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THE CARTESIAN CLOSED HULL OF THE
CATEGORY OF APPROACH SPACES

by E. LOWEN-COLEBUNDERS, R LOWEN and M. NAUWELAERTS

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XLII-4 (2001)

RESUME. Cet article decrit le plus petit 61argissement cartesien ferme
de la cat6gorie des espaces d’approximation (’approach space’) AP, c’est-
a-dire 1’enveloppe cart6sienne ferm6e de AP; il est construit comme une
sous-cat6gorie des espaces de pseudo-approximation que deux des
auteurs avait mdntr6 6tre le quasi-topos topologique enveloppe de AP.

1. INTRODUCTION.

It needs no argumentation that cartesian closedness is an important and use-
ful property for a category. Unfortunately many categories are not cartesian
closed and therefore it is interesting to look for a cartesian closed modific-
ation, especially a so-called cartesian closed hull, if it exists. Thus in [3],
[ 11] and [4], Antoine, Machado and Bourdaud constructed the CCT hull of
TOP, the category of topological spaces (and continuous maps) and in [2],
Addmek and Reiterman constructed the CCT hull of MET, the category of
metric spaces (and nonexpansive maps).
It is the purpose of this paper to construct the cartesian closed topological
hull of AP, the category of approach spaces (and contractions). We do
this by identifying it with a subcategory of PsAP, the category of pseudo-
approach spaces, which, in [9], was shown to be the quasitopos hull,
QTH(AP), of AP.
Remarkably, whereas the objects of PsAP can be described by axioms quite
similar to those characterizing the objects of QTH(TOP), the situation for
CCTH(AP) is somewhat different. The supplementary axiom required to
characterize those objects of PsAP which are in CCTH(AP) is irispired
not only by the approach of [11] and [4] for the case of TOP, but also by
[2] for the case of MET.

2. PRELIMINARIES.

As we will be talking about CCT categories (or constructs), we first note that
a topological construct will stand for a concrete category over Set which is
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a well-fibred topological c-construct in the sense of [1], i.e. each structured
source has an initial lift, every set carries only a set of structures and each
constant map (or empty map) between two objects is a morphism. We will
always assume a functor to be concrete (unless this is clearly not the case
from its definition) and subcategories (i.e. subconstructs) to be full.
We also recall that a construct A is CCT (cartesian closed topological) if
A is a topological construct which has canonical function spaces, i.e. for

every pair (A, B) of A-objects the set hom(A, B) can be supplied with the
structure of an A-object, denoted by [A, B], such that

(a) the evaluation map ev : A x [A, B] - B is an A-morphism,
(b) for each A-object C and A-morphism f : A x C --&#x3E; B, the map

f * : C -3 [A, B] defined by f *(c)(a) = f (a, c) is an A-morphism
( f * is called the transpose of f). Note that given f : A x C -&#x3E; 

B, the transpose f * : C -3 [A, B] is the map which makes the
following diagram commute:

The CCT hull of a construct A (shortly denoted by CCTH(A)) (if it exists)
is defined as the smallest CCT construct B in which A is closed under finite

products (see [7]). Also from [7], we recall that given a CCT construct C in
which A is finally dense (i.e. each C-object is a final lift of some structured
sink in A), the CCT hull of A is the full subconstruct of C determined by

CCTH(A) := {C E C l there exists an initial source (fi : C -&#x3E; [Ai, Bi])iEI
where Vi E I : A;, B; E A}.

In short, the CCT hull of A is the initial hull in C of the power-objects of
A-objects.
A more recent survey of such properties and hull concepts can be found in
[6] and [12].
Let us first introduce some notations in order to consider CCTH(TOP) as
an example (which we shall be using later on). Given a set X, F(X) stands
for the set of all filters on X; if 0 E F(X), then U(F) stands for the set of
all ultrafilters on X finer than Y. In particular, U(X) := U({X}) stands for
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the set of all ultrafilters on X. Given A c X, we recall that

stack

and if A consists of a single point a, we also denote stack a := stack A. If
7 is a filter on X, then the sec of 0 is defined as

sec 

Now recall that a pseudotopology (on X) is a function q : X -&#x3E; P (F(X))
assigning to each x E X a set of filters on X, the filters "converging to x",
satisfying the properties:

: stack 

The pair (X, q) is called a pseudotopological space and we also write F -&#x3E;
x (or even F q -&#x3E; x or F x -&#x3E; x) instead of :F E q(x). A map f :
(X, qx) - (Y, qy) between pseudotopological spaces is called continu-
ous whenever

The construct of pseudotopological spaces and continuous maps is denoted
by PsTOP, which is a topological quasitopos in which TOP can be finally
dense embedded (hence also bireflectively) by associating to each topolo-
gical space (X,T) the pseudotopological space (X, qT) such tllat 7 qT -&#x3E; x
if and only if F -&#x3E; x (in (X,T)) (i.e. V(x) C 1=). It therefore follows
from the general theory previously recalled that the CCT hull of TOP can
be found within PsTOP, the concrete description of which requires the
following concepts.
Let (X, q) be a pseudotopological space. We denote its TOP-bireflection
by (X, q) and define the point-operator (with respect to (X, q)) as

A pseudotopological space X is called an Antoine space or epi-topological
space if and only if it satisfies the following conditions (where F° is the filter
generated by {F° F E 7) and lim 7 := {x E X l F -&#x3E; x}):

(1) V7 E F(X) : lim 7 is closed in (X, q) (closed-domainedness),
(2) V7 E F(X) : lim 7 = limP (point-regularity).
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The full subconstruct of PSTOP consisting of Antoine spaces is denoted by
EpiTOP and it was shown by work of A. Machado ([11]) and G. Bourdaud
([4]) that EpiTOP = CCTH(TOP).
Next, we turn to recalling some necessities regarding approach spaces.
An approach space is a pair (X, b) where X is a set and where S : X x
2x -&#x3E; [0, oo] is a map, called a distance, which has the properties:

Given approach spaces (X, 6x ) and (Y, dY), a map f : (X, 6x ) --&#x3E; (Y, Jy)
is called a contraction if it fulfills the property that

The category AP of approach spaces and contractions is a topological con-
struct and is extensively studied and described in [10].
In [8]-[9], it is shown that AP is a subconstruct of PsAP, the category of
pseudo-approach spaces, the objects of which are described by means of a
concept of limits.
A map A : F(X) - [0, oo]x is called a pseudo-approach limit (on X) if it
fulfills the properties:

Note that by (PsAL) a pseudo-approach limit is completely determined by
its restriction to ultrafilters.
The pair (X, A) is called a pseudo-approach space. Given pseudo-approach
spaces (X, Ax) and (Y, kY), a map f : (X, Ax) - (Y, Ay) is called a
contraction if it fulfills the property that

The category of pseudo-approach spaces and contractions is a topological
construct, denoted PSAP. For more information on this category we refer
the reader to [9], we only recall those properties which are required in the
sequel.
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A pseudo-approach limit A : F(X) - [0, oo]x is called an approach limit
if it satisfies some additional properties, such as a so-called diagonal property
(see e.g. [10]), which however we shall not require to go into here, and which
ensures it to be equivalent to a distance in the sense of the following result
which allows us to conclude that AP -&#x3E; PsAP.

2.1. Theorem ([8]).
(1) Given a set X and a distance S on X, As defined by

is an approach limit on X, and vice versa if A is an approach limit
on X then dk defined by

is a distance on X, such that A8, = k and d k d = S.
(2) If (X, dX) and (Y, dY) are AP-objects and if f : X - Y, then f is

a contraction if and only if it fulfills either of the following equivalent
conditions:

2.2. Proposition.
(1) ([9]) Let (X, Ax) and (Y, Ày) be pseudo-approach spaces, then the

following are equivalent:
. f : (X, Àx) - (Y, Ay) is a contraction.

