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SYMMETRIC MONOIDAL CLOSED
STRUCTURES IN PRAP

by M. SIOEN*

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQ UES

Volume ALII-4 (2001)

RESUME. Le fait que la cat6gorie PRTOP (des espaces
prétopologiques et applications continues) n’est pas cart6sienne
ferm6e est bien connu et par cons6quent, la meme conclusion est
valide pour la cat6gorie PRAP des espaces de pré-approximation et
des contractions, comme elle a ete introduite par E. Lowen et R.
Lowen dans [1].
Le but de cet article est de montrer que PRAP n’admet qu’une seule
structure monoidale ferm6e sym6trique (a un isomorphisme naturel
pr6s), a savoir la structure monoidale inductive canonique (6tudi6e
dans le contexte des categories topologiques ou initialement
structur6es par Wischnewsky et Cincura). On d6montrera ce r6sultat
en se basant sur la technique développée par J. Cincura [5] pour
r6soudre cette question dans PRTOP.

1 Introduction

It is well-known that the topological construct PRTOP of pre-topologi-
cal spaces and continuous maps is extensional but that, unfortunately,
it lacks another important so-called convenience property: the carte-

sian closedness, or equivalently, the existence of nice function spaces
satisfying a nice exponential law. The numerification superconstruct
PRAP of PRTOP, as intoduced by E. Lowen and R. Lowen in [11],
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was shown still to be extensional, but clearly fails to be cartesian closed,
because it contains PRTOP as a full simultaneously concretely bire-
flectice and concretely bicoreflective subconstruct. Because a decent

exponential law in a category is vital for making it useful for duality
theory, categorical algebra and enriched category theory, many attempts
can be undertaken to force this nice exponential behaviour if it is not
present. A first approach is to look for those objects in our category
which still have decent exponential behaviour, i.e. the so-called expo-
nential objects. The exponential objects in e.g. TOP, PRTOP and
PRAP have been identified to be resp. the core-compact topological,
the finitely generated pre-topological and the oopqs-metric spaces (see
e.g. E. Lowen-Colebunders and G. Sonck [14] and E. Lowen, R. Lowen
and C. Verbeeck [13]). A second approach can be weakening the struc-
ture of the spaces we work with, in order to obtain a cartesian closed
topological supercategory, which is preferably the smallest such one,
i.e. looking for the cartesian closed topological hull (if it exists). It is

well-known that for TOP resp. PRTOP and PRAP, this yields the
category of Antoine spaces, resp. the categories PSTOP and PSAP
(see [12]). A third thing we can do is retaining the category we work
in and looking in there for an alternative, more ’algebraic’ product sat-
isfying a decent exponential law. Such a product, if it exists, is called
a tensorproduct, by analogy to the algebraic tensorproduct of modules
or vectorspaces. Tensorproducts or more formally, symmetric monoidal
closed structures were introduced by S. Eilenberg and G. M. Kelly in [6]
and have been extensively studied since then. In our familiar topologi-
cal constructs, they even can be assumed to be in some standard form,
relating very much to the cartesian case as can be found in (J. Cincura
[5] and A. Logar and F. Rossi [9]). In the realm of topological constructs
or more generally, of initially structured categories in the sense of L. D.
Nel, there always exists a canonical tensorproduct, called the inductive
one, which is studied in (M. B. Wischnewsky [23] and J. Cincura [5]).
This type of tensorproduct even can be related to the algebraic one by
means of a notion of bimorphisms, as follows from (B. Banaschewski
and E. Nelson [2] and D. Pumplfn [22]). It was shown by J. Cincura in
[5] that this inductive tensorproduct, together with the function space
structure of pointwise convergence, is (up to natural equivalence) the
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only possible structure of symmetric monoidal closed category which
can be imposed on PRTOP. It is our aim in this paper, building on
his technique, to show the same for PRAP.

