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CAHIERS DE TOPOLOGIE ET Volume XLIII-1 (2002)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

TENSOR PRODUCTS OF CATEGORIES OF
EQUIVARIANT PERVERSE SHEAVES
by Volodymyr LYUBASHENKO

RESUME. On démontre que le produit tensoriel introduit par Deligne
des catégories de faisceaux pervers equivariants constructibles est encore
une catégorie de ce type. Plus précisément, le produit des catégories
construites pour une G-variété complexe algébrique X et pour une H-
variété Y est une catégorie correspondante a la G x H-variété X x Y -
produit des espaces constructibles.

1. Introduction

The main result of the author’s paper [10] is that the geometrical exter-
nal product of constructible perverse sheaves is their Deligne’s tensor
product. In the present paper we extend this result to equivariant per-
verse sheaves.

Let us recall the details. Given a perverse sheaf F' on a compactifi-
able pseudomanifold X with stratification X and perversity p: X — Z
and a perverse sheaf E on a compactifiable pseudomanifold Y with strat-
ification Y and perversity p : X — Z, we can construct their product
FXE = prk F ® pry, E which is a perverse sheaf on X x Y, equipped
with stratification X x Y and perversity

p+a:XxY—=2Z,  (p+9)(SxT)=p(S)+qT).
The C-bilinear exact in each variable functor
X : Perv(X,X,p) x Perv(Y,Y,q) = Perv(X x Y, X x Y,p+q)

makes the target category into the Deligne tensor product [6] of categories-
factors of the source category. In a precise sense X is universal between
such C-linear exact functors.
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Our goal is to generalise this result to the following setup. Let
a complex algebraic group G (resp. H) act on a complex algebraic
quasi-projective variety X (resp. Y). View X and Y as constructible
spaces X, and Y, equipping them with the filtering inductive system
of all algebraic Whitney stratifications and with middle perversities.
The corresponding categories Pervg(X) and Pervg(Y) of equivariant
constructible perverse sheaves were defined by Bernstein and Lunts [3].
We will prove that there is the external product functor

X : Pervg(X) x Pervy(Y) — Pervaxn (X, x Ye),
FRE=pri FQpr; E,

which makes the target category into the Deligne tensor product of
categories-factors of the source category.

The idea of proof is to reduce the result to non-equivariant one.
By one of the definitions of Bernstein and Lunts [3] Pervg(X) is an
inverse limit of categories of the type Perv.(Z), (non-equivariant) per-
verse sheaves on algebraic variety Z, viewed as a constructible space. In
turn, Perv.(Z) is an inductive filtering limit — a union of its full subcat-
egories of the type Perv(Z, Z, mp), where mp is the middle perversity.
Manipulating with these limits one gets the desired results.

Acknowledgements. I am grateful to S. A. Ovsienko for fruitful and
enlightening discussions. Commutative diagrams in this paper are drawn
with the help of the package diagrams.tex created by Paul Taylor.

2. Preliminaries

2.1. Fibered categories

Let us recall the notion of fibered category. Let J be an essentially
small category. A fibered category A/J assigns a category A(X) to an
object X of J, assigns a functor A(f) : A(Y) — A(X) to a morphism
f: X =Y of J, so that A(l1x) = Idq(x) (in a simplified version), to a

pair of composable morphisms X iy 2y z0f J assigns a natural
isomorphism

A(f,9) : A(f)Alg) — Algf) - A(Z) = A(X),

-50 -
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such that natural compatibility conditions hold: for a triple of compos-

f [ h .
» Y > Z » W we have an equation

able morphisms X

A(gf, h)A(f,9) = A(f, hg)[A(f)A(g, h)]

and A(f,1) =1, A(l,9) = 1.
The inverse limit A = lim SA(X) of the fibered category A/J is
—

the following category. An object K of € consists of functions

ObJ 3 X — K(X) € ObA(X),
MorJ 3 (f: X = Y) — (K(f) : A(f)K(Y) S K(X)) € Isomor A(X)

such that for any pair of composable morphisms X —i—-) Y 25 Z of
J we have

K(NIA)K(9)] = K(9f)A(f,9) : A(A(9)K(Z) — A(X), (2.1)
and for any object X of J we have
K(1x) = 1k : K(X) = K(X). (22)

A morphism ¢ : M — N of A is a family of morphisms ¢(X) : M(X) —
N(X) e A(X), X € Ob J, such that the following equation holds

¢(X)M(f) = N(HIAN(Y)] - A(F)M(Y) = N(X). (2.3)

2.2. Equivariant derived categories

Our interest in inverse limit categories is motivated by the definition
of the equivariant derived category as such a limit, given by Bernstein
and Lunts [3]. Let G be a complex algebraic group algebraically acting
on a complex quasi-projective variety X. Consider J = SRes(X,G)
— the category of smooth resolutions of X, whose objects are G-maps
p : P — X, which are smooth, that is, locally homeomorphic to the
projection map V x C¢ — V for a constant d depending on p. The
G-variety P is supposed to be free, that is, the quotient map ¢p : P —

PY G\P is a locally trivial fibration with fibre G. Morphisms of J

-51-
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are smooth G-maps f : P — R over X. To define a fibered category
D/J set the category D(P) to DE(P), set the functor D(f) to f [dy] :
DY(R) — D%(P), where f : P — R is the map of quotient spaces, and
dy is the complex dimension of a fibre of f or f. The category D%(Z) is
the union of strictly full subcategories DQC(Z ) € D¥Z), consisting of
Z-cohomologically constructible complexes over all algebraic Whitney
stratifications Z. The isomorphisms D(f,g) : f [df]g*[dg] — 97 [dgy]
are standard, clearly dyy = dy+d,. And the equivariant derived category
is defined as
Dgf(X) = imD4(P).
PeJ

In the original definition of Bernstein and Lunts [3] the shifts [dy] are
not used. These definitions are clearly equivalent. The one with the
shifts is convenient when dealing with perverse sheaves.

Let us discuss a t-category structure of D%°(X). For a variety Z with
algebraic stratification Z define the middle perversity as the function
mp : Z — Z, mp(S) = —dimc¢ S, dimc is the half of the topological
dimension. This perversity turns D? (P) into a t-category, union of full
t-subcategories ™ D2°(P) (see [1, Proposition 2.1.14]).