(2) ([8]-[9, proposition 5.7]) Let (Xi, Ài)ieI be a class of PsAP objects.
If (fi : X - (Xi, Ài))ieI is a source, then the initial lift A on X is
given by

hence
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(3) ([8]-[9, proposition 5.7]) Let (Xi, ;Bi)ieI again be a class of PsAP
objects. If ( fi : (Xi, All) - X)iEI now is a sink, then the final lift A
on X is obtained as follows. Given U E U(X) and x E X, we then

. let

ifU = stack
otherwise

and

As we mentioned earlier, if we want to describe the CCT hull of AP, we
require some CCT construct in which AP is fully embedded. The following
result, shown in [9], indicates that PSAP is a good candidate.

2.3. Proposition. PSAP is a cartesian closed topological construct. More
precisely, given PsAP-objects (X, Ax) and (Y, Ay) the pseudo-approach
limit A on hom((X, Ax), (Y, Ay)) is determined by

It is also shown in [9] that AP is bireflective in PSAP and we denote the
bireflection of a PsAP-object (X, A) by (X, k). Furthermore, PSTOP
can be bireflectively bicoreflectively embedded in PSAP by associating
(X, Aq) with a PsTOP-object (X, q), where ’xq(F)(x) = 0 if F q -&#x3E; x and
Aq(7)(z) = o0 otherwise. Conversely, the PsTOP-bicoreflection (X, qk)
of (X, A) is obtained by letting F q k -&#x3E; x if and only if k (F) (x) = 0.
Also TOP is bireflectively bicoreflectively embedded in AP ([10]), where
both the embedding and the bicoreflection are restrictions of the previously
described functors. Furthermore, given (X, S) E AP, one also finds that the
closure operator cls of its TOP-bicoreflection Td satisfies cld(A) = {x E
X l d(x , A) = 01, hence, one finds its neighbourhood filters (V5(X))xEX by

Before we turn to the actual results and constructions, we recall some other

concepts regarding approach spaces which we will be using to obtain our
results (elegantly). We will for instance be making use of a characterization
of approach spaces by means of approach systems.
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First some terminology. A subset A of functions from a given set X to [0, oo]
is called an ideal in [0, oo]x if it is closed under the operation of taking finite
suprema, and if it is closed under the operation of taking smaller functions.
Given A C [0, oo]x and a function 0 E [0, oo]x, then A is said to dominate
0 if

If A contains all 0 E [0, oo]x that are dominated by A, then we say that A
is saturated.
A subset B of [0, oo] x is called an ideal basis in [0, oo]x if for any a, B E B,
there exists, E B such that a V B  -y.
A collection of ideal bases (g(x))xEx in [0, oo]x is called an approach basis
if for all E X the following properties hold:

(Bl) VO E 8(x) : O(x) = 0.

(B2) Vo E B (x), VE &#x3E; O,Vw  oo : 3 (0z)zEx E n Li(z) such that
zEX

If, additionally:
Vx E X : B(x) is a saturated ideal,

then (B(x))xex is called an approach system.
Given a subset B C [0, oo]x, we define

B : = 10 E [0, oo] x 18 dominates 01.
We call B the saturation of B.
A collection of ideal bases (B(X))xEX is called an approach basis for an
approach system (A(x)).,EX, if for all x E X, A(x) equals the saturation of
B(x). In this case, we also say that (B(x))xEx generates (A(x))xEX or that
(A(x))sEx is generated by (B(x))xEX.
For ease in notation we may also, whenever convenient, denote an approach
system (A(x))xeX simply by A.
We then have the following results from [10].
2.4. Proposition.

(1) Given a set X and a distance S on X, (Ad(x))xEX defined by
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is an approach system on X, and vice versa if (A(x))xEx is an ap-
proach system on X, then dA defined by

is a distance on X, such that As, = A and dAd = d.

(2) I!(B(x))xex is an approach basis, then (6(X))-EX is an approach
system with (B(x))xEx as basis and

(3) If (X, dX) and (Y, dY) are AP-objects and if f : X --&#x3E; Y, then the
following are equivalent:
(i) f is a contraction.

In (ii), if (AY(y))yEY is replaced by an approach basis generating it,
the equivalence remains valid. 