2 Preliminaries

For notations, terminology or general information of categorical nature,
we refer to (J. Adamek, H. Herrlich and G. Strecker [1], F. Borceux [3]
and S. MacLane [20]). If F : A -&#x3E; B and G : B -&#x3E; A are functors
such that the pair (F, G) is a pair of adjoint functors, we will briefly de-
note this by F -I G. To start, we briefly recall some material related to
approach theory and we refer to (P. Brock and D. C. Kent [4], E. Lowen
and R. Lowen [11], [12], E. Lowen, R. Lowen and C. Verbeeck [13], R.
Lowen [16], [17] and R. Lowen, D. Vaughan and C. Verbeeck [18]). For
every set X, we will write 2x (resp. 2(x)) for the powerset (resp. the set
of all finite subsets) of X. The first infinite ordinal is denoted by w. Ap-
proach spaces (resp. pre-approach spaces) were introduced by R. Lowen
in [16] (resp. by E. Lowen and R. Lowen in [11], [12]) to yield suitable
topological numerified superconstructs AP (resp. PRAP) of the well-
studied ’classical’ topological constructs TOP, of topological spaces
and continuous maps (resp. PRTOP, of pre-topological spaces and
continuous maps). This means that AP (resp. PRAP) contains at the
same time both of the constructs TOP and pqMET°°, of oopq-metric
spaces and non-expansive maps, (resp. PRTOP and pqsMET°°, of
oopqs-metric spaces and non-expansive maps,) as full subconstructs,
the former concretely bireflectively and concretely bicoreflectively, the
latter only concretely bicoreflectively. This relation between these cat-
egories is summarized in the scheme below where an r (resp. a c) indi-
cates that the first construct is concretely bireflectively (resp. concretely
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bicoreflectively) embedded in the second one.

The aim of these quantified supercategories is that in the setting of
AP (resp. PRAP), products or more generally, initial structures of
families of oopq-metric, (resp. oopqs-metric) objects can be formed on
the numerical level, yielding canonical quantified information which is
still compatible with the underlying topologies (resp. pre-topologies).
On the other hand, initial or final lifts of sources or sinks consisting
of topological (resp. pre-topological) objects, formed in AP (resp.
PRAP) coincide with the corresponding liftings formed in TOP (resp.
PRTOP). For any further information or notations concerning ap-
proach theory, we refer to [16, 17, 11, 12]. In what follows, we will
heavily depend on the use of so-called ideals, palying the role of quan-
tified counterparts of filters.

Definition 2.1 If X is a set , then 0 = F c [0, oo]x is called an ideal
on X, if it satisfies the following conditions:

The set of all ideals on X will be denoted by I(X).

We want to remark that condition (14) is simply a saturation condition
applying to subsets of [0, oo]x which appears frequently in approach
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theory and for all 6 C [0, oo]x, we will write S&#x3E; for its saturation with
respect to (14).

Let X be a set and F E I(X). In the sequel, the number

will be called the level of F and it is an easy consequence of (11) and
(14) that every ideal has a finite level. The ideal F will be called prime
if satisfies the following supplementary condition

We will use the notation P(X) for the set of all prime ideals on X and
we will also write

and

Concerning (symmetric) monoidal (closed) structures, or more shortly
(S)M(C) structures, as introduced by S. Eilenberg and M. Kelley in [6],
we refer to F. Borceux [2], or S. Mac Lane [20], [19] for any further
terminology, information and notations. We only recall that it follows
from a general categorical result which can be found in J. Cincura [5],
and A. Logar and F. Rossi [9] that, without loss of generality, we can
assume SMC structures on our familiar topological constructs to be in
some standard form, where the tensorproduct of two objects always
has the cartesian product of the underlying sets as its underlying set,
the adjoint inner hom-functor indeed is a structured hom-functor and
the corresponding adjunction between the tensorproduct and the inner
hom-fuctor is precisely the standard one, used in the cartesian closed
case.

3 The Situation in PRAP

In the context of pre-topological spaces, the well-known inductive ten-
sorproduct usually is given in terms of neighbourhood systems or through
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its (non-idempotent) closure operator. Also in the setting of topolog-
ical constructs (see M. Wischnewski [23]) or in the even more general
framework of initially structured categories (see J. Cincura [5]), an in-
ductive tensorproduct has been defined and studied. We first define a
symmetric monoidal structure on PRAP in terms of the local distances
and then prove it to coincide with the inductive tensorproduct from [23]
and [5].
Definition 3.1 Let X, Y E |PRAP|. For every x E X, y E Y, cp E
Ax(x) and 0 E Ay(y) we write

Then

is a base for a pre-approach system on X x Y, denoted Ax 0 AY.The
pre-approach space

is called the inductive tensorproducts of X and Y.

To see its relation to the inductive tensorproduct, we need the next
lemma the obvious verification of which we omit.

Lemma 3.2 For every X, Y, Z E |PRAP | and for every function f :
X x Y - Z the folllowing assertions are equivalent:

(1) f : X 0 Y - Z is a contraction,
(2) for every (x, y) E X x Y, both

and are contractions.

