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COCHAIN OPERATIONS AND HIGHER
COHOMOLOGY OPERATIONS

By Stephan KLAUS

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQ UES
Volume XLII-4 (2001)

RESUME. Etendant un programme initi6 par Kristensen, cet article
donne une construction alg6brique des operations de cohomologie
d’ordre sup6rieur instables par des operations de cochaine simpliciale.
Des pyramides d’op6rations cocycle sont consid6r6es, qui peuvent 6tre
utilisées pour une seconde construction des operations de cohomologie
d’ordre superieur.

1. Introduction

In this paper we consider the relation between cohomology opera-
tions and simplicial cochain operations. This program was initialized

by L. Kristensen in the case of (stable) primary, secondary and tertiary
cohomology operations.
The method is strong enough that Kristensen obtained sum, prod-

uct and evaluation formulas for secondary cohomology operations by
skilful combinatorial computations with special cochain operations ([8],
[9], [10]). As significant examples of applications we mention the inde-
pendent proof for the Hopf invariant one theorem by the computation
of Kristensen of Massey products in the Steenrod algebra [11], the ex-
amination of the /3-family in stable homotopy by L. Smith using a sec-
ondary Hopf invariant ([16]) and the authors result on Brown-Kervaire
invariants for Spin manifolds ([2], [3]).

Unfortunately, there are serious problems to construct cohomology
operations of higher order by the method of Kristensen. The reason is
that his construction of secondary and tertiary cohomology operations
works similar to the definition of Massey products in the homology
of a differential algebra. Due to the non-linear character of cochain
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operations, already in the tertiary case one has to introduce additional
terms correcting the lack of linearity and it seems not to be known how
to construct them in the general case of higher order operations ([12]).

In the second section we give a survey on the method of Kristensen
of constructing primary and secondary cohomology operations for sin-
gular cohomology of topological spaces by cochain operations. We also
demonstrate the problem of constructing tertiary cohomology opera-
tions by his method.

In the third section we give a modified construction of primary co-
homology operations which works unstable and is rather quick, using
only basic facts from simplicial topology. We obtain the stable repre-
sentation result of Kristensen as a corollary.

In the fourth section we generalize our construction to the case of
arbitrary unstable higher order cohomology operations. This also gives
a description of the cohomology s-stage spaces in terms of cochain
operations.

In the last section, we consider pyramids of cocycle operations, which
also can be used to produce higher order cohomology operations by a
glueing construction of the author [5] which works similar as a Massey
product, but avoids the problems related to the non-linear character of
cochain and cocyle operations.
As Kristensen we work in the category of simplicial sets whose ho-

motopy category is equivalent to that of the category of topological
spaces. The equivalence is given by the adjoint functors total simpli-
cial set of a space and geometric realization of a simplicial set. The
reason for working with simplicial sets is the representability of the
cochain functor in that category. Let Ck (_; 7r) denote the functor of
normalized k-cochains on simplicial sets with coefficients in an abelian
group R. It is essential to consider normalized cochains because then
we have the following result of Eilenberg-MacLane ([15]):

where mor denotes the set of simplicial maps and £(7r, k + 1). is the
acyclic simplicial abelian group which corresponds to the acyclic chain
complex
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(non-zero in dimensions k and k + 1) by Dold-Kan equivalence. The
representing isomorphism is given by pulling back the fundamental
cochain t E Ck(L(1r, k + 1).; 7r) . (The reason of the index shift in the
common notation of L(R, k +1). is that this space is isomorphic to the
simplicial path space of the Eilenberg-MacLane space K(R, k + 1)..)
We remark that the simplicial chain functor cannot be represented

as mor(L., -) with some space L., because the chains on a product
X, x Y. are not given by the product of chains on X, and on Y.. This
is the reason that we prefer to work with cochain operations instead of
chain operations.

In this paper, we consider the relation between cochain operations
and higher cohomology operations, but we do not make explicit com-
putations. We will consider the combinatorial structure of cochain

operations more closely in [7], where we make explicit computations
by relating cochain operations to coordinate arrangements over finite
fields.

2. On Kristensen’s theory of cochain operations

Let 7r, 7r’ be abelian groups and m, n E N.