In the following, we will also be needing a particular AP-object which we
now introduce. Let JP = ([0, 00], d P), where

Using the foregoing, one easily finds that Tp is the right order topology on
[0, 00] corresponding with the closure operator cl,. := cldP, i.e.

Further, that F converges to f3 in this topology is denoted by 7 r --&#x3E; f3.
Since for every Jr on [0, oo], lim r F is closed in T, we find that limr F =
[0, L (F)], where L(.F) = sup limr F.
Recall the following useful expression of £(0) given in [9] (and an easy
consequence).
2.5. Lemma. Let F be a filter on [0, oo], then it holds that:

and.

and then:

Some useful properties:
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2.6. Proposition ([9]).
(1) Let (X, d) be an approach space, A C X and F E F(X), then

c5( -, A) : (X, d) --&#x3E; P and kd(F)(-) : (X, S) --&#x3E; JP are contrac-
tions.

(2) P is initially dense in AP..

3. CONSTRUCTION OF THE HULL.

3.1. Definition. Given (X, À) E PsAP, we define

3.2. Definition. Given (X, A) E PsAP, we define

where OP := stack{GP l G E 91.
Recall that an extended pseudo-quasi-metric (on X) is a function d : X x
X -&#x3E; [0, oo] such that (i) d(x, x) = 0 (Vx E X) and (ii) d(x, z)  d(x, y) +
d(y, z) (Vx, y, z E X) and that the pair (X, d) is then called an extended
pseudo-quasi-metric space.
3.3. Proposition. Given (X, A) E PsAP, (F(X), dX) is an extended pseudo-
quasi metric space.
Proof. Let dx (F,9)  a and dX(9,H)  (3. This implies that ga C J’
and it/3 C g. Consequently, Ha+B C HB a C ga C F.
Note that dx can attain the value oo, by definition it is clearly not symmetric
and for instance dx (Fo, 7) = 0 (hence, it is not possible to drop any prefix
in the previous proposition).
We already know that in an approach space, for any 0 E F(X), the function
k (F) (-) is a contraction. However we can also consider the function A with
two variables, filters on X and points of X. The foregoing definition of
(F(X), dx) now makes it possible to consider contraction and/or continuity
properties of this function of 2 variables.

3.4. Definition. A pseudo-approach space (X, A) is called an epi-approach
space if it additionally satisfies the following condition:

(C) : A : (U(X), Tdx) x (X,7i) -&#x3E; ([0, oo], Tr) is a continuous map.
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The full subconstruct of PsAP consisting of epi-approach spaces is denoted
by EpiAP.
The following illustrates why we could restrict ourselves to ultrafilters (as
usual) without causing any difficulties.

3.5. Proposition. Given (X, A) E PsAP, the following are equivalent:
(1) (X, A) E EpiAP.
(2) (X, A) satisfies the following condition:

(C)’ : A : (F(X),7dx) x (X, Tk) ([0, oo],T,) is a continuous map.
Proof. The implication 2 =&#x3E; 1 is clear.
To prove the implication 1 =&#x3E; 2 assume that

A : (U(X), 7dx) x (X, Ta) - ([0, oo], Tr ) is continuous (*).
Now let JF E F(X) and x E X such that K  A(7)(z) = sup k(U)(x),

U E U (F)
hence, there exists some ultrafilter U D F such that Ã(U)(x) &#x3E; K. By (*),
we find V E Vk(x) and S &#x3E; 0 such that dX(u,W)  d (where W E U(X))
and y E V implies that A (W) (y) &#x3E; K (**).
We now have to consider some G E F(X) and y E X such that dx (F, Q) 
S and y E V. Since g8 C :F c U, we find some W E U(G) : Wb c
Lf. Indeed, assume otherwise that VW E U(Q),3W E W : W d E U.
Hence ([10, proposition 1.2.2]), we can find Wl, ... , Wn such that Wdi E u
(1  i  n) and WI U ... U Wn E G. However, since U D F ) 9d ) 
(W1 U ... U Wn)’s = Wd1 U ... U W,,s, we find that Wdi E U for some
1  i  n. Consequently, we obtained a contradiction and therefore we
have some W E U (9) : Wd C U, meaning dX(Zf,W)  S. By (**), it
follows that A(W)(y) &#x3E; K, hence also k(9)(y) &#x3E; A(W)(y) &#x3E; K. 