Corollary 3.3 Let X, Y E |PRAP| and put

and f(.,y) contractions},
then

is initial in PRAP.
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This shows that the symmetric monoidal structure 0 defined here
coincides with the canonical inductive tensorproduct defined and inves-
tigated in (J. Cincura [5]) in the setting of initially structured categories,
whence is a tensorproduct, hereby justifying our terminology and the
definitions below.

If X, X’, Y, Y’ E IPRAP I and f : X -&#x3E; X’, g : Y - Y’ are
contractions, we put f x g : X 0 Y -&#x3E; X’ x Y’ : (x, y) H (f(x), g (y)).
Then f x 9 is a contraction and together with definition 3.1, this defines
a bifunctor - 0 - : PRAP x PRAP -&#x3E; PRAP, making PRAP
into a symmetric monoidal category together with the standard natural
isomorphisms and unit.

For all X, Y E lPRAPl, we define [X, Y] to be the PRAP ob-
ject with underlying set PRAP(X, Y), equipped with the pre-approach
structure of pointwise convergence (i.e. the pre-approach structure
PRAP(X, Y) inherits as a subspace of nXEX Y.) If X, X’, Y, Y’ E
lPRAPl and f : X’ -&#x3E; X, g : Y -&#x3E; Y’ are contractions, then
[f, g] : [X, Y] -&#x3E; [X’, Y] : h -&#x3E; g o h o f is a contraction. This de-
fines a bifunctor [-, -] : PRAP °P x PRAP - PRAP.

Then it follows from categorical results proved in [5], that (- x
-, [- , -]) is an SMC-structure on PRAP. Just as in the pre-topological
case it turns out very practical to have a reformulation of the inductive
tensorproduct in terms of closure operators, the next result which de-
scribes the inductive tensorproduct in PRAP by means of pre-hulls will
prove to be usefull in the sequel.

Proposition 3.4 For all X, Y E |PRAP| and all y E [0,oo]XxY,we 
have that
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Proof : Fix -y E [0, oo]XxY, put

and pick (s, t) E X xY. Then h(,)(s, t) = hY(y(s, .))(t)^hx(y(., t))(s)
On the other hand, we know that

We start by proving the inequality hXxY h(,)(s,t). If h(7) (s, t)
oo, we are done, so assume that h(y)(s,t)  a with a E [0, oo[, whence
hX(y(., t))(s)  a or hY(y(s, .)) (t)  a. Assume, without loss of gener-
ality, that

This implies that for each cp E Ax (s), we can find z, E X with y(xcp, t) +
cp(xcp)  a, yielding that

so by arbitrariness of cx, this part is completed. To show the converse
inequality, note that there is nothing to do in case that h(y)(s, t) = 0,
so without loss of generality, we can assume that

with a E [0,oo[. By using the transition formula (pre-approach system
-&#x3E; pre-hull) we find that there exist cpo E Ax(s) and y0 E AY(t) with
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so again, arbitrariness of a completes the proof.

Practically, this means that if X, Y E IPRAPI, y E [O,oo]XxY and
(x, y) E X x Y, then

If X is a set then F E I(X) is called principal if

for some y E [0, oo]X B {oo}. We write

If a E [0, oo[ and x E X, we put

and 8x = F0x. Then we have that

A key argument used in (J. Cincura [5]) to reduce the problem of
classifying all SMC structures on PRTOP up to natural isomorphism, is
that tensorproducts (in the standard form) are completely determined
by their action on a finally dense class of pre-topological spaces. A
suitable candidate in the pre-topological case, used in [5], is the class of
all non-principal ultraspaces. We briefly recall that for an infinite set
X, a point oox V X and a non-principal ultrafilter U on X, the non-
principal ultraspace Xu = (X, U, oox) is defined to be the topological
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space having XU{ooX} as underlying set and where the neighbourhood
system is given by

For every x E X, i is the fixed ultrafilter at x on X U {ooX}. Our next
step will be defining a suitable finally dense class in PRAP so that
we can invoke the same reduction argument, in our approach setting.
It turns out that what we will call non-principal prime ideal spaces
constitute a good candidate.

