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RATIONAL NILPOTENT GROUPS AS
SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES

by Salvina PICCARRETA

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQ UES
Volume nII-2 (2001)

RESUME. Soit X un CW-complexe. On consid6re le groupe E(X)
dont les elements sont les classes d’homotopie des 6quivalences de
self-homotopie de X, et ses sous-groupes Ed (X) et £* (X) dont les
elements induisent respectivement 1’identite en homotopie et en

homologie. Dans cet article, les groupes rationnels de nilpotence 1,
de nilpotence 2 et de rang inf6rieur ou 6gal a 6, dont le sous-groupe
commutateur a un rang 6gal a 1, sont realises comme -60(X) et
E. (X) lorsque X est la rationalisation d’un CW-complexe fini.

1 Introduction

Let X be a CW complex. We denote by £ (X) the set of homotopy
classes of self homotopy equivalences of X . It is well known that E (X)
is a group with respect to composition of homotopy classes. In this

paper we consider the subgroups £U(X) = EON(X) of maps inducing the
identity on the homotopy groups of X up to dimension N (homological
if X is a finite complex, homotopical if X has a finite number of non-
trivial, finitely generated homotopy groups) and F* (X) of the maps
inducing the identity on the homology groups.
Dror and Zabrodsky (see [9]) proved that when X has the homotopy
type of a finite complex, F# (X ) and E* (X ) are nilpotent and Maruyama
(see [19], [20]) showed that for any set of primes P the homomorphisms:
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induced by the P-localizations of X are the P-localizations of nilpotent
groups. Hence E#(XQ) and E.(XQ) are rational nilpotent groups.
In [2] and [3] Arkowitz and Curjel prove that E# (X),.6*(X) and all their
subgroups are finitely generated if X is a 1-connected finite complex.
A group G is said to be nilpotent of nilpotency n, if n+1 is the maximum
integer, such that the n-th commutator, G", defined recursively by Gn =
[G, Gn-1] is not trivial.
A nilpotent group G has a cyclic series, and it is said to be of finite rank,
written p(G)  oo, if the number of infinite cyclic factors is finite, this
number, p(G) is is called the Hirsch rank of G.
Any finitely generated nilpotent group is of finite rank (see Remark
2.7 in [2]). This means in particular that F#(X) has finite rank if X
is a 1-connected finite complex. Furthermore, p(E#(X)) = p(E#(X)/T),
where T is the torsion subgroup, because T  Eo (X) -implies p(Ep (X )) =
p(£g(X) /T) + p(T) and the rank of any finite rank group is equal to
zero if and only if the group is periodic.
The Mal’cev completion is a functor from the category of finitely gen-
erated torsion free nilpotent groups (in what follows f.t.n. for short)
to the category of unipotent algebraic Q-groups (i.e. the category of

groups G of matrices with elements in Q, such that for every x E G
(x - I)n = 0 for some positive integer n, where I is the identity matrix)
and it is equal to the rationalization on this category [18] (the details
of the construction of the functor are in [7])-
Let T be the torsion subgroup of £d(X), using the properties of Mal’cev
completion we can deduce that for any 1-connected finite complex:

The same properties hold for £*(X).
A basic problem about self-equivalences is the realizability of £(X), i.e.,
when for a given group II there exists a space X , such that £ (X ) = 11,
and in particular when there exists a finite CW complex X, such that
E(X) = fl. Actually very little is known about the problem (see [1]).
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In this paper we give examples of unipotent algebraic Q-groups that can
be realized as &#x26;=(XQ) (see Theorems 3.1, 3.3, 3.6, 3.7) and £*(Xg) (see
Theorems 4.1, 4.3, 4.2, 4.4) for some CW complex X of dimension N.
We will obtain these results working on the Sullivan or Quillen models of
the space considered. Let ,M (respectively L) be the Sullivan (resp. the
Quillen) model of X. It is well known ([11], Chap. XIV) that there is
a contravariant equivalence between the homotopy category of rational
spaces of finite type and the homotopy category of finite type minimal
algebras; thus, there is an anti-isomorphism between E (XQ) and E (M).
Now the i-th degree indecomposables, Qi(M), of .M correspond to the
i-th rational homotopy group of X ([II], p.136) and so &#x26;d(XQ) is anti-
isomorphic to &#x26;dN(M), group of homotopy classes of self-equivalences
which induce the identity on Qi (M) , for i  N (see [5], Remark 2.3).
Furthermore there exists a covariant equivalence between the homotopy
category of rational spaces of finite type and the homotopy category of
finite type minimal Lie algebras ([23], Chap. III). This gives an iso-
morphism between £(X(Q) and £(L). The i-th degree indecomposables,
Qi(L), of L correspond to the i-th rational homology group of X. So
there is an isomorphism between £.(XQ) and &#x26;d(L) group of homotopy
classes of self-equivalences which induce the identity on Qi(L).

