Slw is a constant sheaf.

The restrictions SIX,XQ, slxlxql are constant sheaves as well. Espaces
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etales for constant sheaves on W and Xl x QI are disjoint unions of
copies of W and Xl x Q1. For any point (xl, ql) E Xl x Qi denote by B
its open ball neighbourhood in X x Q. The open set Bnw is non-empty
and connected. Therefore, there is only one way to glue together the
above mentioned espaces étalés into espace étalé for S, so that SlX1xQ
is constant. 1-1

A.2. Lemma. Let X, Q be complex algebraic varieties. Let stratifica-
tion 8 of X be finer than X, and let stratification T of Q be finer than
Q. Then

Proof. The result follows from a particular case: X, Q are connected
complex manifolds, and X = {X}, Q = {Q} are trivial stratifications.
We have to prove that a sheaf S on X x Q, which is 8 x Q-constructible
and X x T-constructible is locally constant.

Denote Xo, Qo the open stratum. Denote Xl, QI the union of strata
from 8, T in X - Xo, Q - Qo of maximal dimension; denote X2, Q2 the
union of strata contained in X - Xo - Xl, Q - Qo - QI of maximal
dimension, etc. Apply Lemma A.1 to submanifolds X’ = X0 U X1 C X,
Q’ = Qo U QI C Q with stratifications X’ = {X0,X1}, Q’ = {Q0,Q1}.
We deduce that SlX’ x Q’ is locally constant. Then we apply Lemma A. l
to (Xo, Xl; QoUQI, Q2) and get that SlX’x(Q0UQ1UQ2) is locally constant.
Continuing we deduce that SlxlxQ is locally constant. Thus the orig-
inal stratification of X might be replaced with (Xo U Xl, X2, X3, ... ).
Continuing to simplify the stratification of X we make it trivial. And
the lemma follows. D

A.3. Remark. The above lemmas hold as well for topological pseudo-
manifolds X, Q such that Xl, QI has real codimension at least 2.
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