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FIBRATIONS AND CLASSIFYING SPACES:
AN AXIOMATIC APPROACH I

by Peter I. BOOTH

C4HIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

I Volume XXXLX-2 (1998)

Resume
On d6veloppe une th6orie unif6e des fibrations et des espaces de
classification. De telles theories des fibrations sont caract6ris6es

par la categorie E ou leurs fibres doivent se trouver; on demontre
ici qu’il existe une th6orie int6ressante des fibrations-E et leurs
espaces de classification, si E a des sous-espaces, des cylindres et
des cylindres de transformation qui poss6dent certaines bonnes
propri6t6s, et aussi si E satisfait à une condition 616mentaire de
la th6orie des ensembles.

1 Introduction

There are numerous published accounts of portions of the theory of fi-
brations and classifying spaces, and a unifying approach [M] that brings
many such ideas together. This is one of a family of papers that will de-
scribe a "streamlined" unified theory. Taken together they will improve
the cornputability, generality, simplicity and unity of what is known in
the area. An account of our overall objectives and results will be given
in [B3]; other papers in the series are [Bl], [B2] and [B4].

We use terminology derived from that of [M]: E will denote a cate-
gory of enriched topological spaces or 9-spaces and F a category of fibres
in 9, i.e. consisting of all E-spaces of a given E-homotopy type and all
E-homotopy equivalences between them. If the fibres of a theory of
fibrations are required to lie in such a category F, then we use to
characterize that theory of enriched or F-fibrations. The objectives and
results of this paper can be summarized as follows.

Problem Find conditions on.E that are sufficient to ensure that, for all
0 in £’, there is a "good" theory of classifying spaces for F-fibrations.
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Solution It, is enough for £ to possess an underlying space functor,
subspaces, cylinders and mapping cylinders that are well behaved (defi-
nition 2.3), and to satisfy a set-theoretical condition (definition 2.1).

The argument used has a modular structure; to explain this we refer
to two potential properties of F-fibrations.

(i) If f : Y-&#x3E;Z is a homotopy equivalence between spaces and MC(f)
denotes the mapping cylinder of f , then both Y and Z can be viewed as
strong deformation retracts of MC(f). If an analagous property holds
whenever Y and Z are the total spaces of F-fibrations over the same

CW-complex and f is a fibre homotopy equivalence in the appropriate
sense (= FFHE), then the double retraction property will be said to
hold for F-fibrations (see definition 3.2).

(ii) Let q : Y-&#x3E;C be an 0-fibrations over a CW-complex C, and B
be a subcomplex of C. The restriction of q over B will be denoted
by qlB. If, in such situations, qlB can be replaced by any F-fibration
over B that is within an FFHE h of qlB, and this procedure does not
change the FFHE type of the resulting F-fibration q 0 h over C, then
the subfibration replacement property will be said to hold for F-fibrations
(see definition 4.2).

Our main line of argument breaks down into four modules. In Mod-
ule I (= section 3) it is shown that if S is a well behaved category of
enriched spaces and F is a category of fibres in £, then the double re-
traction property must be valid for F-fibrations. We show in Module
II (= section 4), that the last mentioned condition is sufficient to jus-
tify the subfibration replacement property for F-fibrations. In module
III (= sections 5 and 6) the latter property is used, along with our
set-theoretical condition, to verify that Mayer-Vietoris and Wedge con-
ditions hold for F-fibrations. We prove a particular form of the Brown
Representability Theorem in Module IV (= section 7), and use it with
the two last mentioned conditions to obtain the required classification
of F-fibrations. A condensed version of our main result and the full
version of that theorem are given in theorem 2.5 and section 8, respec-
tively. There is some discussion of examples of our theory in section 6
of [B2]; a detailed account will appear in [B3].

Application of Brown’s theorem in this area has two apparent disad-
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vantages : the set-theoretical condition needs to be verified, and the rela-
tionship between the classifying spaces so produced and those obtained
by bar construction procedures seems unclear [M, p.(vi) and (vii)]. The
first difficulty is resolved in [B2] and the second in [B4].