Looking for CCTH(AP) caused the following nice property to surface.
3.6. Proposition. Let (X, A) E EpiAP and dX(F,9) = 0, then k(F) 
A(g). If in particular, F = 9°, then even k(F) = k(9).
Proof. Let K  A(7)(z), then we find a &#x3E; 0 such that dx(F,Q’) 
a implies that k(9’)(x) &#x3E; K, hence, in particular, A(g)(z) &#x3E; K. The

arbitrariness of K now implies that k(F)  A(G)-
As for the latter claim, since F = d° C 9, we find that k (9)  k (F). Con-
sequently, combining this with the previous inequality, we obtain A(7) =
k(9). 
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We are now in a position to state the main result.

3.7. Theorem. EpiAP is the cartesian closed topological hull of AP.

We shall prove this in several steps.

STEP 1: We first show that AP C EpiAP.
3.8. Lemma. Let (X, A) be an approach space and let :F, 9 E F (X) and
p &#x3E; 0, then:

Proof. (1) Let U E secj:p, we then claim that U(P) E sec Y. Indeed, let
F E Y, then we find z E U such that also z E Fp, meaning I(y, {z})  p
for some y E F. Hence, also d (y, U)  p, i.e. y E F n U (p). If we now
recall from theorem 2.1 that

and

then the foregoing clearly demonstrates what was required.
(2) Let dX (F, 9)  a, hence go C r. Consequently, by (1), k(F) 
a(9a)  A(g) + a. By the arbitrariness of a, we conclude that A(7) 
A (g) + d x (F, 9). 
The foregoing lemma shows that in an approach space, for any x E X, also
the function a(-)(x) is a contraction. However we can show more.
3.9. Proposition. Let (X, A) be an approach space and let (A(x))xex be the
approach system associated with À. If we put

then (B O)(F,x)EF(X)xX is an approach basis on F(X) x X and

is a contraction.

Proot Let (BP(x)) := {O E [0,oo][o°°] lO  dP(x,.)} if x E [0, oo[ and
let (Bp(°°)) := {8]a,oo] I 0  a  oo} (where BA : [0, oo] -&#x3E; [0, oo] is such
that 6A(A) = 101 and 8A([0, oo] B A) = {oo} for any subset A of [0, oo]). It
then follows from proposition 2.4.(2) that this approach basis generates the
approach system associated with Sip.
Our claim will be shown by making use of proposition 2.4.(3). Therefore,
let (Y, x) E F(X) x X and first assume that A(0)(z)  oo. Also let
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0  w  oo and 0  c be fixed. As k(F) : (X, A) -&#x3E; P is a contraction (by
proposition 2.6), proposition 2.4.(3) allows us to find 0 E A(x) such that

We then find that

Hence, by the arbitrariness of w and E, this demonstrates what was required
(in case of the assumption k (F)(x)  oo).
Next we assume that À(F)(x) = oo, hence, it now needs to be shown that
for arbitrary E &#x3E; 0 and 0  K, w  oo, there exists 0 E A(x) such that

Vig E F(X),Vy E X: 8]K,oo](k(9)(y)) ̂  w  d X(F, Q) + 0(y) + f.

As A(0) : (X, À) -&#x3E; P is a contraction, we find 0 E A(x) such that

We now claim that

If dx (F, Q) &#x3E; w or k(9)(y) &#x3E; K, this is clearly satisfied, so let us assume
that d x (F, 9)  w and k(9)(y)  K. By the previous lemma, we then find
that k(K)(y)  A (g) (y) + dx (F, G)  K + w, hence

3.10. Corollary. AP C EpiAP.
Proof. Using notations as before, it is easily seen that the TOP-bicoreflection
of (F(X) x X, 8;) is (F(X) x X, 7d, x 7i) and, by definition, TP = Tr. 

