
CAHIERS DE
TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

M. HEBERT

J. ADAMEK

J. ROSICKÝ
More on orthogonality in locally presentable categories
Cahiers de topologie et géométrie différentielle catégoriques, tome
42, no 1 (2001), p. 51-80
<http://www.numdam.org/item?id=CTGDC_2001__42_1_51_0>

© Andrée C. Ehresmann et les auteurs, 2001, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_2001__42_1_51_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


51-

MORE ON ORTHOGONALITY IN
LOCALLY PRESENTABLE CATEGORIES

by M. HEBERT, J. ADAMEK* and J. ROSICKy

CAHIERS DE TOPOLOGIE ET

GEDMETRIE DIFFERENTIELLE CATEGORIQUES
VolumeXLlI-1 (2001)

Rdsum6. Nous présentons une solution nouvelle au problbme des
sous-categories orthogonales dans les cat6gories localement pr6senta-
bles, essentiellement différente de la solution classique de Gabriel
et Ulmer. Diverses applications sont donn6es. En particulier nous
l’utilisons pour caractériser les classes oméga-orthogonales dans les
categories localement finiment pr6sentables, c’est-h-dire leurs sous-
categories pleines de la forme EL ou les domaines et codomaines des
morphismes de E sont finiment pr6sentables. Nous l’utilisons aussi

pour trouver une condition suffisante pour la r6flexivit6 des sous-

categories de categories accessibles. Finalement, nous donnons une
description des cat6gories de fractions dans les petites categories fini-
ment compl6tes.

I. Introduction

Many "everyday" categories have the following type of presentation:
a general locally finitely presentable (LFP) category ,C, representing
the signature in some sense, is given, together with a set E of mor-
phisms having finitely presentable domains and codomains. And our
category )C is the full subcategory of ,C on all objects K orthogonal to
each s : X - X’ in E (notation: K L s), which means that every mor-
phism f : X - K uniquely factors through s; notation: IC = EL. Such
subcategories IC of ,C are called in [AR] the w-orthogonality classes.

Example: finitary varieties. In fact, let r be a finitary signature
and let IC be a variety of r-algebras. Every equation a = B presenting

*) Supported by the Grant Agency of the Czech Republic under the grant No.
201/99/0310.
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1C can be substituted by an orthogonality condition naturally: there
are only finitely many variables contained in a and B, and we denote
by X the absolutely free r-algebra over thoses variables, and by -
the congruence on X generated by the single pair (a,,8). Then an

algebra satisfies a = B iff it is orthogonal to the quotient map X -&#x3E;
X/ ~. Thus, JC is an w-orthogonality class in r-Alg , the category of
all algebras of signature r.

A much more general example: essentially algebraic categories (see
[AR], 3.34). Here again r = rt u Tp is a finitary signature and 1C is a
category of partial r-algebras presented by the requirements that (a)
all operations of rt are total, i.e., everywhere defined, (b) for every
operation o E rp a set Def(o) of equations in rt is specified, and
the definition domain of oA for any algebra A E A is determined by
those equations and (c) specified equations between r-operations
are fulfilled. Then JC is an w-orthogonality class of the corresponding
category of structures whenever each of the sets Def(o) is finite. This
includes all finitary quasivarieties, the category of posets (and all other
universal Horn classes), the category of small categories, etc.

Our aim is to characterize w-orthogonality classes of a given LFP
category G. Each such class is a full subcategory which is

(1) closed under limits
and

(2) closed under filtered colimits.
The converse does not hold in general: the first example of a class
of finitary structures closed in StrT under limits and filtered colim-
its but failing to be an w-orthogonality class has been found by H.
Volger [V] (see our simple variation in 11.8 below); independently, J.
Jfrjens found a different example in [J]. These examples are indeed
quite surprising because for uncountable cardinals the corresponding
result is true: suppose A is a regular cardinal and call a full subcate-
gory of an LFP category (or, more generally, of a locally A-presentable
category) a A-orthogonality class if it is presented by orthogonality
w.r.t. morphisms with A-presentable domains and codomains. Then
the following has been proved in [HR]:
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Theorem. Let A &#x3E; Ro be a regular cardinals. Then the A-orthogonality
classes in a locally a-presentable category G are precisely the full sub-
categories of G closed under limits and A-filtered colimits.