Definition 1. An unstable cochain operation of type (7r, m, 1r’ , n)
is a natural transformation from the functor cm( -; 7r) to the func-
tor Cn (-; 7r,). We do not assume any condition of linearity. Denote
the set of these operations by O (rr, m, rr’, n) . For fixed 7r, a cochain

operation of degree k (in the sense of Kristensen) is an element
a = (am)m&#x3E;0 in the set

Cochain operations actually form a set by the representability result
of Eilenberg and MacLane, which gives by the Yoneda lemma

C(rr, m, 7r I n) = mor (L (7r, m + 1)., L( 1T’, n + 1).) = Cn (L (7r, m + 1).; 1T’).
As L(rr, m + 1)n = 0 for n  m, it follows O(1T, m, rr’, n) = 0 for n  m.

By L(7r, m + I)m = 7r with 0 E 7r being the only degenerate simplex
in dimension m, it follows C(rr, m, rr’, m) = {f : 7r -&#x3E; rr’ | f(0) = 0}.
In particular, this includes the 7-linear maps Hom(rr, 7r’) as a subset.
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The coboundary homomorphism d : cm(_;1f) - Cm+1 (-; rr) gives a
further example of a cochain operation

All cochain operations a E O(7r, m, 7r’, n) with n &#x3E; 0 satisfy a(O) = 0,
where 0 denotes the zero cochain on a simplicial set X.. This follows
easily, utilizing naturality for the projection X, -&#x3E; *. to a point. Ad-
dition in 7r’ defines on O(rr, m, 7r’, n) the structure of an abelian group
which corresponds to the ’pointwise’ addition in the set of mappings
mor (L(rr, m + 1)., L(rr’, n + 1).) induced from the simplicial abelian
group L(rr’, n + 1).. Composition of cochain operations gives a map

O(rr2, m2, rr3, m3) x O(rr1, m1, rr2, m2) -&#x3E; O(rr1, m1, rr3, m3)
which is linear in the left variable, but non-lznear in the right variable,
in general. In particular, (a + a’)b = ab + a’b, but a(b + b’) # ab + ab’
in general.

Definition 2. [8] For fixed 7r, Kristensen defined

which is a graded abelian group (in fact, Kristensen mainly considered
the case,7r = Z/p). Composition 0’ x 0’ e ok+l is defined by (ab)m :=
am+lbm, which again is linear only in the left variable. The coboundary
homomorphisms for all m form an element in (:)1 which we also denote
by d..

Kristensen defined a linear differential

In fact, A is a linear map as d is linear, and a differential because

ODa = d(da + (-1)kad) + (-1)k+1 (da + (-1)kad)d = 0
where we used that a(0) = 0. For x E Cm(X;Z/p) with dx = 0 and
a E Qk with D,:a = 0, we have da(x) = ad(x) = a(0) = 0. Thus a

maps cocycles to cocycles. Now, the basic result of Kristensen is the
following:
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Theorem 1. [8] Let a E Ok with Aa = 0. Then for any cocycle
x E Zm(X; Z/p), the cohomology class of a(x) E Zm+k(X;Z/p) de-

pends only on the cohomology class of x. Hence the cochain operation
a defines a cohomology operation, denoted by [a]. This cohomology op-
eration is stable, and the canonical map a H [a] gives an isomorphism
H(O*; A) = A* between the homology of O* with respect to the differ-
ential 0 and the Steenrod algebra A* mod p.

By definition, we have [ab] = [a] [b] for two A-cycles in O*. Thus, the
semi-linear composition in O* corresponds to the bilinear composition
(i.e., multiplication) in A*. Kristensen gave various generalizations of
his basic result to the case of several variables (for example, A* EÐ A*,
[8]) and to the multi-linear case (for example, A* O A*, [9]). The
most general case is handled in [10]. The proofs of Kristensen are
somewhat involved and use acyclic models and inductive computations
using the explicit structure of the cohomology of Eilenberg-MacLane
spaces known by the results of Serre and Cartan [18].
We will give a quick proof for the construction of unstable operations

in the next section which gives Kristensen’s basic result as a corollary.
The non-linearity of maps in O* that is the reason for O* not being an

algebra with respect to composition cannot be avoided by restriction to
linear maps in O*. With the exception of coefficient homomorphisms it
is not possible to produce non-trivial cohomology operations from linear
cochain operations, even in the case of stable (hence linear) cohomology
operations (see [7]).
Now we come to Kristensen’s representation of secondary cohomol-