Definition 3.5 Let X be an infinite set, 8 E Pnp (X) and ooxf/X. For
every p E [0,oo]x, we let ’P* E [0,oo]xU{oox} be given by cp*(x) = ’P(x)
for x E X and cp*(ooX) = 0. We also set

Then

is called the non-principal prime ideal space (nppi-space) determined by
F. The full subcategory of PRAP formed by all nppi-spaces is denoted
by NPPI. (Note that dxf-(oox,X) = c(F))

Proof : We have to verify that XIT E l AP l. It is easy to see that for
all x E XU {oox}, Aa(x) E I(X U I oox 1) with Aa(x) C Fx, so only the
triangular axiom (A2) needs to be verified. Let x E X, cp E AF(x) and
K  oo. If we now pick po e 8 and define cpy Of y) for all y E X and
cp oo = W*, then cpy E Azr(y) for all y E X U {ooX} and it is clear that

If on the other hand cp E F and K  oo and if we define cpy = 8{y} for all
y E X and cpoox= cp*, then obviously py E AF(y) for all y E X U {ooX}
and (1) holds again and we are done. 
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From now on we use the characterization of PRAP by means of ideal
structures by R. Lowen, D. Vaughan and C. Verbeeck ([18]), where an
ideal structure on a set X is a map

subject to some axioms formulated in [18]. Again for a pre-approach
space X, we write Ix for its ideal structure. We remind that if X E
IPRAPI, the corresponding pre-approach system is determined by Ax (x) =
n ix(x), for each x E X. If Y C X and 6 C [0, oo]X, then

For a filter X on X, we put w(F) = ({ OF F E F}) and if ? E I(X),
we let

We also recall the following results from [10] and [13]: 3.9 describes
the structure of minimal prime ideals containing a given ideal, playing
the role in convergence-approach theory of ultrafilters containing a given
filter in convergence, while 3.10 helps us passing to such minimal prime
ideals, maintaining at the same time control over the levels.

Proposition 3.6 ([18]) If X is a set, 3 E I(X) and U is an ultrafilter
on X for which U Di(F) and

then

Proposition 3.7 (Proved as in [10]) If X is a set and a E I(X), then
there exists 6 E Pm(F) with c(6) = c(13) -

Proof : The proof is mutatis mutandis the same as the proof of
theorem 2.3 in [10]. ·
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For the description of the formation of final structures in PRAP we
refer to E. Lowen, R. Lowen and C. Verbeeck [13].

In the proof of the final density of NPPI in PRAP which will
permit an essential reduction of the problem of determining all SMC-
structures, we will need some technical lemmas which we will mention
without proof.

For the first statement of the next lemma, we extend the definition of
the level c(6) to arbitrary 6 C [0, oo]X. The second statement below
generalizes the concept of the product on two filters to the realm of
ideals.

Lemma 3.8 1. If X is a set and 3 C [0, oo]x , then c((?)) = c(F),

2. If X, Y are sets, F E I(X) and 6 E I(Y), then with

it follows that (F x C) E I(X x Y)..

Next two lemmas are required for showing case 2 of proposition 3.16.

Lemma 3.9 If X, Y are sets, f : X - Y is a function and E I(X ),
then (f (F)) E I(Y) and c((f (F)))  c(F).

Lemma 3.10 Take X a set, x E X, a E [0, oo [ and F E I(X) with
F D Fax. Then F = al for some B E [a, oo I.

The technical construction below indeed shows us the desired final

density of NPPI in PRAP. In fact, it all comes down for a given
PRAP object, to forming a large enough coproduct of nppi-spaces,
describing which non-principal prime ideals ’converge’ to which points
and then taking a suitable quotient of this coproduct, to end up with
an isomorphic copy of the space we started with. We omit the long,
technical and tedious proof of this result.

Theorem 3.11 Let X E | PRAP |. 
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1. We write

Then for all (x, 6) E Zi (X ), it follows that

and we define X1 (x,C) to be the nppi-space determined by 61xBf,l
and with new point x.

2. Put

We write

with J’j the Frechet filter on N and for every k E N, ]k, w[ * (n E
N l k  n }.
For all (x, y, a) E I2(X), we can pick

with C(C (x,y,a) = a. We define X2(x,y,a) to be the nppi-space de-
termined by C(x,y,a) and with new point (z, w).

3. With notations as in 1. and 2.

is a final episink in PRAP. ·

Corollary 3.12 PRAP is the monocoreflective hull of NPPI in PRAP.