However, as mentioned above, the corresponding result is false for
A = Ro (although Theorem 1.39 in [AR] states that it holds; see

[AHR] for a corrigendum to that statement). Our characterization
of w-orthogonality classes 1C of an LFP category G is based on the
observation that the embedding E : K -&#x3E; G is a morphism of LFP cat-
egories (i.e., 1C is LFP and E is a right adjoint preserving filtered col-
imits). By Gabriel-Ulmer duality we obtain a theory morphism from
the theory Th l of G (= the dual to the full subcategory of all finitely
presentable objects of G) to the theory of 1C : Th(E) : Th l -&#x3E; Th 1C.
The "missing" additional condition to closedness under limits and fil-
tered colimits to characterize w-orthogonality classes is the following

(3) the theory morphism Th(E) : Th -&#x3E; Th IC is a quotient.
The idea of a quotient theory morphism is an "up to an equivalence"
adaptation (by M. Makkai [M]) of a concept due to Gabriel and Zisman
[GZ] (see III.1 to 111.4 below); a necessary and sufficient condition on
a lex (= finite-limit preserving) functor F : A -+ Li to be a quotient
is that F be "essentially surjective" in the following sense: (a) every
object B E B is isomorphic to an object FA, A E .A and (b) every
morphism b : X - FA in Li allows a commutative triangle

for some morphism a : A’-&#x3E; A in ,A. We are going to prove the
following

Characterization Theorem. Let ,C be a locally finitely presentable
category. The w-orthogonality classes in L are precisely the full sub-
categories JC closed under limits and filtered colimits in L such that
the theory of the embedding K y G is a quotient.
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Let us remark here that in [MPi] a comment to Corollary 2.4 sug-
gests that the authors were aware of this characterization, but no proof
has been published so far.

The Characterization Theorem is not quite "nice" because (3) above
is not a closedness property. This contrasts with the better situation
concerning w-injectivity classes, see [AR] and [RAB], i.e., full sub-

categories of G (LFP) given by injectivity w.r.t. morphisms between
finitely presentable objects. It is proved in [RAB] that these are pre-
cisely the full subcategories of G closed under

(1) products,
(2) filtered colimits

and

(3) pure subobjects (i.e., filtered colimits of split subobjects in L’).
The main tool of our investigation is a "non-standard" orthogonal-

reflection construction explained in Part II. This makes it, quite sur-
prisingly, possible to derive that certain subcategories of finitely acces-
sible categories are reflective. But the main goal of using that construc-
tion is to provide the above mentioned description of w-orthogonality
classes.

II. The Orthogonal-Reflection Construction

11.1 Remark. Here we consider a classical problem of category the-
ory : given a collection E of morphisms in a category G, construct a
reflection of an object in the orthogonality class EL. Throughout this
section,

G

denotes a finitely accessible (or N0-accessible in the terminology of
[MPa]) category, and

£w

the full subcategory of finitely presentable objects of G. (Recall from
[MPa] that G is finitely accessible iff it has filtered colimits and lw is
dense in G and essentially small.) We mention the more general case
of A-accessible categories at the end of this section.
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11.2 Remark. Gabriel and Zisman introduced in [GZ] the concept of
a left calculus of fractions: a class of E of morphisms of a category X
is said to admit a left calculus of fractions provided that

(i) E contains all identity morphisms,
(ii) E is closed under composition in mor(X),
(iii) for every span

in X with s e £ there exists a commutative square

with t E E;

and

(iv) given parallel morphisms hl, h2 E X such that h1 s = h2 s for
some s E E, there exists t e £ with thl = th2:

Let us remark that if X is a category with finite colimits, then for
every class of morphisms we have

where E is the saturation of E (containing an arrow s iff every object of
EL is orthogonal to s), which always admits a left calculus of fractions.
In fact, (i) and (ii) are trivial for E; for (iii), form a pushout t f = gs
of f and s and observe that if s E E then t E E. (Proof: let K E EL,
then given h : Y -3 K we have for h f a unique h’ : X’ - K with
h f = h’s, and the universal pushout property yields a unique h" with
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h = h"t.) And for (iv) form a coequalizer t of hl, h2 and observe that
since s E E, it follows that t E E. (Similar proof.)

Thus, in finitely cocomplete categories, there is no loss of generality
in assuming that E admits a left calculus of fractions.

11.3 The Orthogonal-Reflection Construction. Let ,C be a finite-
ly accessible category and let E be a set of morphisms in lw admitting
a left calculus of fractions (in that subcategory). A reflection of an
object L E obj(£) in EL can be obtained as follows:

Case (A): Reflection of a finitely presentable object L.
Denote by L! E the comma category of all morphisms f : L -3 Cf

in E, and let

be the usual forgetful functor (Lf-&#x3E; C f) H C f. Then a filtered
colimit of DL is a reflection of L in EL.