Denote by T' = Tx the trivial resolution pry : G x X — X with the
diagonal action of G in G x X. The quotient space T is X with the
quotient map gr : T=Gx X = X =T, (9,z) = g~ l.z. The following
statement is essentially from [3].

2.3. Proposition. The category D%°(X) has the following t-structure

"™ DSY(X) ={K € D§(X) | K(T) € ™D5(X)}

= {K € D(X) | ¥P € SRes(X,G) K(P) € ™Dy)(P)},
™DZ’(X) = {K € D¥F(X) | K(T) € ™D72(X)}

= {K € D%°(X) | VP € SRes(X,G) K(P)e ™Dg(P)}.

O

This proposition gives also a description of the heart Pervg(X) of
D’gc(X ) — the category of equivariant perverse sheaves

Pervg(X) =  lim Perv (P, mp).
PeSRes(X,G)

-52 -
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The corresponding fibered category A/J is defined as a such subcate-
gory of D/J that A(P) = Perv (P, mp), which is the union of its full
subcategories Perv(P, 8, mp) over all algebraic Whitney stratifications
8 of P; A(f) = f [dy] etc. All functors Dp : DZ(X) — ™D(P), K
K(P) are t-exact, so all the functors Ap : Pervg(X) — Perv.(P, mp),
K +— K(P) are exact. As in general case of fibered abelian cate-
gories, for ¢ : M — N € Pervg(X) its kernel and cokernel can be
computed componentwise: (Ker ¢)(P) = Ker(¢(P) : M(P) — N(P)),
(Coker ¢)(P) = Coker(¢(P) : M(P) — N(P)).

2.4. Tensor product of abelian C-linear categories

In this section we consider only essentially small C-linear abelian cate-
gories and C-linear functors. Let A, B be such categories. A category
€ equipped with an exact in each variable functor ®? : A x B — € is
called tensor product of A and B, if the induced functor
HomS;"" (@, D) — HomS*" (A x B,D), F~ FolP

between the categories of C-(bi)linear right exact in each variable func-
tors is an equivalence for each C-linear abelian category D [6]. We will
need the following classes of abelian categories for which tensor prod-
uct exists. Categories equivalent to the category of finite dimensional
modules A-mod over a finite dimensional associative unital algebra A
are called bounded [8]. (They are also called of Artin type in [11] or
rigid-abelian in [9].) Tensor product of bounded categories exists and
is bounded by Deligne’s Proposition 5.11 [6]. Categories with length
are those whose objects have finite length and Hom(-,-) are finite di-
mensional. Examples are categories of perverse sheaves Perv(X, X, p)
on a stratified space. Tensor product of categories with length exists
and is a category with length by Deligne’s Proposition 5.13 [6]. Locally
bounded category C is a union of its strictly full abelian bounded subcat-
egories with exact inclusion functor. A category with length is locally
bounded, as follows from loc. cit. Proposition 2.14. Therefore, a cate-
gory which is a union of its strictly full abelian subcategories with length
is locally bounded. An example of such a category is Perv.(Z, mp) =
Ug Perv(Z, Z, mp), union over algebraic Whitney stratifications 2. A

.83 -
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related example of a locally bounded category is Pervg(X). Indeed, the
forgetful functor For = Ay : Pervg(X) — Perv (X, mp), K — K(T) is
exact and faithful (since all A(f) are).

For a stratification X of X let

Pervg(X,X) = For™*(Perv(X, X, mp))

be the preimage category. It is a strictly full abelian subcategory with
length, since For is faithful and Perv(X, X, mp) is with length.

2.5. Proposition. Tensor product of essentially small locally bounded
categories exists and is locally bounded.

Proof. For each object M of a locally bounded category B there ex-
ists the smallest strictly full abelian subcategory By —— B with ex-
act inclusion, containing M. It is a category with length. Consider
(M) C By strictly full abelian subcategory consisting of subquotients
of M, n € N. By minimality Bys = (M), hence it is bounded [6,
Proposition 2.14]. The subcategories By, C B form an inductive filter-
ing system, since for all objects M, N of B we have Bjyr C Bygn D By
We presented A and ‘B as inductive filtering limits, hence, tensor prod-
uct of two locally bounded categories A, B exists by loc. cit. Section 5.1,
and
lim (AyRPBy) = ( lim Ay)RP( lim By) = ARPB

MeObA MeObA NeObB
NeObB

is an equivalence. Using Lemma 2.6 we conclude that lim " N(A uXPBy)
— )
is locally bounded. O

2.6. Lemma. If Ay, C—E—~>.AM: and By <'—I—> By are exact full em-
beddings, then the functor ARPBy RN ApnRPBy is an exact full

embedding as well.
Proof. Exactness and faithfulness follow from [6, Proposition 5.14]. Sur-
Jjectivity on morphisms follows from Lemma 2.7 applied to

=D D
Ay X By — AKX BN

> ~
Exlj' \ JvE‘!ZIDI=F

=D
.AM/ X By ————-).AMngBNI
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since for all A;, A, € Ob.Ayy, By, By € By the map induced by T

Homy,, (A1, As) ®c Homsg,, (B, Bs)
—— Homu,, (FA1, EA;) ®c Homg,, (IBy, IBs)
'—N—') HOInAM,@DgN, (EAlgDIBl, EAQ&DIBQ)

is an isomorphism. O

2.7. Lemma. Let A, B be locally bounded abelian categories, let T :
A x B — C be a C-bilinear functor exact in each variable. For all
objects A, A’ € Ob A, B, B' € Ob B the map induced on morphisms by
T factorises as

Homy (A, A') x Homg (B, B') — Homy (A, A') ®c Homg (B, B')
—  Home(T(4, B), T(4, B')).

Suppose that all § are isomorphisms. Then the functor F : ARPB — €,
such that

T~ (Ax 325 amPs 5 e),
is full and faithful.