ogy operations by cochain operations. It is well-known that a stable

secondary cohomology operation is associated to a relation between

primary cohomology operations [1]. Let

be a relation of degree k in A* and choose fixed representatives of the
primary cohomology operations by cochain operations: cxi = [ai] and
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Bi = [bi] for all i. Then the cochain operation

in Ok satisfies Ar = 0 and [r] = 0. Hence there exists a cochain

operation R E ok-1 with AR = r which we also fix for the construction.
Now, let [x] E Hm(x; Z/p) be a cohomology class represented by a
cocycle x E Z’(X; Z/p) such that [x] lies in the kernel of all,3i. Choose
cochains y2 E Cm+|B|-1(X; Z/p) such that dyi = bi(x) for all i. Then
it is straightforward to check that the cochain

in Cm+k-1(X;Z/p) is a cocycle. We denote by ker(B) the kernel of all
Bi in H’ (X; Z/p) and by coker (a) the cokernel of the sum of all ai
into Hm+k-1(X; Z/p).
Theorem 2. [8] The set of cohomology classes [z] E Hm+k-1(X; Zip)
for all choices of x and yi in the construction above only depends on
the cohomology class of x. This defines a homomorphisms

that coincides with some secondary cohomology operation associated
with the relation Esi=1 Ü’.i/3i = 0. Other choices of the cochain operation
R for the relation give adl secondary cohomology operations associated
with the relation.

In [17], it is shown how secondary operations in homotopy theory
can be constructed from a ’relation of maps between pointed spaces’
A -&#x3E; B -&#x3E; C (i.e., the composition is null-homotopic) together with
an explicit choice of zero-homotopy for the composition (see also [2],
chapter 5). Thus the cochain operation R plays the role of a zero-
homotopy for the composition of maps between Eilenberg-MacLane
spaces which corresponds to the relation. We will come again to this
point of view in the last section.
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Kristensen not only handles the case of a stable secondary cohomol-
ogy operation, but also of a ’metastable’ operation, i.e. the composition
Esi=1 aiBi need not to vanish, but is an element in A* of excess e. Then
it is still possible to construct an unstable secondary cohomology op-
eration in dimensions m smaller than e [8]. However, his method does
not work for general unstable secondary cohomology operations.

Furthermore, there are problems with the construction of stable ter-
tiary and higher order operations using O* [12], [13]. The problem is
that a definition as a higher Massey product in general does not work
because of non-linearity of cochain operations:

Let cxl, a2 and a3 be stable primary cohomology operations which we
represent by cochain operations aI, a2 and a3 with Dai = 0. Assume
that

and

Hence there are cochain operations R12 and R23 with

and

For a definition as a Massey product in the usual sense, we need to
assume that the cochain operation

r := R12a3 - a1R23

represents a vanishing cohomology operation. Then we would get a
further cochain operation R with AR = r which is necessary for the
definition of the tertiary cohomology operation associated to ai, a2
and a3. But, unfortunately, it holds

which in general does not vanish by the non-linearity of a, (here, we are
lazy with the signs in A in order to simplify the notation). In [12] and
[13], L. Kristensen and I. Madsen compensate this effect for tertiary
operations by tricky modifications using cochain operations measuring
the lack of linearity. Concerning higher order operations, we cite the
authors from [13], p.145: "Massey products of length 4 and 5 can be
defined in a similar fashion. The lack of distributivity in O* makes the
defining formulas rather involved. Because of this complication we are
not able to define Massey products of arbitrary length."
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In the fourth section, our modified method allows us to construct
unstable higher cohomology operations of any order.

3. Unstable cochain operations and primary cohomology
operations

For our modification of Kristensen’s method we consider unstable
cochain operations Onm : = 0 (7r, m, 7r, n) instead of 0* . Left and right
composition with the coboundary homomorphism d define differentials

and

Thus the Kristensen differential A is given by d’ ± dR. As dL is just
the differential in the cochain complex C*(L(7f, m).; 7r’), it holds that

ker(dl) = im(dL) because L(7r, m). is contractible.
We recall [18] that unstable primary cohomology operations of type