That is:

(a) L ! E is a filtered category,
(b) a colimit

of DL exists in G and QL lies in EL (observe that since idL E E,
we have Cid : L - QL)

and

(c) Cid : L -&#x3E; QL is a reflection of L in EL.

Case (B): Reflection of an arbitrary object L.
Express L = colim Li as a filtered colimit of finitely presentable

iEI

objects Li, form reflections qL, : Li -3 QLi (i E I), and then a filtered
colimit colim nLi in f-’ is a reflection of L in EL.

iEI 

Proof. Case (B) is easy to verify: since EL contains QL = colim QLi,
it is trivial to show that colim 17Li : L-&#x3E; QL is a reflection of L.

We prove Case (A).
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Proof of (a). Firstly, L ! E# 0 since idL E E, see 11.2 (i). Next,

given two objects L .4 Cf and L -4 C. in L -1- E, we use 11.2 (iii) to
obtain a commutative square

with g’ e E, thus by 11.2 (ii) we have g’ f = h E E. We thus found an

object L h-&#x3E; Y of L ! E together with morphisms g’ : ( f ) -&#x3E; (h) and
f’:  (g) -&#x3E; (h)

Finally, given parallel morphisms in L ! E:

then (iv) of 11.2 implies that there is t : C f’ -&#x3E; Y in E with thl = th2
(because f E E fulfils hl f = h2 f). Then f" = t f’ is an object of
L ! E and t : ( f’) -&#x3E; ( f") a morphism merging hi, h2.

(b) We are going to prove

for any s : X -&#x3E; X’ in E. That is, hom(-, QL) maps s to an isomor-
phism in Set . We verify that hom(s, QL) is both an epimorphism and
monomorphism.

(bl) Epimorphism: we have to show that every morphism k : X -
QL factors through s. Since QL is a filtered colimit of DL, the mor-
phism k (whose domain is finitely presentable) factors through some of
the colimit maps c f; i.e., we have f : L -&#x3E; Cf in L ! E and h : X - C f
with
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By applying 11.2 (iii) to h and s we obtain a commutative square

with s’ E E. By 11.2 (ii) we obtain an object

and s’ : ( f ) -&#x3E; (g) is a morphism of L! E, thus

We conclude that cg h’ is the desired factorization:

(b2) Monomorphism: We have to prove that given two morphisms

then

Since X’ is finitely presentable, ui and u2 factor through c f for some
f E L ! E:

From the equality
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it follows, since X is finitely presentable, that VIS and v2 s are merged
by some morphism of the diagram L ! E, i.e., that there exists g E
L ! E and p : C f -t Cg such that

Applying II.2 (iv), we obtain, since s E E, the existence of s : Cg -&#x3E; Y
in E with

Thus by 11.2 (ii), h = gs is an object of L ! E and 3 : (g) - (h) is a
morphism, consequently, 

We obtain 

ui = cfui by (4)
= cgpvi since p : C f -&#x3E; Cg is a morphism of L ! E
= chspui by (7)

and the last line is independent of i by (6).
(c) Cid : L - QL is a reflection of L in E L. In fact, let d : L -&#x3E; D

be a morphism of G with D E E-L. For each f : L - Of in L ! E we
have, since f E E, a unique morphism f : Of --t D with

and those morphisms form a cocone of DL
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In fact, every morphism u : Cj - Cg of L ! E fulfils g = u f , and from
f f = d = gg = (gu) f we conclude, since D L f , that 7 = gu. The
unique morphism d* : QL - D with d*c f = 7 (for each f ) fulfils

Conversely, from d*cid - d we have d* uniquely determined (since
d * c f = f for all f ) . 0

II.4 Corollary. Every w-orthogonality class in a ,finitely accessible
category l presented by a set of morphisms of lw admitting a left
calculus of fractions (in lw) is reflective in ,C.

11.5 Remark. The above result is somewhat surprising because no
sufficient conditions for reflectivity in (non-complete) accessible cate-
gories have been known.

But also for locally finitely presentable categories the above con-
struction brings new information. We will see more of this in the
proof of the main characterization theorem in Part III. Here we derive
some direct consequences.

II.6 Notation. For a full subcategory IC of l we denote by

Orthc..;1C

the class of all morphisms in L,, to which all objects of IC are orthog-
onal, and by

Injw l’C

the class of all morphisms in lw to which all objects of IC are injective.

II.7 Corollary. A full subcategory )C of an LFP category £ is an

w-orthogonality class i ff IC is closed under limits and filtered colimits,
and every morphism s : X -&#x3E; X’ in Injw IC can be prolongated to a
morphism ts : X -&#x3E; X" in OrthwJ’C.