Proof. Let VW € AXPB. There exist X € ObA, Y € ObB such
that V and W are objects of AxXPBy. Since Ax ~ Ax-mod, By ~
By -mod, we have AxXPBy ~ Ay ®c By -mod. Hence, there exist a; :
P'— P e Ay, b,'ZRI%RE'By,CjZQ—-)Q’G.Ax,deS-—)SIGBy
and exact sequences in AxXP By

P'RPR Z%% pRPR v 0,

c:RPd:
0= W — QRPs =904 ygpgr

They are exact also in ARPB.
It is known that

Homy (A, A") ®c Homg (B, B') — Hom ygos(ARP B, A'RPB')
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is bijective. Hence, the maps induced by F'
Hom 4gps(ARP B, ARP B') — Home(T'(4, B), T(A', B'))
— Home(F(ARPB), F(A'RPB'))
are isomorphisms. So in the diagram

D D D D D
0 — Hom , (V,A'®B') —> Hom p (PXR,A’®B') — Hom , (P'RR,A'®RB')
ARB ARB ARB

l | |
0 — Home(FV,F(A'BB')) — Home(T(P,R),T(A',B')) — Home(T(P',R')T(A',B"))

two vertical maps are bijective, therefore the left is bijective. Hence, in
the diagram

0 — Hom zp 5 (V;W) — Hom g p »(V;QRPS) —> Hom zp4(V,Q'RPS)

| l ]
0 — Home(FV,FW) — Home(FV,F(QRPS)) — Home(FV,F(Q'RPS"))

the middle and the right maps are bijective. Hence, so is the left map.
O

3. The external tensor product functor

3.1. Main result

We define the external tensor product functor as follows

R : DY(X.) x Dy(Ye) T225 Dy (Xe x ¥2) x Dl (Xe x Yo) =
®
— Dby y(Xe x Y7).
Here pr,; refers to the map of groups G x H — G and to the map of
varieties X X ¥ — X. The inverse image functor prj is denoted Q. by
Bernstein and Lunts. Let us describe this functor in details following
[3, Definition 6.5]. Denote I = SRes(X,G), J = SRes(Y,H). Then
Dgxu(X, x Y,) is equivalent to the inverse limit
lim D*(P.x R.)
(P,R)eIxJ

-56 -



LYUBASHENKO, TENSOR PRODUCT OF EQUIVARIANT PERVERSE SHEAVES

by loc. cit. Proposition 2.4.4 (note that (G x H)\(P x R) = (G\P) x
(H\R) = P x R). So in the following by D%, (X, X Y.) we mean
this inverse limit. Let K € Dg(X), I > P — K(P) € D%P) and
L € Dy(Y), J > R+ L(R) € DR). Define pr} K € Dgxu (X, X Yr)
via a map of resolutions, compatible with the projection of varieties

(P x R,G x H) 2 (P,G)

l l

(X xY,G x H) 2 (X,G)
namely,
(or} K)(P x R) = pT;(K(P)) € D*(P. x R,).

The structure isomorphisms (prj K)(P — P',R — R') are easy to
construct. Similarly, pry L € Dgxg (X, X Yc) is defined as

(pr3 L)(P x R) = pry(L(R)) € D*(P. x Ry).
Thus,

(KR L)(P x R) = (pr: K)(P x R) ® (pr; L)(P x R)
= prip(K (P)) ® pry(L(R))
= K(P)R L(R) € D*(P. x R,).

Since mp + mp = mp, the functor
R : DE(X) x DF(Y) — Dl p(Xe x Yo)

is t-exact by [10, Proposition 2.10]. The restriction of ® to perverse
sheaves gives a C-bilinear exact in each variable functor

X : Pervg(X) x Pervg(Y) — Pervgxu(X: x Yp).
We want to prove

Main Theorem. This functor makes Pervgy g (X, x Y,) into the tensor
product of categories Pervg(X) and Pervy(Y).

.57 -
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Since we already know that the tensor product of categories exists,
we can decompose the functor & as follows

K ~ (Pervg(X) x Pervg(Y) — Perve(X)RP Pervy(Y) —
£, Pervex g (X, X Yc))

Our goal is to prove that F' is an equivalence. To achieve it we show
first that P commutes with finite inverse limits. Then we reduce the
involved inverse limits to finite ones.

3.2. Properties of inverse limit categories

Let A/J be a fibered category and let A = lim ,A(X) be its inverse
(._—

limit. We have canonical functors Ax : A — A(X), K — K(X) for
each object X of J and canonical natural isomorphisms

Af A(f)Ay — Ax : A = A(X),
(Ank = K(f) : A(f)K(Y) — K(X) € A(X),

for each f: X — Y € J which satisfy equations (2.1) and (2.2). Thus
for any functor F' : B — A we have composite functors

By = (B —— A 2% A(X))
and functorial isomorphisms

Bf =AfOF : .A(f)'By =.A(f).AyF —).AxF: BX (31)

such that for X —f> Y —2 Z we have

B X AX)
\ %
Bz 3 A = Bz
%3 \
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and Biq = id.
Vice versa, for data consisting of a category B, a functor Bx :
B — A(X) for each object X of J, a functorial isomorphism By :

A(f)By — Bx : B = A(X) for each morphism f : X — Y of J such
that (3.2) holds and B4 = id, there exists a unique functor F': B — A
such that Bx = Ax o F and (3.1) holds. This is a useful way to encode
functors into inverse limits.

Furthermore, assume that B and all A(X) are abelian categories
and A(f) are exact functors. Then F is exact if and only if all Bx are
exact. Similar conclusion about C-linearity.