Proof : This is clear since part 3. of the previous theorem yields that
every pre-approach space is a quotient of a coproduct (both formed in
PRAP) of a set-indexed family of nppi-spaces. 0

The reduction announced higher up now follows by exactly the same
categorical arguments used in (J. Cincura [5]) for the pre-topological
counterpart.
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Corollary 3.13 If 0 and 0’ are two tensorproducts on PRAP, then
the following assertions are equivalent:

Proof : The implication (1) =&#x3E; (2) is clear. If D is a tensorprod-
uct on PRAP, then -DZ has a right adjoint for all Z E |PRAP|,
whence -OZ preserves quotients and coproducts in PRAP (or equiv-
alently, final epi-sinks in PRAP) for each Z E IPRAPI. The same
argument applies for the funtors -O’Z with Z E |PRAP|. The impli-
cation (2) =&#x3E; (1) now follows from 3.17 (or 3.16(3)), because, according
to our convention, for every pair (f, g) of contractions, fOg and fO’g
have the same underlying function. 0

Proposition 3.14 If 0 is a tensorproduct on PRAP it follows that
for all X, Y E I PRAP I we have

i.e. that idXxY : XOY -&#x3E; X x Y and idxxy : X O Y -&#x3E; XOY are
contractions.

Proof : This is proved in exactly the same way as 2.2 in (J. Cincura
[5]). 0

Further on, the next criterion (the straightforward proof of which we
omit) will be used to decide that certain functions are PRAP-quotients,

. 
i.e. PRAP-final surjections.

Lemma 3.15 If X, Y E |PRAP | and f : X -&#x3E; Y is a function, the
following assertions are equivalent:

(1) f is a quotient in PRAP,
(2) f is onto and Vv E [0, ooly : hy(v) = f( hx( 1/J o f )). ·
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We now prove some further parallels between the behaviour of the
non-principal ultraspaces in the pre-topological case and the nppi-spaces
in our case, showing that for any two nppi-spaces, the pre-hulls corre-
sponding to their cartesian product, resp. inductive tensorproduct can
only differ in one point, namely the pair of the two added points.

Proposition 3.16 If X, Y’ are infanite sets, oox g X, ooy EY,F E
Pnp(X), 6 E PnP(Y), 7 E [0, oo]XFXYC, then ,

Proof : Fix (x, y) E (X3 x Y6) B {(ooX, ooY)}. Then according to
3.14 we have

so we only need to verify the converse inequality. If hxf.yc, (y) (x, y) =
oo, we are done, so assume without loss of generality that hXFxYc (-y) (x, y) 
a with a E [0, too[ (1). If x =A ooX and y = ooy, then (0{x} o prx) V
(0{y} o pry) E AXFxYC ((x, y)), and therefore (1) implies that

so by arbitrariness of a, we are done in this case. Finally, we con-
sider the case where x = ooX and y = ooy (because the case that
X = ooX and y = ooy is treated in the same way.) Now take cp E

[0, oo]xF with W(x) = 0 and 0 E 6. Then (0{x} o prx) V (0* o pry) E
AxFxYc ((x, y)) , whence it follows from (1) that

This proves that hxFOgY (y) (x, y)  a and again, arbitrariness of a con-
cludes the proof. 

Corollary 3.17 Let 0 be a tensorproduct on PRAP, X, Y infinite
sets, oox V X, ooy V Y, 8 E Pnp(X) and 6 E P"P(Y). Then the
following assertions are equivalent:
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Proof : It follows from 3.14 that (1) is equivalent to the statement

which according to the previous proposition, is equivalent to (2). O

Let 2 = ({0,1}, {0, {1}, {0,1}}) be the Sierpinski topological space. We
use the same notation for the (pre-)topological pre-approach space cor-
responding to it. The next major reduction step for the pre-topological
problem proved in (J. Cincura [5]) consisted in showing that the equality
between an arbitrary tensorproduct and the inductive one on PRTOP
is completely decided by the equality of the two SMC structures on the
pair of objects (2, 2). Our next goal is to prove that the equality of an
arbitrary tensorproduct D on PRAP and the inductive tensorproduct
O only depends on the equality of POP and P 0 P. Here P stands for
the approach space with underlying set [0, oo] and

which is to be seen as the approach counterpart of the Sierpinski space,
e.g. P is initially dense in AP. More surprising is the fact that in its
turn, the equality of O and 0 is again equivalent to the equality of 2O2
and 202. Note that where, as will follow from some calculations below,
2 0 2 is topological, this is a priori not known for 2O2 at this stage,
making the situation more subtle.