Proof. I. Necessity. Let IC = EL for a set E of morphism in lw ; as
remarked in 11.2, since L,, has finite colimits, we can assume that E
admits a left calculus of fractions (by taking the saturation in lw) .
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Given s : X - X’ in Injw) IC apply 11.3 to obtain a

reflection cid : X - QX = colim DX. Since QX E IC is injective to
s, we have t : X’ - QX with ts = Cid. Now X’ is finitely presentable
and QX is a filtered colimit, thus, t factors through one of the colimit
maps cf: Cf -t QX:

The equality

implies, since X is finitely presentable, that some morphism of the

diagram DX merges f and t’s; say, h : (X -&#x3E;4 Gf) -7 (X-&#x3E;4 Cg) where
g = h f , fulfils hf = ht’s. Then g, being in X! E, and hence in
Orth,IC, is the required prolongation of s.

II. Sufhciency. Let IC be closed under limits and filtered colimits.
Then it is also closed under pure subobjects because every pure sub-
object A -&#x3E; B is an equalizer of morphisms B =4 B* where B* is a
filtered colimit of powers of B, see [AR], 2.31. Thus, by [RAB], IC is
an w-injectivity class, presented e.g. by Injw, IC. For each s : X - X’
in Injú) IC choose a prolongation tss : X -&#x3E; X" in OrthwK, then obvi-
ously every object orthogonal to ts s is injective to s, therefore, JC is
equal to the cv-orthogonality class {tss; s E InjCAJ K}L. 0

II.8 Example of a class of algebras which is not an cv-orthogonality
class, although it is closed in Alg (1, 0) (the category of all algebras on
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one unary operation a and one constant a) under limits and filtered
colimits. The class IC consists of all algebras (A, a, a) which have a
sequence a = Yo, Yl, Y2 ... of elements with ay,,+, = yn such that
whenever eekz = a for z E A and k &#x3E; 0, then az = yn for some n E
w. More succintly, IC can be axiomatized by the following sentences
(indexed by n E w) :

IC is clearly closed under limits and filtered colimits. To prove that
IC is not an w-orthogonality class, we use 11.7. Consider the following
algebra Ko which obviously lies in K:

Denote by f : A -&#x3E; A’ the unique morphism from the initial algebra
A of Alg (1, 0) to the subalgebra A’ of Ko on {yn}n1. Every algebra
K E IC is injective w.r.t. f : consider the homomorphism A’ - K
given by yl - yl (thus yo H ayl = a, y- 1-&#x3E; aa, ... ) . If IC were
an w-orthogonality class, there would exist 9 : A’ -&#x3E; A" in Alg (1,0)w
such that Ko 1 g f ; in particular we would conclude that

there exists exactly one homomorphism h from A" to Ko .

We derive a contradiction. Since A" is finitely presentable in Alg (1, 0),
there is a largest m E w with am z = a for some z E A" . Observe that
m &#x3E; 1 because for z = g(y1) we conclude from ay, = a in A’ that
ag (y1 ) = a in A", and g (y1 )# ; a (else g (yl ) would be a fixed point of
a, but Ko has no fixed points of a).
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Every z in A" with amz = a fulfils a’h(z) = a in Ko, thus, h(z) =
ym or Zm; observe that then h(az) = ym-1. Consequently, if we swap
ym and Zm, we obviously obtain another homomorphism h : A" -&#x3E; K0:

This contradicts the uniqueness of h.

II.9 Remark. The above example is an adaptation of an exam-
ple presented by H. Volger [V] to demonstrate that a class of (rela-
tional) structures of a given signature E can be closed under limits
and filtered colimits in StrE (the category of all structures and homo-
morphisms) without being axiomatizable in a "uniform" way - thus,
Volger’s argument shows more than the fact that this example is not
an w-orthogonality class. The signature H. Volger used had infinitely
many relations, and it has been later simplified in [MPi] to an example
with a binary relation and a constant. Our example above is in the
same spirit, but our argument is simpler that in the previous work.

Let us remark here that H. Volger characterized classes of E-structu-
res closed under limits and filtered colimits in a spirit closely related
to Corollary 11.7. Recall from Coste’s paper [C] the concept of a limit
sentence in first-order logic: it is a sentence of the form

where cp and 0 are (finite) conjunctions of atomic formulas and x
and - are (finite) strings of variables. A class of E-structures is an w-
orthogonality class in StrE iff it can be axiomatized by limit sentences,
see 5.6 in [AR]. Now drop the uniqueness requirement in the above
formula and obtain a formula that we might call a weak limits sentence:
it has the following form

The w-injectivity classes in StrE are precisely those axiomatizable by
weak limit sentences. This is shown in detail in 5.33 of [AR], and the
reader familiar with that passage between syntax and semantics will
have no difficulty in translating 11.7 above as follows:
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II:10 Corollary. A full subcategory JC of StrE is an w-orthogonality
class iff it can be axiomatized by weak limit sentences and for each
of these sentences (2) there exists a (finite) conjunction w(x, y, z of
atomic formulas such that JC satisfies the following limit sentence:

The above Corollary is closely related to the following result [V].