The above considerations extend to morphisms A : FF — F' : B — A.
They give rise to functorial morphisms

F
Ax = (B o A 25 A(X)) (3.3)
FI

between the functors

By = (B — A 255 A(X)), (3.4)
= (B - A 25 AX). (3.5)

They satisfy the equations

A(Y) B wl TA®Y)
< ﬂﬂs, % = A(f)
Bx N
B wiA(X) A(X)
By !
(3.6)

Vice versa, a system of functorial morphisms Ax satisfying (3.6) de-
termines a unique morphism A : F' — F’ between functors correspond-
ing to Bx, B’y via (3.5), and (3.3) holds. Equation (3.6) is interpreted
as morphism condition (2.3).
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3.3. Lemma. Let A/J and B/J be filtered categories with locally
bounded abelian C-linear categories A(X), B(Y) and exact C-linear
functors A(f), B(g). Then the external tensor products A(X)XPB(Y),
A(f)RPB(g), A(f', f)RPB(g', g") form a filtered category ARPB /(I x
J). O
3.4. Lemma. Let £/(I x J) be a fibered category. The categories
ey) = @XGIS(X, Y), the functors C(g : Y' — Y") : C(Y") — C(Y")
constructed as l(i_rflxe ,$(X, 9) and canonically constructed functorial iso-
morphisms C(g', g") form a fibered category C/J. The restriction func-
tors

Ry: lim &(X,Y)— lim&(X,Y)=C(Y)
(X,)Y)eIxJ Xel

together with canonical isomorphisms induce a functor ® which closes
the following commutative diagram of functors.

lim &(X,Y) ——— lim (léir_nE(X, Y))
(X,Y)eIxJ YeJ “Xel
= ey
\) l
c(Y)

The functor ® is an isomorphism of categories (bijective on objects and
morphisms). a

The proof is based on the criterion of Section 3.2.

4. Commutation of tensor product of abelian cat-
egories with inverse limits

Let A/I, B/J be fibered categories with C-linear abelian locally bounded
fibres and C-linear exact faithful functors A(f), B(g).

4.1. Proposition. There exist canonically defined functors

X: imA(X) x imB(Y) = lim A(X)RB(Y), (4.1)
Xel YeJ (X,)Y)eIxJ

-60 -
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@:(@A(X))@D(lg_nﬂs(Y))-» lim (AX)RPB(Y)). (42)
Xel YeJ (X,Y)eIxJ

Proof. Denote A = l}inxel‘A(X) and B = l(iinyG B(Y). The system of

functors

J

A x BB 4(x) % BY) 2 A(X)RPB(Y)

together with isomorphisms

AxB

Ax1XBys

A(X") x BY") 222G, 40%) x B(Y)

e

A(X)RPB(Y") A(X)RPB(Y)

=D 2% 12

for each pair of morphisms f : X —» X' € I, g: Y = Y' € J de-
fines uniquely functor (4.1) via criterion of Section 3.2. Functor (4.2)
is obtained from it, unique up to an isomorphism. See the following
scheme.

ARPB
=D
2 &
X
Ax B———2 5 limA(X)RPB(Y) (4.3)
IxJ
.A.xXByj{ =

AX) % BY) —F A(O)RPB(Y)

O

We are going to exhibit some cases in which X is an equivalence.

.61-
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4.2. A bounded particular case

Now we consider a particular case: I is a one-morphism category, and
A is bounded.

Proposition. If A is bounded, then

X: ARPlimB(Y) — lim (ARPB(Y))
— —
YeJ YeJ

is an equivalence.

Proof. We may assume that A = A-mod for a finite dimensional asso-
ciative unital C-algebra A. For a C-linear abelian category D denote
4D the category of objects M of D equipped with an action of A -
algebra homomorphism A — Endp M. The morphisms of 4D are those
commuting with the action of A. The functor

® AxD— 4D, (NNM)»NOM

turns 4D into the tensor product category AKPD [6, Proposition 5.11].
Here the object N ® M € D might be described as follows [7]. Let
(vi,...,v,) be a chosen C-basis of N, then N® M = M™ with canonical
embeddings ¢; : M — M™ and canonical projections 77 : M™ — M. Let
(e1,...,e,) be a basis of A. The structure constants nfj of the A-module
N,avj=), nfjvk, determine the action of 4 in N ® M via

a; = E nijkOﬂ".
k,j

This formula imitates the one for C-vector spaces

a;.(v; ®m) = anjvk ® m.
k

Consider the beginning of the bar-resolution of M € Ob 4D
AQCARM - AQM — M — 0,
the maps imitate the differentials in C-vect

a®@b@mr—»ab®m —a®b.m, a®m — a.m.

-62 -
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Using the structure constants afj of the algebra A we can write this
exact sequence in 4D as

2 S(akip—tief)mh e;mt
pe? ZE T pra ZET ar g

where 7% : M% — M are the canonical projections, 1 < 4,5 < a.
Another way to write this sequence is

Y1 (Rlei)®1-1@e; )7

O ,AQM >y AQ M — M — 0, (4.4)

where R(e;) : A — A, a — ae; are endomorphisms of the left regular
module. 5
Denote B = lim ;B (Y). Diagram (4.3) which determines X takes
(—_

the form
4B

® &
]

YeJ YeJ

1xBy l = Jvey

AxB(Y) —2— 5 4B(Y)

Let M be an object of € = lim . AB(Y). Forgetting the action of A
(—

EJ’B(Y). Tensoring it with A
we get an object AKX M of C, whose components are (AKX M)(Y) =
A M(Y), (AR M)(f) = A® M(f). Replacing in (4.4) M with
M(Y') we get exact sequences in 4B(Y). Furthermore, the isomorphism
(1®B(g))(N® L) ~ N® B(g)L gives foreach g : Y — Z € J a
commutative diagram

we can view M as an object of B = limy
—

Zi(R(ei)®1_1®ei

élA ® B(g)M(Z2) L A® B(g)M(Z) — B(g)M(Z) — 0
J,€B1®M (9) l1®M (9) lM (9)

& A® M(Y) 2i(R(ei)®@1-1®e;) v A® M(Y) —— M(Y) —— 0
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with exact rows. Therefore, there is an exact sequence in C
®?=1A®M 3°; R(ei)R1—-1Ke; AR M action M — 0.
The object AR M ~ RK(A® M) is in essential image of X, thus, the
first morphism is essentially in the image of . Hence, M is essentially
in &( AB)
If : L - M is in € we have a commutative diagram with exact
rows

>-; R(ei)¥1-1Re; action
e

¢ ARL ARL y L — 0

Joe oo |

. R(e; ) X1—-1Ke; ti
@ AR Jy T B 18ey action

AR M >y M >0

Its left square lies essentially in X(4B), hence so is the right vertical
arrow ¢. We proved that X is essentially surjective on objects and
surjective on morphisms.