Theorem 3.18 For any tensorproduct D on PRAP, the following as-
sertions are equivalent:
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Proof : It is obvious that (1) implies (2) and (3) and because the
implication from (2) to (1) is proved in exactly the same way as the one
from (3) to (1), we only give a proof of the latter. According to 3.18
it is sufficient to prove that 0 and 0 agree on pairs of nppi-spaces, so
take two infinite sets X, Y, points oox V X, ooy V Y and F E Pnp(x)l
6 e Pnp(Y) arbitrary. Suppose on the contrary that

According to 3.22, this yields the existence of -y : X6 x YC-&#x3E; [0, 00]
and a E ]0, oo[ such that

Define the function

if
if

First, we will show that

Because

it follows that hxF(y(., ooy))(oox) &#x3E; a and hyc (y(oox, -))(ooy) &#x3E; a.

Moreover, we obtain
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and analogously we obtain that

Because

we deduce that

since pre-hulls preserve finite infima. If f : X6 -&#x3E; 2, g : y6 -&#x3E; 2

are given by f (x) 1 for x E X, +f (ooX) = 0, g(y) = 1 for y E Y and
g(ooY) = 0, it is easily seen that f and g are contractions. Using the
assumption (3) it then follows that

is a contraction too, so

On the other hand, yielding

which is a contradiction.

As a corollary, we now get that the equality of an arbitrary ten-
sorproduct O and the inductive tensorproduct on PRAP is in effect
measured by the finiteness of one single parameter: the distance



303

which a priori can take values in the continuum [0,00]. Again note the
parallel with the pre-topological case where the equality of a given ten-
sorproduct with the inductive one is equivalent to the fact whether (0, 0)
belongs to the closure of {(1,1)} in the (considered) tensorproduct of
2 with itself. Where in the pre-topological case, an arbitrary tensor-
product of 2 with itself was either equal to the cartesian product or
the inductive tensorproduct of these spaces, we now have to investigate
whether there exist tensorproducts on PRAP corresponding to finite
values of a parameter ranging through a continuum.

Corollary 3.19 Let 0 be a tensorproduct on PRAP. Then 2 x 2, 2 (D 2
and 202 are finite, whence oopqs-metric pre-approach spaces, whence
determined by the point-point distances. We also have that

and that

We also have that

So the following assertions are equivalent:

Proof : 2 x 2, 2O2 and 2 0 2 all have the same finite underlying
set fo, 112 and therefore are oopqs-metric spaces. Therefore they are
completely determined by specifying the point-point distances. Because
TOP is a concretely bireflective subconstruct of PRTOP and PRTOP
is a concretely bireflective subconstruct of PRAP, TOP is closed in
PRAP with respect to forming products and the PRAP-product of a

set-indexed family of topological spaces is exactly the approach space
corresponding to their TOP-product. In particular this applies for 2 x 2.
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The topological product of 2 and 2 is determined by the action of its
closure operator ? on singletons, given by 1(0, O)l = {(0, 0)11 f (0, 1)}=
{(0,1),(0,0)},{(1,0)}= {(1, 0), (0, 0)}, {(1,1)} = {0,1}2. Because the
distance of a point to itself equals 0, the following diagram exactly de-
scribes 2 x 2 where for all (a, b), (c, d) E {0,1}2 a dotted (resp. full) ar-
row from (a, b) to (c, d) means that b2x2((a, b), {(c, d)}) = 0 (resp. oo):

We know that

or equivalently, that

whence the full arrows in the previous diagram at once contribute full
arrows to the diagram for 202 and only the 2 O 2-distances correspond-
ing to the dotted arrows in the diagram above have to be calculated.
To start we e.g have that

and in the same way we verify that

The only difference with the product case is
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All of this is summarized in the next diagram, with the same con-
ventions concerning the arrows as above.

From this the conclusions stated in the corollary and the implication
(2) =&#x3E; (1) immediately follow. Now suppose that D fl 0, which accord-
ing to the previous theorem, is equivalent to saying that 2D2 is strictly
coarser than 202. Because, as indicated higher up, our considered
pre-approach structures are completely determined by their respective
point-point distances, this means that there exist (a, b), (c, d) C {0, 1}2
with

and comparing the two diagrams, this is only possible if (a, b) (0, 0)
and (c, d) = (1, ), yielding (2). ·

The next result provides an interpretation of the parameter

in relation to the action of the tensorproduct on pairs of nppi-spaces.
Again note that this interpretation is a parallel to proposition 2.6 of [5],
stating that if there existed a tensorproduct on PRTOP, different from
the pretopological inductive one, then for all non-principal ultraspaces
XU , yV , the point (oc x, ooy) belongs to the closure of X x Y with
respect to the particular tensorproduct of X’ and Yv.