Theorem (H. Volger). A full subcategory K of StrE is closed un-
der limits and filtered colimits iff it can be axiomatized by weak limit
sentences, and for each of these sentences (2) there exists a (finite)
conjunction w’(x, y, z) of atomic formulas such that IC satisfies the
following sentence

II.11 Remark. The results of this section immediately generalize to
y-orthogonality classes for all regular cardinals A. Let us say that a
class E of morphisms of X admits a A-strong left calculus of fractions
if it satisfies, besides (i)- (iv) of 11.2,

(v) for each f; : X -&#x3E; Yi, i E I, III  A from E there are 9i : Yi -&#x3E;

Z, i E I in E such that 9ili = g; f; for each i, j E I.
Given a A-accessible category G and a set E of morphisms in Ga admit-
ting a A-strong left calculus of fractions, we can construct, for every
A-presentable object L of G, a reflection of L in EL as follows: form the
comma category L ! E as above, and prove that it is A-filtered. Then
the forgetful functor DL : L ! E -&#x3E; G has a colimit (C f -&#x3E; QL) fEL!E,
and we have QL E EL, and Cid : L - QL is a reflection of L in EL.

For all other objects of G a reflection in EL is constructed by A-
filtered colimits (analogously to Case (B) of 11.3 above). Thus, one
obtains the following

Theorem. For every A-accessible category L, the orthogonality class
El, where E is a set of morphisms in £x admitting a A-strong left
calculus of fractions, is reflective in L.
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Concluding Remark. The above procedure is a general solution of
the orthogonal subcategory problem in locally presentable categories
G:

Let E be a set of morphisms in G. There exists A such that G is

locally A-presentable, and domains and codomains of members of E
are A-presentable objects. Then every object L of G has a reflection
in EL: if L is A-presentable, this reflection is a A-filtered colimit of
the diagram of all morphisms f : L -3 Of in E n £x. For a general
object L, a reflection is obtained as a. A-filtered colimit of reflections
of A-presentable objects (forming L as a A-filtered colimit).

Instead of this two-stage approach, we can say directly how a re-
flection of any object L of G is formed: consider the full subcategory
DL of L ! E (E being the saturation of E in G) formed by all arrows
which are A-presentable in L !l. Then DL is A-filtered, and a colimit
of the obvious forgetful functor DL - G gives a reflection of L in EL.
The proof is analogous to that in 11.3 above.

III. Characterization Theorem

III.1 Quotient Functors. In [M] an interesting factorization system
for the 2-category

Lex

of small lex (= finitely complete) categories, lex functors, and natural
transformations has been introduced: every morphism (1-cell) of Lex
has an essentially unique factorization into a quotient functor followed
by a conservative one. Here a conservative functor is one that reflects
isomorphisms. And a quotient functor is a lex functor F : A-&#x3E; ,ri for
which a set E of morphisms in ,A exists such that

(a) F turns E-morphisms into isomorphisms
and

(b) F is lax universal w.r.t. (a), i.e.:
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for every small lex category C the precomposition with F is an
equivalence of categories

Here Lex E-1 (A,C) is the full subcategory of Lex (A, C) formed by lex
functors turning E-morphisms into isomorphisms. Thus, (b) implies
that every such functor G : A - C determines an essentially unique
lex functor G’ with G rv G’F.

111.2 Proposition (A. Pitts, see [M]). A lex functor F : A -&#x3E; B is
a quotient iff it is essentially onto in the following sense: for every
morphism b : X - FA in B, with A E A, there exists a morphisms
a : A’-&#x3E; A in A and a commutative triangle

in B.

111.3 Remark. (a) and (b) above are very close to the concept of
category of fractions of Gabriel and Zisman [GZ]: Recall that given a
category ,A and morphisms E C mor(A) we have a canonical functor
QE : .A -&#x3E; A[E-1], where A[E-1] is called a category of fractions of
E, such that

(a) QE turns E-morphisms to isomorphisms
and

(b) QE is strictly universal w.r.t. (a), i.e., for every functor G :
A - C turning E-morphisms to isomorphisms there exists a
unique functor G’ : B -&#x3E; C with G = G’QE.