We claim that for arbitrary A-modules P,Q € A-mod and arbitrary
objects M, N of B the map

Hom 4 (P, Q) ®c Homz (M, N) — Home(P Q M,Q ® N)

is injective. Indeed, let D, ¢x ® ¢ be given from the source, where (¢y)
is a C-basis of Hom4(P,Q), ¥x : M — N € B. Assume that this sum
is mapped to 0, then for each Y € J

Z‘ﬁk@wk(y):OSP‘@M(Y)_>Q®N(Y)'
%

Complementing (¢) to a basis of Hom¢ (P, Q) and passing to the stan-
dard basis we deduce that all 1,(Y) = 0. Therefore, 1 = 0 for all £. It
remains to apply Lemma 2.7 to deduce that X is full and faithful. O

4.3. A locally bounded particular case

Proposition. Let A be a locally bounded category. Then

X : ARPlimB(Y) — lim (ARPB(Y))
YeJ YeJ

is full and faithful. If J has finite set of objects, then X is an equivalence.
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Proof. Consider an exact C-linear functor F' : A — A’ between locally
bounded categories. It combines diagrams (4.3) for A and A’ into the
following diagram.

ARPlLmB(Y)
(_

p ves 2,
/ El %
X

A x imB(Y) - lImARPB(Y) — A'RPLimB(Y)

YeJ YeJ _p YGJ
Rr % lg
ﬁ"‘\,j

IxBy A X limB(Y) » im A'RPB(Y)
YeJ YeJ

Cy

A x BY) == . ARPB(Y) ¢

. p®o1
Jﬂ)rl xBy
D
A x B(Y) = » ARPB(Y)

In particular, there is an isomorphism

ER, ARPmB(Y)
YeJ Ye

@l / lm
limARPB(Y) 2 fim ARPB(Y)

YeJ YEJ

ARPLmB(Y) ——

<

and the lower functor is constructed uniquely.
Given a filtered inductive limit A = hm Az, we may apply the

above diagram to each exact functor Fj; : A —-> A; from the inductive
system. Also we may apply it to the canonical functors Can A >
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lim.€ I‘Ai‘ Taking the inductive limit we get the following diagram.
——1

ARPlmB(Y) 2 llm(AiﬁD@B(Y)) =5 ARPlimB(Y)

(—

YeJ i€l YeJ YeJ

® ~ lim@l ~ &
@Ai@ B(Y) Cﬂhm(hmﬂ X B(Y)) 25 imARPB(Y)
YeJ i€l 'YeJ YeJ

lim Canf* ®P1

Now for a given locally bounded A we consider its presentation as
an inductive limit limie I‘Ai of bounded A; such that all Fj; : A; — Ay
_—)
are exact, full and faithful. It follows from Lemma 2.6 that F;;&XP1,
hm FHJZ 1, Canf', Can;, Can), lim Cany* ®P1 are also exact, full and
—

falthful We deduce that @ is exact, full and faithful as well. From

Proposition 4.2 we know that the leftmost X is an equivalence, so the

middle lim‘E I& is an equivalence. The right top horizontal functor is an
—1

equivalence, hence, the rightmost X is full and faithful.
Now assume that Ob J is finite. We have to show that @ is essentially
surjective on objects. Let K be an object of lim Jfl&D B(Y). For each
(_—-

Y € Ob J thereisan i € I such that K (Y) € A;RPB(Y) — ARPB(Y).
Take i € I bigger than all such i(Y). Then K(Y) € A;RPB(Y)
determine an object K’ of lim _ JAy®PB(Y) such that &(Can; K') =

K. We deduce that the rightmost X is essentially surjective on objects
as well. O
4.4. The general case

Proposition. For all I, J the functor ~from (4.2) is full and faithful.
If ObI and Ob J are finite, the functor X is an equivalence.

Proof. The idea is to reduce the result to the particular case consid-
ered in Proposition 4.3. In diagram in Fig. 1 all functors are already
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IE'S
(D2 aBOOY) W ——2 4 (NgaR(x)Y — - (DEX(0y m

- /r a . —

® ]

& XXy 8

/ m

E2 122 >

Aued (DggR AQ:\E:V —— (Dgx ACQS::V e

ak m

A'Xuep Auep AgX1 W

3

D SYENS pX, (134 rax X -t
Tgaax?:\v Ei wi <4 — Tcaqx ACQSHE _ Wiy — Qbmzﬂmv x AAxv<§v 2
@y ) D@

> ai® —

2

£y 4 Bxy B

(g qr0)V) ] ¢ - AS@S:V a® ACQS::V i
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constructed, except limYe J®. To get it one varies Y and checks com-
H

patibility conditions (3.2). Consider both directed paths of 4 arrows in
this diagram starting with (l‘inge IA(X )) x (lim,_ B(Y)) and ending

—YeJ
with
1(131[1(1_ (A(X)@Dﬁs(y))] S04 Jim (A(X)RPB(Y)) -
YeJ "XelI Xel
20X A(X)RPB(Y).

The both composite functors are isomorphic. Moreover, the isomor-

phisms satisfy the compatibility conditions when X varies, hence, the

subpaths of 3 arrows ending with lim _, (A(X)RPB(Y)) are isomor-
—

phic. Again, the isomorphisms satisfy the compatibility conditions when

Y varies, hence, the subpaths of length 2 ending with

lim _ [lim _ (A(X)RPB(Y))]

—veJ L xel

give isomorphic bilinear functors. By the universal property of X” we
get the top face isomorphism repeated below.