2 Minimal models and self equivalences
In what follows we will use the conventions of [8], [11] and [16]. The
direct sum of homogeneous vector spaces Vk, k E Z, k &#x3E; 0}, over the
rationals Q, is called a graded vector space. An element v E V is

homogeneous if v E Vk for some k and for a homogeneous element
v E V denote by I v I the degree k. Usually we will assume that V
is finite dimensional and, if v1, ... , vr,. is a base for V, we will write
V = v1,.... vr, &#x3E;.

Let A(V) be the exterior algebra of the vector space V. We use the
notion of homotopy for maps W, 0: M - N of minimal algebras given
in [16], p.240. Given an algebra ,M = A(V) with differential d, let us
define a differential graded (DG for short) algebra Ml = A(V s3 V fl3 Q) , 
with differential also denoted by d, as follows: V is an isomorphic copy
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of V and V is the desuspension of V (i.e., V = Vp+1); moreover the
differential d of MI agrees with the differential on ,M, d(v) = v and
d(%) = 0, for u E V and v E V. Furthermore there is a degree -1
derivation i : M1 --t M1 defined on generators by i(v) = v, i(v) = 0
and I(%) = 0. This allows us to construct a degree 0 derivation q :
MI - M1 by setting 7 = di + id and the map a: M1 --t MI:

We say that there exists a homotopy beginning at cp and ending at 1/;,
if there is a DG algebra morphism H : .MI - N, such that HIM = cp
and Ha|m = 0.
The analogous definition of homotopy for maps p, Y : L - L’ of
minimal Lie algebras is given in [23], p. 49.
Let M be a minimal algebra. We can define the group of homotopy
equivalences on M, denoted by Aut(.M), the subgroups Autd(,M) and
Aut#N (M) of homotopy equivalences which induce respectively the iden-
tity on all the indecomposable elements and on the indecomposable el-
ements with dimension less than or equal to N. We can also define the
group of homotopy classes of elements in Aut (M) and Aut# (M), which
we will denote respectively by £(M), E# (M) and £dN(M). Analogously
for a minimal Lie algebra L we can define Aut(L), Autp(L), Autolv(L),
£(L), £#(L) and £#N(L).
In what follows will be very important to decide whether two self-maps
on a minimal model are homotopic. As a particular case of Theorem
2.5 in [5] we obtain the following sufficient conditions for the existence
of a homotopy between two maps of DG algebras, which can be easily
dualized for DG Lie algebras.

Proposition 2.1 Let I, 9 : (A(V), d) - (A, d’) be morphisms of DG
algebras, with A(V) free and 1-connected. Let K C V be such that

d(V) C A(K); if fIK = 91K and [f (v) - g(v)] = 0 for every v E V, then
there exists a homotopy’ between f and g.
Let f, g : (IL(V), d) - (L’, d’) be morphisms of DG Lie algebras, with
IL(V) free and 1-reduced. Let K C V be such that d(V) C IL(K); if
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IlK = 91K and [f (v) - 9(v)l = 0 for every v E V, then there exists a
homotopy between f and g.

Proof. Let f, g : (A(V), d) - (A, d’) be as assumed. For every v E V
there exists X, such that

X" being zero for every v E K, thus we can construct the DG map
H : A(V)’ - A defined uniquely by the conditions:

H is a DG map, in fact

Note that a(v) = v+v-F, where T = E n! is in the ideal generated
in A(V)I by the elements v for v E K. In fact, for v E V, d(v) E A(K)
is in the algebra and i(v) is in the ideal generated in A(V)-, by the
elements w, for w E A(V). Thus, H(ç) = 0 and

i.e. H is a homotopy between f and g.
The proof for DG Lie algebras is analogous. D

Next result gives a necessary condition for two maps to be homotopic:

Proposition 2.2 Let f, 9 : (A(V), d) - (A, d’) be morphisms of DG
algebras with A(V) free and 1-connected. Given a cocycle v E V, if f is
homotopic to g then f (v) - g(v) is a coboundary.
Let f, g : (L(V), d) - (L’, d’) be morphisms of DG Lie algebras with
IL(V) free and 1-reduced. Given a cycle v E V, if f is homotopic to g
then f (v) - g(v) is a boundary.
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Proof. As dv = 0, a(v) = v + v, if there exists a homotopy H between
f and g then:

3 Unipotent algebraic Q-groups as EO(XQ)
Note that the N-dimensional CW complexes considered in this section
have minimal models without indecomposables elements in dimension
greater than N.
Suppose that EO(X) is abelian; then its rationalization is simply the
tensor product with Q and so E#(XQ) is isomorphic to the direct sum
of n copies of Q.

Theorem 3.1 For any positive integer n there is a product of spheres
X such that E#(XQ) = Qn.
Proof. Given m, k, odd integers m, k &#x3E; 3, let X = (sm)k x (S,I),.
The Sullivan model of X is

where

As d = 0 we get Aut# (M) = £# (M) .
In dimension m there are no decomposables and in dimension mk the
only decomposable element is X = IIik =1 xi- It follows that the map:
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where

is an isomorphism. D

Recall that the Priifer rank of a group G is the least integer r such
that every finitely generated subgroup of G is generated by r elements.
Denote by Tr1 (n, Q) the group of all lower triangular square matrices of
order n over Q whose diagonal elements are 1. The famous Theorem of
Mal’cev characterizes torsion free nilpotent groups of finite Priifer rank:

Theorem 3.2 (see [15]) Let G be a torsion free nilpotent group with
Priifer rank r. Then, for some integer n, the group G is isomorphic to
a subgroups of Tr, (n, Q).

T
Denote by U(n) C GL(n, C) the group of matrices, U, such that UUT =
I.

Theorem 3.3 Let X,. q be the homogeneous space Xr,q = U(r+1+q) with
q&#x3E;r-1.
Then for any positive integer r, £# (Xr,qQ) = Trl(r, Q).
Proof. Let M be the minimal model of X. As Ep(M) and £#(XQ) are
anti-isomorphic, to prove the proposition it is sufficient to prove that

Ep(M) and Trl(r, Q) are anti-isomorphic.
The Sullivan model of the homogeneous space U(r+1q) is described in
[6] and is given as follows: M = A(% s3 Vl), where
V0 = U1) W1, ..., wr &#x3E;, VI = vi &#x3E;, and

By Proposition 8.4 in [6], for any cp E Aut#(M), there exists 1b in
Aut# (M) homotopic to cp and such that Y(u1) = ul, Y(v1) = vi and
Y(Wk) = wx + Xk, with Xk E A(Yo).
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If lxkl = lwkl, for Xk E A(VO), then xk E A+(w1, ... , wr) O A(u1) for
degree reasons, but if q &#x3E; r - 1:

lWi1lWi2Wi3l &#x3E; IW1W2W31 = 2q + 3 + 2q + 5 + 2q + 7 &#x3E; IWrl,
then xk is a sum of monomials, involving one and only one wi.
We can construct the surjective anti-homomorphism:

where:

By Proposition 2.2 F is also injective. In fact the coboundary in
A+(w1,..., wr) O(u1) with minimum degree is Wl(U1)q+l and, as q &#x3E;
r - 1:

In [5] it is proved that U U(n) and U(m) _ X S2(m+1)-1 X
U(n1)x ... x U(nk,) U(n1)x xU(nk)

... S2n-l, where m = nl + ... + nk, have the same rational homotopy
type. Moreover, U(n) n-I so that:type. Moreover, U(1)XU(n-1) = CPn-1 so that:
Corollary 3.4 For any positive r and f or an y q &#x3E; r - 1 there is

a product of spheres, Xr,q = S2(2+q)-1 X ... X S2(1+Q+r)-1, such that
E# ((Xr,q x Cpq)Q)= Tr1 (r, Q). As a consequence every f. t. n group of
Priifer rank r is a subgroup of £#, (Xr,q x CPq)’Q-
There are some more results about rational nilpotent groups of nilpo-
tency 2. In fact Grunewald, Scharlau and Segal give a classification of
f.t.n. groups of nilpotency 2 and Hirsch rank less than or equal to 6
(see [13] and [14]). As an application, Grunewald and O’Halloran clas-
sify their Mal’cev completion and the Mal’cev completion of the f.t.n.
groups with commutator subgroup [G,G] with Hirsch rank equal to 1,
(see [12]). More precisely, the Mal’cev completion of these groups is:
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1. if p([G, G]) = 1: Kr x (Q.) 8,
where r is a suitable positive integer, s a suitable non-negative
integer, Q. is the additive group of rationals (Q, +) and