Now (b) implies that

is an isomorphism of categories, where CatE-1 (A, C) is the full sub-
category of Cat(A, C) formed by functors turning members of E into
isomorphisms.
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111.4 Observation. Quotients are, up to natural equivalence, pre-
cisely the canonical functors. That is, a morphism

is a quotient iff there exists E C mor(A) and an equivalence

of categories with F = EQE.

In fact, it has been proved in [GZ] that if A is lex, then
(i) A[E-1] is lex and Qs is a lex functor

and

(ii) for every lex functor G E CatE-1 (.A, C) the unique G’ E

Cat(B,C) with G = G’Q is also lex.
Consequently,

F = EQE implies F is a quotient.

Conversely, suppose that F is a quotient. Then there exits a unique
E with F = EQE, and by (ii) above, E is lex, and there exists a lex
functor E: B -&#x3E; A[E-’] with QE "-I EF. We are to show that E
is an equivalence functor: from EEQE = EF = QE it follows that
E E= id, and from EEF = EQE = F, that EE = id.

111.5 Gabriel-Ulmer Duality. For the sake of notation we recall
briefly the well-known duality between Lex and the 2-category
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of LFP-categories, functors preserving limits and filtered colimits, and
natural transformations. This duality is a biequivalence Th : LFP
Lex °p assigning to every LFP-category ,C its theory

and to every LFP-morphism E : l -&#x3E;l’ a functor

called the theory of E, obtained as follows: since E preserves limits and
colimits, it has a left adjoint preserving finitely presentable objects,
and Th(E)°p : l’w-&#x3E; C,, is the domain-codomain restriction of that
left adjoint.

The biequivalence forming the inverse of Th is easier to describe: it

assigns to every small lex category A the LFP-category

of all lex set-valued functors, and to every lex functor F : A-&#x3E; A’ it
assigns the functor

of precomposition with F. Let us recall that Ind denotes a free comple-
tion under filtered colimits (see [AGV]): for every category H we have
a category Ind H with filtered colimits and a functor nH: H-&#x3E; Ind1£
with the expected universal property (that each functor F from 1£ to
a category K with filtered colimits has an essentially unique extension
to a functor F’ : Ind1i --t 1C preserving filtered colimits). For small

categories with finite colimits, we can describe Ind h as the codomain
restriction

Nh: h-&#x3E; Ind1i = Lex (1iop, Set)
of the Yoneda embedding.

111.6 Characterization Theorem. A full subcategory 1C of a locally
finitely presentable category G is an w-orthogonality class iff
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(a) JC is closed under limits and filtered colimits
and

(b) the theory of the embedding IC -4 ,C is a quotient.

Remark. As observed above, (a) implies that 1C is reflective in G,
thus, it is an LFP category. (b) then refers to the lex functor (Qw)OP:
(lw)op -&#x3E; (kw)op which is the dual of the domain-codomain restriction
Qw of a reflector Q : l-&#x3E; IC.

Proof. I. Sufficiency: assuming (a) and (b), we will prove that every
s : X - X’ in InjW 1C can be prolongated to an element of OrthW 1C
(see 11.7). Denote by Q : : l-&#x3E; 1C a reflector. Since QX is injective
w.r.t. s, there exists

It follows that the unique morphism

fulfills

because we have

Since Q is a left adjoint to the embedding E : )C -4 ,C which preserves
filtered colimits, Q preserves finite presentability of objects. Conse-

quently, h* is a morphism of Kw. Now the theory of E is obtained from
the domain-codomain restriction Qw: L,w -t 1Cw of Q by dualization:

By dualizing the necessary and sufficient condition of III.2, we con-
clude that there exists a morphism
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and an isomorphism i : QwX"-&#x3E; QwX such that the following triangle

commutes. The proof will be concluded when we show that the pro-
longation 

of s lies in Orthw IC. In fact

because i is an isomorphism with

(see (2)). For every object K E 1C and every morphism f : X - K
there exists a unique morphism h : QX" - K with Qf = hQ(ts), viz,
h = Q f i. Consequently, there exists a unique morphism ho : X" - K
with f = ho(ts), viz, ho = h77X,i.

II. Necessity. Suppose that IC is an w-orthogonality class in l. Let
E be any set in ,Cw admitting a left calculus of fractions such that
K = EL. Denote by

the embedding of IC, and a reflector, respectively, such that



71

Observe that Q is a left adjoint preserving finite presentability (shortly:
LAFP-functor) which is equivalent to the fact that the corresponding
right adjoint E preserves filtered colimits. Let us extend E to the class
including all reflection arrows qL : L - QL:

It follows from 11.3 that

(4) t is contained in the closure of E under filtered colimits in L’.
In fact, for a finitely presentable object L we have constructed qL as a
filtered colimit of all elements of E with the domain L; for an arbitrary
L, qL is a filtered colimit of reflection arrows of finitely presentable
objects.