STEP 2: Our next goal is to show that EpiAP is a cartesian closed topolo-
gical construct.
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3.11. Proposition. Let f : (X, Ax) - (Y, Ay) be a contraction between
PsAP-objects, then f : (F(X), dx) --&#x3E; (F(Y),dY) : F l-&#x3E; f(F) is also
a contraction.

Prool: As f : (X, Ax) - (Y, Ay) is a contraction, we find that

and, hence, f (F)°P c f(FP) (for all F E F(X) and p 2: 0). Thus, GP C F
implies that f(9)°p C f(QP) C f (F), which means that dY (f(F), f(9)) 
dx(F,9). 
3.12. Proposition. EpiAP is bireflective in PsAP, in particular, EpiAP
is a topological construct.
Proof. Let (fi : (X,A) ---&#x3E; (Xi, ki))iEI be initial in PsAP, where all
(Xi, ,xi) e EpiAP. To show that (C) is satisfied, assume that A E 7;, then
it follows from 2.2(2) that 

From the contractivity of all fi, i E I, the foregoing proposition and the fact
that all Ài, i E I, satisfy (C) it follows that À -1 (A) is open. Hence B is
continuous and (X, k) E EpiAP..
3.13. Proposition. Let (X, kX) and (Y, kY) be PsAP-objects, and let g be
a filteron X, then the map 9 : F(hom((X, Ax), (Y, Ay))) - F (Y) : T H
Y(9) is a contraction, i.e. for any pair (D and Y of filters on hom(X, Y):
dy (O(9) , Y (9))  dhom (x,y) (O, T) -
Proof. As evx : [X, Y] - Y (x E X) are contractions, we find that

and, hence, O (F)°P C OP(F) (for all 0 E F(hom(X, Y)) and JF E F(X)).
Consequently, Y P C (D implies that BI1(g).p C Y p(9) C O(9), which means
that dy (O (9), Y (9))  d hom (x,y)(O, T) - 0
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3.14. Proposition. EpiAP is closed under formation of power-objects in
PsAP. Moreover, if (X, Ax) E PSAP and (Y, Ay) E EpiAP, then
[(X, AX), (Y, Ay)] E EpiAP.
In particular, EpiAP is a cartesian closed category.
Proof. Let (Z, k) := [(X, AX), (Y, Ay)], where (X, Ax) E PSAP and
(Y, Ay) E EpiAP. To show that (Z, A) satisfies (C), assume that A E 7,,
then it follows from the formula of A (see proposition 2.3) that

Hence it follows from the fact that all evx, x E X, are contractions, the
foregoing proposition and the fact that Ay satisfies (C) that k-1 (A) is open.
Hence (Z, A) E EpiAP,..

STEP 3: We now turn to showing that proper "density" conditions are sat-
isfied.

Some of this, AP being finally dense in EpiAP, has already been con-
sidered in a more general way in [9, section 3] and we will recall the results
needed here briefly.
3.15. Proposition. AP is fznally dense in EpiAP.
Proof. As in [9], we first define the following approach spaces. Given a set
X, 7 E F(X) and f : X - [0, oo], we define k(F, f) : F(X) --&#x3E; X[0,°°]
by

7 n stack x C 9, 9 # stack x
g = stack x

F n stack x ct. g.
It is then shown in [9, proposition 3.1] that (X, A(y,f)) is an approach space.
If we now consider (Z, A) E EpiAP, then one easily finds (as in [9, pro-
position 3.2]) that

is a final sink in PsAP, hence also a final sink in EpiAP. m
Assume without restriction in the following that X # 0.
3.16. Proposition. Let (X, k) E EpiAP, then j : X --&#x3E; [[(X, A), P], P]
defined by j( x )(f) = f (x) is an initial contraction.
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Proof. We first give the following diagram for clarity and mention that
j := evil is the map which makes the following diagram commute:

Hence, by properties of power-objects, j is a contraction.
In the following we also let

and 

To prove that j is initial, we will show for every ultrafilter U on X, a E X
and 0  K  oo that k(u)(a) &#x3E; K implies that kHH(j(u))(j(a)) &#x3E; K.
By proposition 2.2, we then find that j is initial.
It will be shown that kHH(j(u))(j(a)) &#x3E; Ii by defining an appropriate g E
hom((X, k), P) and BII E F(hom((X, Ax), P)) such that kP(y(u))(g(a)) =
À(j(U)(BI1))(j(a)(g)) 2:: K &#x3E; kH(y)(g), hence, by the description of func-
tion spaces in PsAP, (see proposition 2.3), kHH(j(u))(j(a)) &#x3E; K.

Defining of 9 E hom((X, k),P) and B11 E F(hom((X, kX),P)):
By proposition 3.5 and the fact that (X, A) E EpiAP, we find V E Vk(a)
and 6’ &#x3E; 0 such that for all 7 on X with dX(U, F)  8’ and x e V, we
have k(F)(x) &#x3E; K (*).
Let go : (X, A) ---&#x3E; P : a -+ dk(a, X - V) (which is a contraction by
proposition 2.6). As V E Vk(a), we find that d1 := go(a) &#x3E; 0.
First assume that go(a)  K, then define gl := go + (K - Si) and finally
9 := gl A K and 6" := Si. It follows that g E hom(X, P), 9  K, g(a) = K
and {g &#x3E; K - 6") c V.
If however go(a) &#x3E; K, then define g := go ̂  K and choose (any) 0  6" 
K, then g and S" also fulfill the foregoing properties.
Now choose 0  S  6’ A S" and let B11’ 

Note that T’is a filterbasis. Indeed, y’ # 0, since for any x E V, {x}d E U,
otherwise dx (u, stack x)  S  6’, hence, by (*), A (stack x) (x) &#x3E; K, a
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contradiction. Furthermore, such F’d is never a void set, as it always contains
the constant oo-function. Also, it holds that F1d n P28 = (Fl U F2)^d, (Fl U
F2).d = F15 U F25 and Lf is an ultrafilter, hence w’ is a filterbasis. Now let
W be the filter on hom(X, P) generated by T’.

Proving that kH(y)(g)  R’ - 6  K:

By the description of function space pseudo-approach limits (see proposition
2.3), it needs to be shown for alll x E X and F E F(X) that

To this end, let x E X and 0 E F(X) be such that (I) holds. Hence K - 6 
kP(y(F))(g(x))  g(x), consequently g(x) &#x3E; K - d and so x E V (II).
We also find that Fd C l.l (meaning dX(u, F)  d  d’ (111)). 

d Eu,Indeed, if this were not the case, then we could find F E 0 such that Fd E U,
implying Ps E B11, hence ]S, oo] E W(0) and therefore in particular, V/? &#x3E;

K - d : ]g(x) - 0, oo] E y(F) (as g(x)  K). It then follows from lemma
2.5.(2) that kP(y(F))(g(x))  K - 6, which contradicts (I).
Consequently, it follows from (*) (and (II) and (IIn) that k(F)(x) &#x3E; K.

Also, kP(y(F))(g(x)) C g(x)  K, hence kP(y(F))(g))  A(0)(z).
Proving that kP(y(u))(g(a)) &#x3E; K:
Let us assume the contrary, i.e. kP(y(u))(g(a))  K-E, where 0  c  K.
This implies that VB &#x3E; K - E : (g(a) - B,°°] E w(U), hence VB &#x3E;

K - E, 3U E U : ÛK-B E y. In particular, we have some I 2:: 0 and U E u
such that l/T E y. Consequently, Fd C Û’Y for some F # 0, Fd E U.
However, Ps C Ûy implies that U C Fa (hence a contradiction). Indeed,
let z V Fd, implying 6x(-, (z)) E Ps, hence dk(-,{z}) E Û’Y, therefore
z EU. 5

STEP 4: Now we are in a position to combine all previous results and to
prove the final step.