—

(1mA(0))=? (lmB(Y)) B lim(A(X)RPB(Y))

Xel YeJ IxJ

tZl'Dl ~ le
tim [ (1imA(X) ) 8PB(Y)] 225 lim [1im (A(0=PB(Y)) |
YeJ - ‘Xerl YeJ "XeI

The right vertical functor is an isomorphism by Lemma 3.4. The left
vertical and the bottom functors are full and faithful by Proposition 4.3,

hence, so is the top functor.
If ObI and ObJ are finite, then the left and the bottom functors
are equivalences, hence, so is the top functor. |

5. Reduction to finite case

Consider an interval N = {z € Z | a < z < b} C Z. Denote

DY¥(Z)={K e D(Z) | k ¢ N = H*K) = 0}.
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For a stratified space (Z,Z) the full subcategory of Perv(Z, Z, p)
PervV(Z,2,p) = Perv(Z,2,p) N DY (Z)

is additive, C-linear, closed under direct summands and extensions. In-
deed,0 > A - B — C — 0 in Perv(Z, Z, p) extends to a distinguished
triangle A — B — C -2 | and A, C' € DV (Z) implies B € D (2)
by the long cohomology sequence. Similarly, for an algebraic variety Z

Perv (Z, mp) = Perv.(Z, mp) N DV (Z)

is additive, C-linear, closed under direct summands and extensions.

For a finite family 8 of isomorphism classes of simple objects of
the category Perv(Z,Z,p) there is an interval N C Z such that all
S € 8 are in DV(Z). Denote /8/ the strictly full subcategory of
Perv(Z, Z,p) consisting of objects whose simple subquotients are from
S. Then /8/ C Perv™(Z,2,p) since all objects of /8/ are obtained by
repeated extension from 8. This shows that Perv(Z,Z,p) is a union of
its abelian subcategories, contained in Perv" (Z, Z,p) for some N C Z.
Indeed, for an object K € Perv(Z, Z, p) denote by 8 the set of its simple
subquotients, then K € /§/.

Now let us study the full subcategory

Pervy (X) = {K € Pervg(X) | K(T) € PervY¥tdimeG (X))},

c

It coincides with

{K € Pervg(X) |V(p: P — X) € SRes(X,G) K(p) € PervY ™% (P)}.

c

If X is G-free, then Pervy(X) ~ PervY(G\ X).

One of the important ideas of Bernstein and Lunts [3] is that the
category DY (X) can be presented as an inverse limit of the diagram
with two arrows only. Let (p : P — X) € SRes(X,G) = I be a
smooth n-acyclic resolution [3, Definition 1.9.1] for n > |N| = max{k €
N} —min{k € N}. Consider a subcategory I(P) of I consisting of three
objects and two morphisms besides identities:

T+—TxxP—P.
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Here T is the trivial resolution and the morphisms are the projections.
The G-quotient of this diagram is

X+—P—P.

5.1. Lemma. The restriction functor

Pervy(X) = lim PervY ™ (R) — lim  Perv)**(R)
(r:R—X)erl (r:R—X)€I(P)

is an equivalence.

Proof. Let us construct a quasi-inverse functor. A quasi-inverse functor
to the restriction functor

m DYE(R) —  lm  DY(R)
(mR—>X)eIl (r:R—X)€I(P)

is constructed in [3, Remark 2.4.3]. We will show that it restricts to
perverse sheaves.

Let s : S — X be a smooth G-resolution. Following the scheme of
Bernstein and Lunts we define

Pervg(X,S)= lim  Perv)**(R).
(r:R—X)€I(S)

The projection maps

T(—TXXPX)(S———)PXXS

I ‘ varla vafz

T¢——-- T xx S —— 8

induce a functor between the inverse limits:
pry : Pervy(X,S) — Perv (X, P xx S).
Similarly, there is a functor

prp : Perv¥ (X, P) — Pervy (X, P xx S).
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The above functor prj is a restriction of the functor Prg : DY (X, S) —
DY (X, P xx S), which is an equivalence by [3, Corollary 2.2.2]. Notice
that pr% is essentially surjective on objects. Indeed, let K € DX (X,S)
be such that pry K € Perv (X, P xx S). The properties pr;*K(S) €
PervV+% (P xx 3), pis* K (T xx S) € PervYt4+% (T % x P xx S) im-
ply K(S) € PervY¥*%(S), K(T xx S) € Perv %4 (T x+ S) by the
proof of Proposition 2.3. Hence, K € Perv’ (X, S). Since Pervg (X, S) C
DY (X, S) and Perv (X, PxxS) C D¥(X, PxxS) are strictly full sub-
categories, we deduce that pr§ is an equivalence.
As shown in [3] the composite functor

Perv¥ (X, P) 225 Perv¥ (X, P xx S) 25
Cang

— Pervy (X, 8) =25 PervV*%(5), V= V(S)

defines an object V of DY (X) (the isomorphisms V(f:S—= 8" being
easy to construct). On the other hand, V(S) € Perv.(S), hence, V €
Perv} (X). Thus, the quasi-inverse functors

DY (X, P)&e=DY(X), VeV

restrict to functors between the strictly full subcategories Pervy (X, P)
and Perv}(X), defining an equivalence of these. O

5.2. Essential surjectivity of & on objects

We know that

X: (lgl PervA?))&D (ngl Pervc(}_2)> — lim  Perv(P, x R.)
Pel ReJ (P.R)EIXJ

is full and faithful. Let us prove that it is essentially surjective on ob-
jects. Take an object K of the target category Pervaym (X, x Y;). The
perverse sheaf K(T) € Perv(X.xY,, mp) = Perv (X, mp)RPL Perv (Y, mp)
is contained in some subcategory Perv(X, X, mp)X? Perv(Y, Y, mp). More-
over, there exist strictly full bounded subcategories A C Perv(X, X, mp),
B C Perv(Y,Y, mp) such that K(T) € ARPB. Let A€ A, B € B be
projective generators. Let S(A), S(B) be the sets of simple factors of the
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Jordan-Holder series of A, B in categories with length Perv(X, X, mp),
Perv(Y,Y,mp). Denote C = /§(4)/ C Perv(X,X,mp), D = /$(B)/ C
Perv(Y,Y, mp) the full subcategories consisting of objects, whose sim-
ple subquotients are in the lists 8(A), 8(B). We have A C €, B C D
and K(T) € CRPD. There exist intervals N', N” C Z such that
€ c DN'*ds(X), D c DN"*+41(Y). Then CRPD C DN(X x Y) for
N =N+ N". Let n = |N| = |N'| + |[N"|. Let P € SRes(X,QG), Q €
SRes(Y, H) be n-acyclic resolutions. Then P x @ € SRes(X xY,G x H)
is also an n-acyclic resolution. Consider the subcategories

£=I(P)={Tx(-—TX Xxp-—)P}CI,
J=JQ)={Ty « Ty xy @ > Q} C J

5.3. Lemma. There is an isomorphism

lim Perv,(R)X" lim Perv,(S) 2, lim Perv(R, x S.)