Now, because E contains the reflection morphisms and has all its el-
ements sent into isomorphisms by Q, one concludes from [S], 19.3.5 (c)
that Q is naturally isomorphic to the canonical functor Qt. Thus, for
every category 1£, we have an equivalence of categories

(where the index E -1 denotes the full subcategory of all functors in-
verting morphisms in E). Let us verify that the above equivalence of
categories restricts to an equivalence

between (full) subcategories of all LAFP-functors. It is clear that if
G : K-&#x3E;H is LAFP, then so is

let us verify that, conversely, if H is LAFP, then so is G.

(a) G : K-&#x3E;H is a left adjoint. Since IC is an LFP-category,
it is sufficient to observe that G preserves colimits. A colimit of a
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diagram D in IC is, of course, a reflection of a colimit in l, colim D=
Q(colim ED), thus

(b) G preserves finitely presentable objects because a Tight adjoint
G of G preserves filtered colimits. In fact, a right adjoint ji Ef EG of
H preserves filtered colimits, and E reflects them.

We are ready to prove that Th(E) is a quotient. Recall that

(Th(E))°p is simply the dual of the domain-codomain restriction

of Q. Let C be a small, lex category. We are to establish the equiva-
lence

Now Gabriel-Ulmer duality yields an equivalence of categories

and we compose it with the equivalence

assigning to each functor (a right adjoint preserving filtered colimits)
a left adjoint (which is LAFP, of course). This yields an equivalence

Analogously, we have
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We observe that the latter can be restricted to an equivalence

In fact, given a lex functor F : LOP -&#x3E; C which inverts E, then the cor-
responding left adjoint I lEl (F) : l -&#x3E; IndC’P also inverts E (since
its restriction to finitely presentable objects is equivalent to Fop) ,
and moreover, it preserves colimits. Since morphisms in E are filtered
colimits of morphisms in E, see (4), the latter functor inverts E. Con-
versely, whenever a left adjoint inverts E, then its domain-codomain
restriction to finitely presentable objects inverts E.

Denote by J- an equivalence-inverse of J, then we have obtained
from (5) and the above an equivalence of categories

which is, obviously, naturally equivalent to the functor of precompo-
sition with Qopw. O

IV. A Description of Categories of Fractions
IV.1 Remark. In the following theorem we apply the above results
to describing the category A[E-1], for all small lex categories ,A and
all sets E admitting a right calculus of fractions. We use the fact
that ,A is equivalent to the theory of the LFP category LexA°p and
consider E as a set of morphisms in the latter. Observe that objects
of ,A are finitely presentable in LexAop, thus, EL (in Lex,A°p) is an
LFP category and the embedding

is a morphism of LFP. We are going to verify that the theory of E is
a canonical functor of E. Recall that El. is reflective in IndA’P and
a reflector Q : Ind Aop-&#x3E; EL preserves finitely presentable objects,
i.e., restricts to a morphism A - (E-L),,; a dual of this restriction is
Th(E) : A - Th E1.
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IV.2 Theorem. Let E be a set of morphisms of a small lex category
,A admitting a right calculus of fractions. Then the orthogonality class
EL in Ind AOP is an LFP category, its embedding E is an LFP functor,
and the theory of E is canonical for F,. Shortly:

Proof. Apply Theorem 111.6 to the locally finitely presentable category

(whose theory is equivalent to A) and the set

E = {f E L, ; every object of EL is orthogonal to f},

which admits a left calculus of fractions in A by 11.2. We have, of
course,

and by 111.6 the theory

is a quotient. Following 111.4, this implies that Th(E) is naturally
isomorphic to the canonical functor for the set r of all morphisms
mapped by Th(E) to an isomorphism. Now (Th(E))°p is the domain-
codomain restriction of a reflector Q : G -&#x3E; EL; it is clear that Q maps
morphisms of E to isomorphisms, thus, E c r. On the other hand,
every object of EL is orthogonal to r, since Q maps morphisms of r to
isomorphisms (and is a reflector of FL), thus, r c E. Consequently,
Th(E) is naturally isomorphic to the canonical functor of r = E, which
is to say 