(7r, m, 7r , n) can be identified with the cohomology group

of the Eilenberg-MacLane space K(7r, m). Here, the connection be-
tween L(7r, m). and K(7r, m). (standard simplicial model) is given as
follows [15]: The differential d : L(7r, m). - L(7r, m + 1). is a homo-

morphism of simplicial abelian groups with ker(d) = K(7r, m - 1), and
also im(d) = K(rr, m).. The space L(7r, m). can be identified with the
simplicial path space PK(7r, m + 1). and d with the projection map
p followed by inclusion. The simplicial loop space Q of a Kan simpli-
cial set respects the standard models of Eilenberg-MacLane spaces, i.e.
QK(R, m). = K(R, m - 1). and S2L(R, m). = L(R, m - 1)..
Theorem 3. Any Unstable prirnary cohomology operation cx of type
(7r, m, 7r’, n) is represented by a cochain operation a E 0’ such that

This gives an isomorphism
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Proof. In order to simplify notation, we set K; := K(rr, m), and L; :-
L(7r, m + 1).. We drop the coefficients rr’ in the notation of cochains,
cocycles and coboundaries on a space. Now, restriction to the subspace
i : K; C L; gives an epimorphism of cochain complexes

and we first have to determine (i*)-1 Zn(Km.) as a subset of Onm =
Cn(L;). As ip = d : L-:-1 -+ Lr:, and

is injective, it follows (i*)-1 Zn(Km.) = {a | dd*a = 0} = ker(dLdR).
At last we have to determine (i*)-1Bn(Km.) as a subset of on . This is
given by (i*)-1(dLCn-1(Km.)) = d LCn-1 (L-) + ker(i*), but im(dL) =
ker(dL) on L; and ker(i*) = ker(d*) = ker(dR). D

We recall that the cohomology suspension a’ E An-1m-1 of a coho-
mology operation a E Anm is defined by the action of a in the suspension
of any space, i.e. by the following commutative diagram:

where a denotes the suspension isomorphism. As the loop functor is
adjoint to the suspension functor, it follows that a’ is given by Qa
where we consider a as a map between Eilenberg-MacLane spaces.
Theorem 4. For a E Onm, the condition dad = 0 is equivalent to the
existence of a’ E On-1m-1 with ad = da’. Denote by cx E Am the coho-
mology operation represented by a, then a’ represents the cohomology
suspension Qa E An-1m-1 of a.

Proof. By the exactness of dL, the condition dL(ad) = dad = 0 is

equivalent to the existence of a’ with ad = dL(a’) = da’. As da’d =
add = 0, the cochain operation a’ also induces a cohomology operation.
Let a I K be the restriction of a to K ( 7r, m).. As a maps cocycles to
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cocycles, a/K takes values in K (7r’, n). c L (7r’, n + 1).. Now we apply
the path functor P to the map a) K, which gives a map ä = P(a/K) from
PK(rr,m). = L(rr, m). to PK(rr’, n). = L(rr’, n).. Hence a E On-1 m-1,
and it holds da = ad by definition as d is just the projection map of
the path space followed by inclusion. Restriction of a to QK(7r, m). =
K(7r, m -1), clearly represents the homotopy class Qa, i.e. the cochain
operation a represents the cohomology suspension. Now, we have d(a -
a’) = ad - ad = 0, and by the exactness of dL, it follows 1i - a’ =

da" with some a" E On-2 m-1. Thus also a’ represents the cohomology
suspension. D

As a corollary we obtain Kristensen’s basic result:

Corollary 1. There is an isomorphism

Proof. As a stable cohomology operation a E Ak can be arbitrarily
desuspended, it can be represented in each dimension m by am E Om+km
such that dam = am+1 d for all m. In fact, using the construction
a E Om+km H- a e Om+k-1 m-1 in the proof of the theorem above, we get
such a system (am)m&#x3E;0 by taking any element in the inverse limit

With

this is equivalent to A(a) = 0. If there is b = (bm)m&#x3E;0 E Ok-1 with
a = A (b), we have am = dbm+(-1)k-1bm+1d and thus [am] = 0 E Am+km
for all m as the left summand is in ker(d’) and the right summand is
in ker(dR). Conversely, if [am] = 0 E Am+k for all m, we want to

prove that there exists b E Ok-1 with a = Ab. As a = du + v with
du E ker(d’) = im(dL) and v E ker(dR), we get from 0 = D(a) =
da + (-1)kad = dv + (-1)kdud that v + (-1)kud = dx for some x.
Application of dR shows that dxd = 0. Thus
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and it remains to prove existence of y with dx = D(y). We will prove
this using the following two statements:

1. For x(m) = (xo, xl, ..., xm, 0, 0, ...) with dxid = 0 for all i, there
exists y(m) = (y0, y1, ..., ym, 0, 0, ...) with dx(m) = D(y(m)).