Rel seJ IxJ
res®P resl ~ lres (5.1)
lim Perv,(R)®P lim Perv.(S) = lim Perv (Re x S.)
o~ — —
REI(P) SeJ(Q) I(P)xJ(Q)

Proof. In a slightly more general context we have the following diagram.

(@A(R)) =P (limB(S))

T~

lim(A(R)XPB(S))

=
(—
J IxJ

(lim.A )@D (hmB(S))

v

(hm.A(R)) (l};_nB(S))

@ - K
(l(i%nA(R)) x (1(1711193(5)) = *%ng(A(R)’EDB(S))
) ARxBSl - o Cr,s
A(R) x B(S) = s A(R)RPB(S)
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Oriented paths beginning with (limIA(R)) x (lim JB(S )) and ending at
— —
the right bottom corner give isomorphic functors. Section 3.2 implies
the same statement for paths which begin at the same place and end
up with lim J(.A(R)D?B(S)). Properties of tensor product imply this
—— LiXJL
statement for paths beginning at the top and ending at the same place
as above. O

Now look at the object
resK € lim Perv(R,xS.) =~ lim Perv,(R)RP" Perv,(S).
I(P)xJ(Q) I(P)xJ(Q)
We have

K(Tx x Ty) € CRPD,
K(Tx x (Ty xy Q) ~ (1R pr;") (K (Tx x Ty)) € CRP Perv.(Q),
K(Tx x Q) € Perv (X)XP Perv.(Q), (5.2)
(1RPL")(K(Tx x Q)) ~ K(Tx x (Ty xy Q)) € CRP Perv.(Q). (5.3)

5.4. Lemma. Conditions (5.2), (5.3) imply
K(Tx x Q) € CRP Perv,(Q).
Proof. First of all, let us prove that
K(Tx x Q) € Perv(X, X, mp)XP Perv,(Q). (5.4)
Let
K(Tx xQ) € VPerv(X, 8, mp)XP Perv(Q, Q, mp).

Denote Q the stratification pry*(Q) of Q. Then

(1R pry)K(Tx X Q) €
Perv(X, 8, mp)®P Perv(Q, Q, mp)NPerv (X, X, mp)X® Perv(Q, T, mp)

by (5.3). We may assume that § is finer than X, and T is finer than Q.
Notice that the intersection of subcategories Perv(X x @, 8§ x Q, mp) and
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Perv(X x @, Xx T, mp) coincides with Perv(X x@Q, XxQ, mp). Actually,

this is a statement about cohomologically constructible complexes and

it reduces to a similar statement for sheaves, proven in Lemma A.2.
Now from

K(Tx x Q) € Perv(X x @,8 x Q,mp) C Dg’:g(X x Q),
(1 x pry)*K(Tx X Q) € Perv(X x Q,X x Q,mp) C DY o(X x Q)
we have to deduce that
K(Tx x Q) € DX (X x Q).
By [1] it would imply
K(Tx x Q) € Perv(X x Q,X x Q, mp). (5.5)

It suffices to work with cohomology sheaves of these complexes. We have
to prove that if M € $h(X x Q) is 8 x Q-constructible and (1 xp;)*M €
Sh(X x Q) is X x Q-constructible, then M is X x Q-constructible.

Let Uo@, = Q be an open cover of () such that the quotient map
do = PT; : @ — @Q admits a local section 4 : Q, “—— Q. Denoting
Qo = 65" (Q,), % = quQa : Qo = Q,, we have g, o7, = id. Let
Q, =“Q, N Q" be the induced stratification of @, then

M|y, = (1xa)[(1X 0) M|y g,

is X x Q4-constructible. Gluing the stratifications we deduce that M is
X x Q-constructible, hence, (5.5) and (5.4) hold.

Recall that € = /8(4)/ C Perv(X, X, mp) is closed under exten-
sions. Its list of simple objects is 8(A4). Simple objects of the category
Perv(X, X, mp)RP Perv(Q, Q, mp) are of the form SKT, where S is sim-
ple in Perv(X, X, mp), and T is simple in Perv(Q, Q, mp). In particular,
any simple subquotient of K (Tx xQ) in Perv (X, X, mp)XP Perv(Q, Q, mp)
is of the form SXT. An arbitrary simple subquotient of (1Xqp) K (Tx x
Q) is of the form S® R, where S is simple in Perv(X, X, mp), and Ris a
simple subquotient of 4T # 0 in Perv(Q, Q, mp). Since (1K) K (Tx x
Q) € CXP Perv,(Q), we see that for all simple subquotients S X T of
K(Tx x Q) the object S is in 8(A) C €.
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Consider now the strictly full subcategory € of the tensor product
category Perv(X, X, mp)XP Perv(Q, Q, mp) — extension closure of the
set of simple objects

{SRT|S e 8(A4),T simple in Perv(Q, 2, mp)}. (5.6)

We have K(Tx x Q) € Ob& and € X Perv(Q, Q,mp) C €. These two
categories have the same list of simple objects (5.6). The inclusion
functors induce mappings of Yoneda Ext groups

YEXtIé(L’ LI) - YEthIgerv(X,x)(Lv L’)7

VExtg(L R M, L'®M') = YExt{, x xympervga)(L B M, L' R M').