Proposition 3.20 If O is a tensorproduct on PRAP and 0 =I- 0 , .
then for all infinite sets X, Y, points oox V X, ooy E Y and all F E

Pnp(X), C E Pnp(Y) with c(3) = c(C) = 0, we have that
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Proof : Assume that D -1= Q9, so it follows from the previous corollary
that

Fix F E Pnp(X), C e Pnp(Y) such that c(F) = c(6) = 0. Now define
f : XF -&#x3E; 2 and 9 : y6 -&#x3E; 2by f(x) = 1 for every x E X,
f(ooX) = O,g(y) = 1 for all y E Y and g(ooY) = 0 . Then f and g are
PRAP-quotients. We verify this for f. To do so we fix y E [0, oo]{0,1}.
According to 3.20 . it now suffices to check that

because f is onto. We distinguish between three cases. If y is constant,
so is yo f and we are done since f is onto. Next, suppose that a = y(0) &#x3E;

,(1) =: ,0. On the one hand, clearly

and

On the other hand we have

and
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showing the desired equality in this case. Finally, we consider the case
where a = q(0)  7(l) =: B. In this case,

and

On the other hand we find , just as in the previous case, that

and

concluding the verification. We continue with the main proof. Because
o is a tensorproduct, it follows that

is a PRAP-quotient as well, so thanks to 3.20 and the fact that

we find that

and the proof is complete. N

As might be expected the non-principal ultraspaces playing a fun-
damental role in the reduction of the question for PRTOP, can be
obtained as particular cases of nppi-spaces.
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Proposition 3.21 If X is an infinite set, ooX E X and U is a non-
principal ultrafilter on X, then w(U) E P np(X) and Xw(U) is the topo-
logical approach space associated with the topological non-pricipal ultra-
space X’

= (X, U, 00 X)

Proof : It is routine to verify that w(U) E P(X). If w(U) were
principal, then we would have x E X and a E R+ with w(U) = Fax .
Because c(w(U)) = 0 and c(Fax) = a, clearly a = 0, so 0{x} E w(U).
Therefore there would exist U E U with 0{x} A 2  Ou + 1, whence
{x} E U or equivalently Lf = x which is a contradiction. This proves

w(U) to be non-principal. The topological space X" and the approach
space Xw(u) share the same underlying set X U {ooX} by definition. For
X E X, the approach system for Xw(u) at x is given by

In ooX , the approach system for Xw(") is given by

where the second equality is clear because for all U E ?rl, (0u)* =
0Uu{oox} and this proves the claim.

O

We now come to the main theorem which has the same general line
as the proof of the pre-topological situation established in theorem 2.7
in [5]. Again note the remarkable fact that the spaces which satisfy to
provoke a contradiction from the assumption that there would exist a
tensorproduct 0 on PRAP other than 0 are precisely the same topo-
logical (!) objects used to derive a contradiction in the proof of the
pre-topological case, but that the situation here becomes more subtle
because we do not know at this stage that the D-product of two topo-
logical spaces is necessarily pre-topological. We therefore need to go
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through the arguments of the proof of [5]2.7 again, explaining why we
can take over certain parts and proving the additional ’approach’ steps
required.

Theorem 3.22 If O is a tensorproduct on PRAP, then O O.

Proof : Suppose that 0 j4 0. We use the same notations as in the
proof of theorem 2.7 of (J. Cincura [5]). Let (N*k)kEN be a sequence of
pairwise disjoint copies of the topological PRAP-objects corresponding
to the Alexandroff compactification of the natural numbers equipped
with the discrete topology. Just as in [5], we write N*k = Nk U f kl and
we label the elements of Nk by the index k. Note that for all k E N,

for every nk E Nk and

(Here ]nk,wk] = {mk E Nk | nx  mjj U {wk}). Because PRTOP is a
concretely bireflective (resp. concretely bicoreflective) subconstruct of
PRAP, PRTOP is closed in PRAP with respect to the formation of
initial (resp. final) structures in PRAP. Moreover, the initial (resp.
final) lift for a structured PRTOP-source (resp. sink) in PRAP is
precisely the pre-topological pre-approach space corresponding to the
initial (resp. final) lift of this source (resp. sink ) in PRTOP. Define

in PRAP (which, as particular case of the previous remark, corresponds
to the pre-topological coproduct). Define the equivalence relation - on
N by