2. For x(m) = (o, ..., 0, 7 xm, 0,0,...) with dxm d = 0 and m in the stable
range (i.e., m &#x3E; k), there exists y(m) = (0, ..., 0, ym, ym+1, ...) with
dx(m) = D(y(m)).

By both statements, the decomposition x = x(m) + x(m+1) + x(m+2) +
x(m+3) + ... with some m in the stable range yields a solution y :=
y(m) + y(m+1) + y(m+2) + y(m+3) + ... of dx = A (y). Here, the infinite
sums in 0* = H, Ol+*l make sense as there are only finitely many
summands in any degree l.

Proof of the first statement: We start with ym := xm and look for

Yi satisfying (*i) : dri = dyj + (-1)k-1yi+1d for i = m - 1, ..., 0. We
remark that dyid = 0 by (*i). Asuming that we already have found
y2 for i = m, ..., m - j + 1, there exists a solution ym-j of (*m-j) as
d(dxm-j - (-1)k-1ym-j+1d)= 0 and by the exactness of dL.

Proof of the second statement: As we are in the stable range, we

already have proved that there is some cochain operation Zm in the
class [xm] E Am+km that has infinitely many desuspensions. Thus, by
changing some signs for k odd, there are Zm+l, Zm+2,’" with dzi -
(-1)kzi+1d for all i &#x3E; m. By [xm] = [zm], we have xm = zm + u + v
with u E ker(dL) and v E ker(dR). Now we set ym := v and yi := -z2
for i &#x3E; m, which gives

4. Unstable cochain operations and higher cohomology
operations

In order to work with the multi-variable case which we need for

higher order operations, we introduce a category of unstable cochain
operations (compare also with [6]). For a graded abelian group 7r =
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+n&#x3E;0rrn we define generalized Eilenberg-MacLane spaces

and

The representation result of Eilenberg-MacLane gives

We will need some notation for manipulating coefficient groups: For
a graded abelian group 7r, QJr means shifting down 7r by one step (i.e.,
Q7rn := 7n+1) and 7r’ + 7r’ denotes the direct sum (i.e., (7r’ EÐ 7r2)n ==
Jrg s3 rr2n).
Definition 3. Let 0 be the category with objects the graded abelian
groups 7r and the set of morphisms from 7r to 7r’ given by

We call 0 the category of unstable cochain operations.

One can define in the same way a category A of primary unstable
cohomology operations and generalize our representation result to this
case. More general, we consider unstable higher order cohomology
operations, now.. We recall the well-known definition which we transfer
to the simplicial category:

Definition 4. An unstable higher order cohomology operation
0 (briefly UHCO) is a tower of simplicial sets
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where rr0, n1, ... , ns are graded abelian groups and E +1 is the pullback
of the path fibration LOni. = PKni.- Kni. over the map fi : E: -+
K 1T::

The order of 0 is s - 1, i.e. one less than the height of the tower.
We call 1(Ø) := 7rO the input coefficients and 0(o) := 7r’ the out-
put coefficients of 0. The composition ø 0 y of UHCOs 0 and 0
with 0(o) = I(O) is defined by successively pulling back the fibrations
E:+1 -3 E’ of 0 over the top horizontal map of 0. This again gives an
UHCO of order equal to the sum of orders of 0 and 0.

As in the stable case [6], UHCOs up to isomorphism form a large
category with respect to composition (’large’ means that the morphisms
between two objects do not form a set but rather a class):
Definition 5. Let B be the category with objects the graded abelian
groups 7r and the morphisms from 7r to 7r’ given by the class B(1f, 1f’) of
UHCOs with input coefficients equal to 7r and output coefficients equal
to,7r’. We call B the category of UHCOs.