V. A Generalization of the Characterization
Theorem

V.1 We have observed above that our orthogonality construction
works even for finitely accessible categories .C, provided that the class
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E admits a left calculus of fractions in L,, - Thus, we obtain a re-
flective subcategory 1C = EL of G. Here we are going to prove that,
moreover, the embedding K-&#x3E; G is a quotient, at least when G has
coequalizers. The method of our proof is substantially different from
that in 111.6. Let us first explain our concepts. If IC is a reflective,
full subcategory of a finitely accessible category G, and if it is closed
under filtered colimits in G, then a reflector Q : l -&#x3E; IC preserves
finitely presentable objects. Consequently, like in the LFP case, we
have a domain-codomain restriction Qw : lw-&#x3E; 1CW of Q and the dual
functor (Qw)op is called the theory of the embedding K-&#x3E; £. (Here,
no claim is made that LOP is a lex category, of course.) We also extend
the terminology of M. Makkai and call a (not necessarily lex) functor
a quotient provided that it is essentially onto in the sense of 111.2.

V.2 Theorem. Let ,C be a finitely accessible category with coequaliz-
ers.

(a) Every w-orthogonality class JC = EL where E admits a left
calculus of fractions in lw, is reflective in L, and the theory
of the embedding /C 9 £ is a quotient.

(b) Every w-injectivity class JC which is reflective and such that
the theory of the embedding 1C -4 G is a quotient is an w-
orthogonality class

Proof. Statement (b) has an analogous proof to the sufficiency in 111.6
above: we choose a set E of morphisms of lw, such that K is the
corresponding injectivity class. As in 111.6, each s E E is prolongated
to a morphisms tss of L,, to which all objects of /C are orthogonal.
Then K = It.s; s E E}L.
We are going to prove Statement (a).
(i) The embedding

is finitely accessible. In fact, since E preserves filtered colimits and
has a left adjoint, say,

it is obvious that K is a finitely accessible category, thus, E is a finitely
accessible functor.
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(ii) Before proving that Th(E) is a quotient, we show that every
finitely presentable object K of EL is a reflection of some object of
Lw.

Consider the canonical filtered diagram

whose canonical colimit is Gw ! K. For every object 1 : L - K of
lw! K denote by l* : QL -&#x3E; K the unique morphism with

where : L -&#x3E; QL is a reflection of L. Since Q preserves colimits,
the morphisms l * form a colimit cocone of the filtered diagram QU in
K. Now K is finitely presentable in /C, therefore, idK factors through
one of the colimit maps. Thus, we have 1 : L - K in lw, !. K and
s : K - QL with

We now use the orthogonal-reflection construction 11.3: we can assume
that QL is a colimit of the filtered diagram DL with colimit cocone
c f : C f -&#x3E; QL (for all f E L! E), and we have

Since DL is filtered, the morphism sl : L - QL with L finitely pre-
sentable factors through some of the colimit maps c f. That is, we have
f : L -&#x3E; Cf in E and g : L - Cf such that
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We conclude that

because QL is orthogonal to f (recall that f E E) and due to naturality
of q we have

Furthermore,

merges f and g

because

Let us form a coequalizer k : Cf -* H of f and g; by (5) there is

(in fact, H is finitely presentable in G because f, 9 : L - C f are
morphisms of lw)’ and of course

(7) k f = kg and k is a regular epimorphism in l.

To finish the proof of (ii), we will show that

is invertible

(thus, K is a reflection of the finitely presentable object H). Put
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we prove that w is an inverse to h* . On the one hand,

To prove wh* = idQH, we use the fact that Q(k f ) is an epimorphism:
Qk is an epimorphism by (7) since Q preserves coequalizers, and Q f
is an isomorphism because f E E. Now we show that Q (kf )qL merges
wh* and idQH which concludes the proof of wh* = idQH (because
then Q(k f ) merges wh* and idQH too):

(iii) Th(E) is a quotient: we verify that for every morphism

there exists L’ E lw, an isomorphism i : QL’ - K and a morphism
g : L - L’ with h = iQg (then Th(E) satisfies the condition of 111.2).
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To do this, use (ii) to find an object L’ E lw, with a reflection 77L’ :
L’ - K. By 11.3 this reflection is a filtered colimit of all f : L’ -&#x3E; Cf
in L’! E, and if c f : Cf -&#x3E; K denotes the colimit cocone, then
hqL : L -&#x3E; K factors (since L is finitely presentable) through some cf:

for some

Observe that Q f is an isomorphism (since f E E) and QqL is, of
course, the identity (since QE = id) - thus, from qL = cff it follows
that Qc f is an isomorphism. Thus, applying Q to the equality (9)
yields (due to Qh = h andQqL= id)

h = Qc fg (Qc f an isomorphism) . 0
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