Define n to be the equivalence class of all Wk, k E N and let
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be the PRAP-quotient defined by -, which again by the remark higher
up, is the pre-approach object corresponding to the quotient in PRTOP
which will also be denoted by the same symbol. It was noted in [5] that
both Ar and N’ are in effect topological, whence e amounts to a TOP
quotient. For each k E N, define

and let

where N* = N U (w) is another copy of the topological PRAP-object
corresponding to the Alexandroff compactification of N with the discrete
topology. Now we claim that

In order to verify this, as in [5] put Fo = {U B {o} U E VN’(O)} and
s = Fo U {Ak | kEN}. It was shown in [5] that with

S C 2x has the finite intersection property and thatns= 0 so there
exists a non-principal ultrafilter on X with U D S. As a conse-

quence of 3.26, w(U) E PnP(X) and the nppi-space Xw(U) with new
point ooX = S2 is the topological pre-approach space associated with
the non-principal ultraspace Xu = (X, U, O). In [5] it is proved that
j: Xu -&#x3E;N’ : x -&#x3E; x is continuous, so j : Xw(U) -&#x3E; N’ : x -&#x3E; x is a

contraction. If f : X -&#x3E; N is defined by f (nk) = k for k E N, nk E Nk
it was proved in [5] that V = {/(U) U E U} is a non-principal ultra-
filter on N and we denote Nv = (N, V, w). Proposition 3.26 yields that
LO(V) E Pnp(N) and that NúJ(V) (with ooN=w Lo) is the pre-approach space
corresponding to Nv. Since it was shown in [5] that
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is a quotient in PRTOP, we obtain that g : Xw(U) -&#x3E; Nw(v) is a

PRAP-quotient. Therefore

is a contraction and as in [5] we get that

and that M = (g0id Nw(v))-1(L). As an intermediate claim we show

that

(Suppose on the contrary that

Note that

Because c(w(V)) = 0, it follows from 3.25 that

so

Because O is symmetric,

is an isomorphism in PRAP . With
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as in [5], it follows that N2 B L C L’ which yields that, because c is iso,

conflicting with our assumption). Since g is a quotient in and D is a
tensorproduct on PRAP, the map gOidNw(v) is a quotient in PRAP
as well, so by 3.20 and because

it follows that

Since it is shown in [5] that h : Nv -&#x3E; N* : t - t is continuous,
h : N- (V) -&#x3E; N* : t -&#x3E; t is a contraction, yielding that

is a contraction as well, which means that X w(u) ONw(v) is finer than

N’ON* . Therefore,

and this completes the proof of the claim. Since e is a PRAP-quotient
and D is a tensorproduct on PRAP,

is also PRAP-quotient and as noted in [5], (eOidN* )-1 (M) = M. Again
because 0 is a tensorproduct, -DN* preserves coproducts, whence
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so applying 3.12 yields that

and using from [5] that for every k E N, M O (N*k x N*) = Nk x (0, ... , k},
we get

Because N* and N*k are both topological pre-approach spaces, so is their
PRAP-product and because it moreover corresponds to their topolog-
ical product, the fact, proved in [5], that (wk, w) does not belong to the
closure of Nk x {0, ... , kl in this topological product, implies that

for all k E N and since N*k x N*  N*kON*, we conclude that

yielding that

Because eOidN* is a PRAP-quotient, applying 3.20 together with

yields that

contradicting the claim.
0

Taking into account that we indeed could assume all the consid-
ered tensorproducts to be in standard form, without loss of generality,
this main theorem in fact becomes, stated in a mathematically more
complete way:
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Theorem 3.23 (Up to natural equivalence,) (- 0 -, [-, -]) is the only
SMC structure on PRAP.

Proof : This is a direct consequence of theorem 3.27 which, accord-
ing to theorem 2.9, should in fact be stated up to natural equivalence
and the fact that pairs of adjoint functors are determined up to natural
equivalence. ·

To conclude, we want to note the peculiarity of this result, show-
ing that the numerified supercategory PRAP behaves in the same way
as its classical underlying construct PRTOP concerning the existence
of symmetric monoidal closed structures. On the contrary it is known
that this similar behaviour between ’classical’ topological constructs and
their numerical approach counterparts is not there for other categori-
cal problems, like e.g. the existence of simultaneously bireflective and
bicoreflective subconstructs: where TOP is known only to have trivial
such subconstructs (see V. Kannan [8]), it was shown in (H. Herrlich
and R. Lowen [7]) that AP has infinitely many.
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