Theorem 5. Let O be an UHCO of order s as above which is defined
on a subset of H(X.; 7r’) and takes values in H(X.; 1fS) (modulo inde-
terminacy, i. e. values are subsets of H(X.; 7rS)). Then 0 can be repre-
sented by a system of cochain operations a,, a2, ... as and a’, a2, a’
such that ai E O(pi, 7r’) and a2 E 0(QpB Qni) with

In particular, pi = 7r°. The cochain operations have to satisfy the
following system (*) of equations for 1  i  s:

Here, x, E C(X.; 07r°) and xi E C(X.; 027ri) for i &#x3E; 1 denote vari-
ables (arbitrary cochains on any space X.). Conversely, any system
of cochain operations a,, a2, ... as and a’, a2, ... , a’s satisfying these
equations defines an UHCO. Evaluation of 0 on a cohomology class
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ç E H(X.; 7r°) with some representing cocycle xl E Z(X.; 7r°) is given
by the set of cocycles z E Z(X.; 7rS) modulo coboundaries with

where the cochains xi E C(X.; 07ri) have to satisfy the system (**) of
equations for 1  i  s - 1

Proof. From E1 = K 7r° C Ln0. and Ei. C Ei-1 x LQni-1., we see that

With respect to this product decomposition, the elements of Lp; and
E; are of the form (Xj x2, ... , xi) . Denoting the inclusion by ji : E; C
Lp;, we get a surjection of cochain groups 

The right hand cochain group contains the element fi E mor(E;, Kni.) =
Z(Ei.;ni), and we will consider an inverse image ai E O(pi,ni) in the
left hand cochain group. Now we prove the following two statements
(1) and (2) by induction on i = 1, 2, ... , s:

(1) : There are cochain operations al , ... , ai-1 and a’1, ... , a’i-1 such
that the sequence of cochain operations

satisfies

Here, ker(d(i)) denotes the simplicial subset consisting of x E Lp; with
d(i)(x) = 0 and im(d’(i)) denotes the simplicial subset consisting of
d’(i)(x) E Lpi. for all x E LSpi.
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(2) : A cochain operation a2 : Lpi.- L7r: restricts to some map
Ii : Ei. - K 1f: if and only if

which is equivalent to the existence of some cochain operation a’i :
LQpi.-&#x3E; LQni. such that

For i = 1, statement (1) is just the exactness of

and E; = Kp; = im(d) = ker(d) holds true. Statement (2) is proved
in our representation result for primary cohomology operations.
Now we assume both statements (1) and (2) for some 1  i  s and

will prove it for i + 1:

By definition, we have

and

where the last equality follows by extending f i to ai. This can be
written as dxi+1- ai(x1,... , xi) and by (1)i, and it follows Ei+1.=
ker(d(i+1)). By the second part of (1)i, we know that

for some Thus

where we used that aid’(i) = da§ by (2)i. Exactness of d’ for cochains
on Lpi yields

for some xi+1 E LQ2ni., hence Ei+1 = im(d’(i+1)) and we have proved
(1)i+1.
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Now we consider the diagram

where the horizontal map is the inclusion of cocycles fi+i in cochains on
Ei+1 and the vertical map is restriction of cochains ai+1 to the subspace
ji+1 : E:+1 c Lpi+1. Restriction of ai+1 gives some cocycle fi+i if and

only if dai+1ji+1 = 0. By Ei+1. = im(d’(i+1)), this is equivalent to

Exactness of d’ for cochains on LQp.+’ yields the equivalent statement
ai+1d’(i+1) = da’i+1 which proves (2)i+,.

This shows that 0 is represented by a1, ... , as and ai, ... , as satis-
fying the system of equations (*) . Evaluation of 0 on a cohomology
class ç is defined by considering all lifts (x1, ..., xi ) of x 1 to E; which
successively are given by finding solutions of (**) and then applying as
to the top lifts (x 1, ... , xs).

It remains to show that every system of cochain operations a1,..., as,

a’1,..., a’s satisfying (*) defines an UHCO 0. We form d(j) and d’(i) as
above and remark that (*) for 1  i  s is equivalent to

i.e. im(d’(i)) C ker(d(i)). As in the inductive proof of (1), it follows

im(d’(i)) = ker(d(i)) =: E’ and ai restricts to some map fi by (2) . 0

We remark that the system of equations (*) holds true for arbitrary
cochains xi on any space X, if and only if it holds true for the universal
cochains x 1 = lQn0 E C(LQn0.; Sn0) and xi = ¿n27ri E C(Ln27r:; S2ni)
for i &#x3E; 1.
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There is a suggestive way of denoting (*) for 1  i  s in matrix
notation: 

Of course, one has to be careful with a matrix calculus over an ’algebra’
where distributivity from the right fails.
As in the primary case, we are also able to express the cohomology

of the s-stage space El in terms of unstable cochain operations:

Theorem 6. For an UHCO 0 as above, the cohomology of the top
space containing the element [ifs] is given by

where we denoted O(ps, ns) by O(s).
Proo f . We already have proved

and it remains to determine the inverse image of the coboundaries

This is given by (j*s)-1dLC(Es.;Sns) = dLC(Lps.;Sns) + ker(j;), but
im(dl) = ker(dl) on Lps and ker(j*) = ker(dR(s)) because im(d(s)) =
Ees. D

It is also possible to stabilize these results as for primary operations
which then leads to similar results as in [14], where the authors show
that a generalized cohomology theory h*(-) with coefficient groups h*
non-trivial in only finitely many dimensions (that is, h*(-) is repre-
sented by a stable finite stage Postnikov system) can be represented
by iteration of a non-linear cone construction for loop-valued cochain
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complexes. In fact, our description using triangular matrices for d(j)
and d’(i) can be viewed as an unstable generalization of the results in
[14].
We remark that another, independent approach to the main result

in [14] is given in [4].

5. Pyramids of cocycle operations and higher cohomology
operations

In this section, we introduce a second approach to higher cohomol-
ogy operations which is based on cocycle operations instead of cochain
operations. Because of the representability of the cocycle functor by
Eilenberg-MacLane spaces, a cocycle operation is nothing else but a
map between Eilenberg-MacLane spaces. Thus it is clear that any
primary cohomology operation is given by a cocycle operation. Cocy-
cle operations which induce vanishing cohomology operations are just
given by zero-homotopies of cocycle operations.

In [17], secondary operations in homotopy theory are constructed
by relations between primary operations, i.e. there are maps a, b of

pointed spaces

and a zero-homotopy c : A - PC of the composition ba. This can be
used to construct a secondary homotopy operation

using a glueing construction for zero-homotopies (see also [2], chapter
5). In particular, for a relation between primary cohomology oper-
ations which is given by representing cocycle operations a, b and a

zero-homotopy c, we get a secondary cohomology operation O analo-
gously to Kristensen’s definition in the second section. We call the data
a, b and c a pyramid of cocycle operations of height 1.

In [5], we generalized this glueing method to arbitrary order. The
corresponding notion of a pyramid of larger height also includes higher
zero-homotopies of mappings. Given a pyramid of height s, we defined
a generalized glueing construction giving a tower of height s + 1. If all

spaces of the pyramid are Eilenberg-MacLane spaces, the associated
tower represents an UHCO of order s.
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Now we recall the basic definitions from [5] with some modifications
as the spaces of the pyramids we are interested in are simplicial sets
respectively simplicial Eilenberg-MacLane spaces.

Definition 6. Let X, and Y. be pointed simplicial sets where Y. has to
satisfy the Kan extension condition. A zero-homotopy a of degree
s from X. to Y, is a map

where P’ denotes s-fold application of the simplicial path space functor
P. (We need to assume the extension condition in order to guarantee
that the simplicial path space behaves as in the topological category
[151.) The set of zero-homotopies of degree s is denoted by

We denote the map given by projection p : P(-) -&#x3E; (-) of the i-th
factor P in PI (counted from the right) by

If Y. = Kn, is a (generalized) Eilenberg-MacLane spaces, a is called a
cocycle of degree s and the set of these is denoted by

If both X. = Kp, and Y, = K7r. are (generalized) Eilenberg-MacLane
spaces, a is called a cocycle operation of degree s and the set of
these is denoted by

Clearly, the di satisfy the simplicial relations didj = djdi+1 for i &#x3E; j .
For s = 0,1, we have

and d1 is just the coboundary map. The structure of higher degree
cocycles CS(X.,K7f.) for s &#x3E; 1 (and thus also of higher degree cocycle
operations!) can be reduced to the case s = 1 of usual cocycles:
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Theorem 7. For s &#x3E; 1, there is a natural isomorphism

Proof. For any simplicial abelian group A., we have a short exact se-
quence of simplicial abelian groups

which in general is not split. But this is the case if A, is linearly
contractible, i.e. there is a split homomorphism c : A. -&#x3E; PA.. In this
case, we have an isomorphism

and PA, is linearly contractible by (c, Qc), again. Now, we show by
Dold-Kan equivalence that Lp, is linearly contractible, what we need
to check for each factor L(p,,, n + 1) only. Hence, we have to show that
the short exact sequence of chain complexes

is split, where N* := N*(PL(pn, n+1).) denotes the associated Moore
complex. This is true by straightforward diagram chasing. The state-
ment follows inductively as

The proof also shows how to describe the i-th projection di from
Cs(X.; 7r) to CS-1(X.; 7r) with respect to this decomposition. For ex-

ample, the projections dl, d2 from C2 (X,; 7r) = C (X.; Qn) + C (X.; n27r)
to C1(X.; n) = C(X.; Q7r) are given by the differential on the second
factor and the projection to the first factor, respectively.