Since the subcategories are closed under extensions, the above mappings
are bijective for k = 0,1 and injective for k¥ = 2 [2, Lemma 3.2.3]. Using
Theorem XI.3.1 of Cartan and Eilenberg [5] we see that the composite
mapping

YExtfgpervign (LB M, L' R M') —— VExt; (LR M, L'® M’)

B YR ik
EXtPew(X,DC)IZIPerv(—Q—,ﬁ) (L X M’ L'® M/)
equals to
Y@ ti 1 Yposd
iga:k Exte(L, L") ®c Etiew(a,ﬁ)(M’ M)

— @ YExtheyxx (L, L) ®c VExt! (M, M').

itj=k Perv(Q,9)

Mappings , 7 are bijective for £ = 0,1 and injective for £ = 2. Hence,
a has the same property. By [10, Lemma 5.4] we deduce that the
embedding CXRP Perv(Q, Q, mp) — € is an equivalence. The lemma,
is proven. O

Symmetrical result also holds:

K(P x Ty) € Perv (P)®RPD
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as a corollary. So the object res K lies in the inverse limit of the diagram,
which represents a fibered category over I(P) x J(Q) — a subcategory
of Perv, &P Perv, /I(P) x J(Q).

1Xgy 1Xg3 _

CXD € X Perv(Q) +————— C X Perv,(Q)

p{&ll p;@ll lp}ﬂl

Perv . (P)X D 1%, perve(P) B Perve(Q) Fani A Perv,(P) ® Perv,.(Q)

png pQEIT Tp%&ll

Perv (P) XD 1%, perv,(P) B Perve(Q) Fai 1 Perv,(P) X Perv.(Q)
(5.7)

This fibered category is a tensor product of a fibered subcategory of
Perv, /I(P)

A/I(P) : € 21y Perv (P) +2— Perv,(P)
and of a fibered subcategory of Perv. /J(Q)
B/J(Q):D 4, Perv.(Q) & Perv.(Q).

Since the bottom X in diagram (5.1) is an equivalence, the object res K
comes from an object

K' € (Rléll_rﬁ) )A(R))&D (Si%r%lQ)'B(S)) c

C ( lim Peerﬁ))@D ( lim Pervc(§)>.
ReI(P) SeJ(Q)

. . . D .
Hence, there is an exact sequence in (IERGI(P)A(R)) X (lif_“seJ(Q)B (S))

VRW 242K TR M K 0.
As A(Tx) = € C DN'*9a(X) (resp. B(Ty) = D C DN'*4(Y)) the
objects V, L and morphisms t; (resp. W, M, s) define objects V', L
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and morphisms & of Pervy (X) (resp. W, M, s of Pervly (Y)) via
Lemma 5.1. So we have the cokernel K € Pervg(X) & Pervy(Y)

VRW =42 F R — K — 0

such that (res®res)K = K'. Since V(Tx),L(Tx) € C and W(Ty),
M(Ty) € D, we have R(V B W)(Tx x Ty),R(L B M)(Tx x Ty) €
DN+de+du (X % Y). Therefore, (XK)(Tx x Ty) € DNtdotdu (X x Y).
Notice that res(RK) ~ R(res®res)K ~ resK and K(Tx x Ty) €
DN+de+dn (X xY') as well. Lemma 5.1 implies that there is no more than
one object of Perv®, (X, x Y,) with given restriction to the diagonal

of diagram (5.7). Thus K ~ K. This implies that

X: lim Perv,(R)®Plim Perv,(S) — lim Perv(R, x S.)
— —
Rel SeJ (R,S)eIxJ

is an equivalence. It means that
: Pervg(X) x Pervy(Y) — Pervaun(X. x Yy)

makes the target category into tensor product of source categories, and
X is a concrete realisation of XP.

A. Some properties of constructible sheaves

Let X; C X, @1 C @ be closed submanifolds of complex manifolds.
Denote the open complements Xo = X — X3, Qo = Q — Q1. We get
stratifications X = { X, X1}, Q = {Qo, @1}

A.1. Lemma. If a sheaf S on X x Q is X x {Q}-constructible and
{X} x Q-constructible, then it is locally constant on X x Q.

Proof. The statement is local, so we may assume that X; = C* (resp.
@1 = C°) is a linear subspace of X = C° (resp. of Q = C¢). The
restrictions S ‘ XoxQ and S | XxQ, 2T€ locally constant. Hence, S |W is
locally constant for a connected open set W = Xo X QU X X Qo =
X x Q — X1 x Q. Since m (W) is trivial, S|W is a constant sheaf.

The restrictions S| XixQ’ S| X, x@, e constant sheaves as well. Espaces

-77 -



LYUBASHENKO, TENSOR PRODUCT OF EQUIVARIANT PERVERSE SHEAVES

étalés for constant sheaves on W and X; x @, are disjoint unions of
copies of W and X; x @,. For any point (z1,¢1) € X; X @; denote by B
its open ball neighbourhood in X x Q). The open set BNW is non-empty
and connected. Therefore, there is only one way to glue together the
above mentioned espaces étalés into espace étalé for S, so that S l Xyix

is constant. I%

A.2. Lemma. Let X, Q be complex algebraic varieties. Let stratifica-
tion 8§ of X be finer than X, and let stratification T of () be finer than
Q. Then

Shng(X X Q) N thxg'(X X Q) = thxQ(X X Q)

Proof. The result follows from a particular case: X, @) are connected
complex manifolds, and X = {X}, Q = {Q} are trivial stratifications.
We have to prove that a sheaf S on X x @, which is 8§ x Q-constructible
and X x T-constructible is locally constant.

Denote Xy, Qo the open stratum. Denote X, @; the union of strata
from §, T in X — Xy, Q — Qo of maximal dimension; denote X5, @2 the
union of strata contained in X — Xy — X3, @ — Q¢ — @, of maximal
dimension, etc. Apply Lemma A.1 to submanifolds X' = XU X, C X,
Q' = Qo U Q, C Q with stratifications X' = {Xp, X1}, Q' = {Qo, @1}
We deduce that S ' X'xQ’ is locally constant. Then we apply Lemma A.1

to (Xo, Xi; Q()UQl, Qg) and get that S X' % (QoUQ1UQ2)
Continuing we deduce that S | X'xQ is locally constant. Thus the orig-
inal stratification of X might be replaced with (Xo U X, X5, X3, ...).
Continuing to simplify the stratification of X we make it trivial. And
the lemma follows. O

is locally constant.

A.3. Remark. The above lemmas hold as well for topological pseudo-
manifolds X, @ such that X;, @; has real codimension at least 2.
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