3.17. Theorem. EpiAP is the cartesian closed topological hull of AP.
Proof. For this to be the case, we need (as noted before) that EpiAP is
a cartesian closed topological construct (which has been verified in step 2)
and that AP is finally dense in EpiAP (which was verified in steps 1 and
3). We also need that the class
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is initially dense in EpiAP. However, by the foregoing proposition, for
any (X,.X) E EpiAP we have an initial map j : X --&#x3E; [[(X, k), P], P]
and since the functor [-, JP] : EpiAP --&#x3E; EpiAP transforms final epi-
sinks into initial sources (see [7, lemma 6]) (and by proposition 3.15, we can
obtain [(X, k), P] as a final lift of an epi-sink involving AP-objects), we find
that H is indeed initially dense in EpiAP,..

4. EpiLOGUE

We now show that EpiTOP = CCTH(TOP) has a nice relation to EpiAP.
4.1. Proposition. Let (X, q) E PsTOP, then (X, Aq) = (X, Aq).
Proof. We will prove this by showing that (X, kq) is also the AP-bireflection
of (X, aQ). To this end, let f : (X, kq) --&#x3E; (X, S) be a contraction, where
(X, d) E AP. But then also f : (X, Aq) -&#x3E; (X, qd) is a contraction,
where we recall that the latter space is the PsTOP-bicoreflection of (X, 6) .
Since we observed earlier that the TOP-bicoreflection in AP is just the
restriction of the PsTOP-bicoreflection, it follows that (X, qs) is a topolo-
gical space, hence f : (X, Aq) -&#x3E; (X, qs) is a contraction. Consequently,
f : (X, kq) -&#x3E; (X, S) is a contraction. The following diagram illustrates
this argumentation:

4.2. Proposition. EpiAP n PsTOP = EpiTOP.
I Proof. If (X, A) E PsTOP, one easily finds that condition (C) is equival-

ent to

and

Also observe that in this case 90 = g.
Now assume that (C)t holds (i.e. (X, À) E EpiAP n PsTOP). Since

po C F (for all :F E F(X)), we find that VY +-&#x3E; a,3V E V(x,7i)(a) :
V C (X - limo), meaning limF is closed in (X, Tk). Also, by letting
J7 = H0, we find that 7i’ -/-&#x3E; a implies N -/-&#x3E; a, hence liM H = lim H0
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(for all 1-£ E F(X)). Consequently, (X, A) is a closed-domained, point-
regular pseudotopological space (i.e. an Antoine space).
Conversely, assume (X, A) E EpiTOP and Q -/-&#x3E; a. Let V := X -

lim0 E V(x,7i)(a) (as (X, À) is closed-domained) and suppose 00 C :F
and 2: E V. We then find that -/-&#x3E; x, for it this were not the case, then
also d° -&#x3E; x (as (X, A) is point-regular), implying F -&#x3E; x, which is a
contradiction. o

4.3. Proposition. EpiTOP is bireflective and bicoreflective in EpiAP.
Proof. The first claim is clear. As for the second claim, let (X, A) E
EpiAP, then we show that (X, A’), the PsTOP-bicoreflection of (X, À)
belongs to EpiTOP.
To this end, assume that Q f4 x, i.e. À(F)(x) &#x3E; 0. Since (X, A) E
EpiAP, we find V E V(X,7i) and 6 &#x3E; 0 such that for d(x,k)(F, g)  S and
y E V, we have that A (9) (y) &#x3E; 0.
As Ix : (X, a’) -&#x3E; (X, A) is a contraction, we find that V E V(x, Tk-,) and
that d(X,k’)(F, 9)  S implies that d(X,k)(F, 9)  S (by proposition 3.11).
Putting together what we have found so far, we obtain:

VF qk’-/-&#x3E;x,ZVEV(X,Tk’) : (yEV^9°CF) =&#x3E; K(9)(y)&#x3E;0 =&#x3E;9 qk’-/-&#x3E;y.
Therefore, (X, A’) satisfies (C)t and belongs to PsTOP, hence (X, A’) E
EpiTOP
The foregoing results are combined in the following diagram:
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