Definition 7. If a E CS(X., Y.) and b E Ct(Y., Z.), where 1: and Z.
satisfy the Kan extension condition, we define the composition of
higher degree zero-homotopies b o a E Cs+t(X., Z.) by
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In particular, we get a higher degree evaluation of cocycle oper-
ations on cocycles

and a composition operation for higher degree cocycle opera-
tions

As this composition is associative, we get a category C* of higher
degree cocycle operations with objects being graded abelian groups
and morphisms from 7r to 7r’ being the graded sets IIs&#x3E;0 Cs (n, 7r’) .
Now we are ready for the definition of a pyramid:

Definition 8. A simplicial pyramid of height s (in [5], we called
this ’length s+ 1’) is a system of pointed simplicial sets X0., X1., ..., X.s+1
satisfying the Kan extension condition (with the possible exception of
X2) and higher degree zero-homotopies

such that

for all 0  i  j  s and k = 1, ... , j - i - 1. If all Xi are (general-
ized) Eilenberg-MacLane spaces, we call this a pyramid of cocycle
operations of height s.

In [5], we constructed from a topological pyramid Y°, yl, ... , Ys+1
of height s (= length s + 1) a tower of height s + 1
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Here, Ss denotes a homeomorphic, but combinatorially different ver-
sion of the s-fold loop space functor. Our construction uses certain
coordinate transformations of parameter spaces of higher degree zero-
homotopies and a higher dimensional glueing process. Hence it seems
to be difficult to carry out this construction in the simplicial cate-
gory without subdivision of the parameter spaces, which would change
our models of path and loop spaces of Eilenberg-MacLane spaces into
non-standard ones. This would destroy representability of cochains by
these spaces and thus also the advantage of working in the simplicial
category.
Of course, geometric realization of a simplicial pyramid Pyr, :=

(K7T:, ai,j) of cochain operations gives a topological pyramid Pyr :=
(Kni, ||ai,j||) of cochain operations, which by our topological construc-
tion has an associated topological UHCO V.

In the following theorem, we give a simplicial criterion for the case
that V applied to the geometric realization of a cocycle x E Z(X., 7r 0)
vanishes (i.e., Q(||x||) is defined and contains 0).
Theorem 8. Let Kn0., Kn1., ... , Kns+1., ai,j be a p yramid o f cochain
operations of height s and XO E Z(X., n0) be a cocycle on some simpli-
cial set X.. Then the evaluation of the associated topological UHCO O
vanishes on the geometric realization of XO if there exist higher degree
cocycles xi E Ci(X., Kni.), i = 0, ... , s + 1, such that

for all and

i.e., the pyramid (K7r, , a ) can be extended to a pyramid consisting of
(X K7r’, i a’,j).
Proof. We denote the geometric realization of the simplicial pyramid
(K7r’, ai,j) as (Yi, bi,j). By [5], the associated tower is constructed as
follows. The elements (y°, yl, ... , yk-l) of

are characterized by the condition

for i = 1, ... , k, where gj denotes the j-dimensional glueing map and
: POj-1(-) -&#x3E; Pj(-) is a homeomorphism induced by a certain
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coordinate transformation. In fact, the left hand side of this condition
gives the map

in the i-th stage of the tower.
We denote the geometric realization of X. by X and of the maps

by the same symbols. In particular, we have the map

which we also denote by el. Now, we define lifts ek : X - Ek of el by

Actually, these maps are lifts as the glueing condition

(with i = 1, ... , s) is by [5], lemma 4.12, equivalent to the equations

Furthermore, the glueing condition in the case of i = s + 1 gives a
zero-homotopy for the top composition fs+1es+1, hence the vanishing
of the evaluation O(||x0||). D

It would be interesting to have a simplicial formula for evaluation of
V on x° also in the non-vanishing case.
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