2. if G has nilpotency 2

a. and p(G) = 1: none
b. and p(G) = 2: none
c. and p(G) = 3: Trl (3, Q)
d. and p(G) = 4: Trl (3, Q) x Q.
e. and p(G) = 5

e.l Tr1 (3, Q) x Qa x Qa
e.2 K2
e.3 D,

f. and p(G) = 6

over Q, with d square-free integer,
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It is possible to realize some of these groups as E#(XQ) for a finite CW
complex X.
We begin with a technical lemma, which will be frequently used in the
sequel:

Lemma 3.5 For any rationadizable elliptic space X (i. e. a space having
finite national cohomology and rationals homotopy) and for any finitely
generated abelian groups H, there is a product of spheres Y such that:

Proof. Let HQ= Qn and N be a positive integer, bigger than
the cohomological and homotopical dimension of XQ; we choose Y =
(Sm)k x (smk)n, with m, k odd integers, k &#x3E; 3 and m &#x3E; max(N, 3).
Let Mx = A(V) (respectively ,MY = A(W)) be the Sullivan model of
X (resp. Y).
We shall prove that the natural inclusion:

is surjective.
Let cp E Autl(Mx (D My), v Ei V, w E W be homogeneous elements.
As Ivl is less than N, cp(v) E Mx. On the other hand, w is a cocycle,
so cp(w) is a cocycle, but the cocycles in (Mx)+ 0 My with degree m
or mk are coboundaries. If p is the projection of Mx 0 My on My,
we define 0 E Aut# (Mx) x Aut# (My) as
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Let K = V, d(V s3 W) C A(V); moreover we have seen that [O(w) -
Pcp(w)] = 0, hence by Proposition the maps 2.1 V) and cp are homotopic;
then the inclusion i is surjective.
We know from Theorem 3.1 that F# (YQ) = H, so we can conclude:

Theorem 3.6 For any f.t.n. group G such that p([G, G]) = 1, there is
a product of spheres X, such that E# (XQ) = GQ.
Proof. We know that GQ = Kr x (Qa)s, for some non negative integer
s. First we shall prove that there exists an isomorphism

for x = (S2)r X s2l+1 X S2l+3 xS2l+2r+l, with l &#x3E; 2r. A Sullivan model for
X is M = (A (u1, .. - , Ur, W1, W2, Wr+ 1, V1, - - - Vr) d) , with with degrees
and differential

and

We can construct the map:

where
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As Wi is a cocycle, its image under a DG algebras map is a cocycle.
The cocycles in A(u1, ... , ur,., v1, ... , vr), which have (Ui)2 or Vi as a
factor are coboundaries (see [10], Chapter II) then, up to cobound-
aries, the decomposables cocycles in dimension 2l + 3 have the form
Eri=1 PiW1 Ui and in dimension 2l + 2r + 1 have the form qWI U1 ... ur +
Eri=1 siw2u1 ... ui ... ur, with Pi, q, sz E Q. Besides there are not de-

composables with degree equal to 2, 3 or 2l + 1. Thus Proposition 2.1
implies that F is surjective.
F is injective as a consequence of Proposition 2.2.
Letting K = (U1, ... , ur), Proposition 2.1 allows us to deduce:

in fact:

We can conclude that F is an anti-isomorphism.
For any s &#x3E; 1, (Qa)s is an abelian group; hence, Lemma 3.5 implies the
existence of a product of spheres Y such that .60 ((X xY)Q) = Kr x (Qa)s.

D

Theorem 3.7 For any f.t.n. group G there is a product of spheres and
homogeneous spaces X, such that.F#(XQ) = G«2 if G satisfies one of the
following conditions:

1. G has nilpotency equal to 2 and p(G)  5

2. GQ = Go x (Qa) s, where G’ is as in the Case 1.
Proof. We distinguish the proofs according to the previous classifi-
cation of f.t.n. groups with nilpotency 2 and Hirsch rank less than or
equal to 6.
Case c. Tr1(3,Q) = E#(( U(4+q) )Q) for q &#x3E; 2 as a consequence of
Theorem 3.3 . 

U(1) x U(,q)

Cases d, e.l, f.l. For any s &#x3E; 1, Trl(3, Q) x ((Qa)s = E# (( U(4+q) x Y),Q)
for a suitable product of spheres Y, as a consequence of Lemma 3.5.
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Note that, as G = TTl(3, Q) x (Qa)s = Kl x (Qa)s, it is possible to
realize it even as S# (XQ), where X is a product of spheres (see Theorem
3.6).
Cases e.2, f.2. K2 and K2 x (Qa)s are realized in the previous theorem.
Case e.3. D ’" E# (XQ), where X = U(1)
Let V = (U1, V1, W1, W2, W3, W4) Mx = A(V) is the Sullivan model for
X.

We can construct the map:

where

As (U,)3 is a coboundary, letting K = ui and 0 E Aut#(,M) be such
that 0 and 1b coincide on all generators of V besides W4 and Ø(W4) =
W4 + a6,5W3U1 + a6,4W2 (U1)2 + cwl(ul)2, Proposition 2.1 implies that §
is homotopic to 1b, thus, F is surjective and an anti-homomorphism,
Proposition 2.2 implies that F is injective. 

U(7) Case f.3. For any s &#x3E; 1, D x (Qa)s= £#((U(1)xU(2) x Y)(Q), where Y is
a suitable product of spheres as a consequence of Lemma 3.5. D

4 Unipotent algebraic Q-groups as £*(XQ)
A Hall base for IL(V) is a totally ordered, graded vector space base
for the graded vector space L=IL(V). The construction of this base
is inductive on the bracket length, in [17] or [22] rules are given to
determine the elements of length s +1, after having chosen and ordered
the elements of length s. We observe that in the graded case, a Hall
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base for IL(V) includes also the squares of base products of odd degree
(see [4], [21]).
We can dualize the above results for the group £*(XQ). We shall omit
proofs, when they are dualizations of proofs in the previous section,
choosing the correct Hall basis for the Quillen model of the considered
spaces. 

In what follows we shall denote

Theorem 4.1 For any n, 

Theorem 4.2 For any positive integer r, £*(XQ) = Trl (r, Q), where
X = s3 V S2n+3 V S2n+5 ... V S2n+2r+1 with n &#x3E; max(l, r - 2).

In what follows we shall refer to the previous classification of f.t.n.
groups G with either p([G, G]) = 1 or nilpotency 2 and p(G)  6

Theorem 4.3 For any J.t.n. group G such that p([G, G]) = 1 there is
a wedge of spheres X, such that £*(XQ) = GQ.
Proof. We must show that for any abelian group H there exists an

isomorphism

being an even integer and H Ef Qn .
A Quillen model for X is £ = (JL(V), 0), where
V = u, Vi, wl, ... , Wr, V2, Xl, X2, YI, ... , yn &#x3E;, and degrees are as follows

In particular this implies that for any s &#x3E; 1 there exists a wedge of
spheres X, such that £(XQ) = Kr x (Qa)s. 0
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Theorem 4.4 For any f. t. n. group G there is a wedge of spheres or a
cofibration of wedge of spheres X, such that 6.(XQ) = GQ if one of the
following alterndtive holds:

1. G has nilpotency equal to 2 and p(G)  5

2. GQ = G’Q x (Qa) where G’ is as in Case 1.
Proof. Cases c, &#x3E; d, &#x3E; e.l &#x3E; e.2. As Tr1 (r,Q)= Kl, Tr1 (r,Q) x (Qa)
K2x (Qa)S for s &#x3E; 0 are realized in the previous Theorem.
Case e.3. Let H be an abelian group, H = Qn; we shall prove that
D x H rv E* (XQ), where X is a suitable cofibration of wedge of spheres.
Given q &#x3E; 2 integer, in [23] it is proved that it is always possible to
construct a space X

such that the Quillen model of X is f- = (iL(V), d),
V = u, W1, ... , W4, Z, X1, X2, Y1, ... , 7 Yn-I &#x3E;, where

and
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