We adopt the conventions, notation and terminology of [Bl] ; in

particular we work in the context of the category T of cg- (= compactly
generated) spaces and maps [Bl, p.128-129]. The symbols - and =0 will
denote homotopy in the free and pointed senses, respectively. Given

spaces X and Y, [X, Y] will denote the set of free homotopy classes of
free maps from X to Y; for pointed spaces (X, *) and (Y, *), [X, Y]o will
denote the set of pointed homotopy classes of pointed maps from (X, *)
to (Y, *). We will use W to denote the class of spaces that have the
(free) homotopy types of CW-complexes, and Wo the class of pointed
spaces that have the pointed homotopy types of pointed CW-complexes.

The following properties of cg-spaces will be useful later.

Lemma 1.1 Let X be a space and f : Y -&#x3E; Z be an identification map.
Then:

(i) (1x) x f : X x Y -&#x3E; X Z is also an identification map,
(ii) if V is an open or closed subset of Z, then the subspace topology

on V coincides with the identification topology derived from the subspace
Y I V = f -1 (V) and the surjection flV: YIV --t V, and

(iii) if X has a finite closed cover, W is a space and f : X -&#x3E; W is
a function) then f is continuous if and only if the restrictions of f to
all members of the cover are continuous.

Proof. Result (i) is standard [VI, cor.3.8 and thm.5.1(a)]. In the or-

dinary topological category, (ii) is known [B(R), 4.3.1, cor 1, (c) and
(d)] and (iii) is well known. The cg-versions of (ii) and (iii) can be
derived because quotient spaces [VI, cor.2.2 and thm.5.1(a)] and open
and closed subspaces [VI, axioms 1* and 1, and thm.5.I(a)] of cg-spaces
are themselves cg-spaces.

The author thanks the referee for numerous helpful comments, in-
cluding the suggestion that a modular structure is appropriate for this
work.
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2 Terminology, Notation and Classifica-

tion Theorem

A category of enriched spaces (E, U) consists of a category £ and a
faithful functor U : E -&#x3E; T. The "underlying space" functor U is such
that if Y is an E-object, S is a space and f : S-&#x3E;UY is a homeomorphism
onto the space UY, then there exists a unique E-object X and a unique
E-isomorphism g : X-Y, such that UX = S and Ug = f . The objects,
morphisms and isomorphisms of E will henceforth be called E-spaces,
E-maps and £-homeomorphisms, respectively.

The definition as written in [Bl, p.129] contained a misprint: "into"
should have been replaced by "onto". In practise we will often omit
U, e.g. many of the following "£-definitions" should really have been
phrased as "(E, U) - definitions" .

Let X and Y be E-spaces and G: X x I -&#x3E; Y be a map. Then G will
be said to be an E-homotopy if the composite maps: X = Xxftl C
XXI G -&#x3E; Y are E-maps, for all t E l. The map H : X x I x I -&#x3E; Y will
be said to be an £-homotopy of homotopies if the composite maps:
X = Xxf(t,U)}, C X x I x I H-&#x3E; Y are E-maps, for all t and u E I.

If X and Y are £-spaces and there is an E-inclusion i : X -&#x3E;Y, i.e.

an E-map Z’: X-&#x3E;Y such that Ui : UX-UY is a homeomorphism into,
then the £-space X will be said an £-subspace of the £-space Y.

An E-overspace is a map q: Y -&#x3E; C together with, for each c E C,
an associated structure of an E-space on the fibre Ylc = q-1(c)-

If qo: Yo -&#x3E; Co and ql: Yl -&#x3E; C1 are E-overspaces then an E-pairwise
map  f , g &#x3E; from qo to ql consists of maps f : Yo -&#x3E; Y1 and g: Co -&#x3E; C1
such that ql f = gqo, and with the property that, for each c E Co,
fl(Y0lc):Yolc -&#x3E; Yllg(c) is an E-map.

Taking Co = C1 = C and fixing g to be lc, the £-pairwise map
concept reduces to E-map over C. Taking Co = CxI, C1 = C and
fixing g as the projection C x I -&#x3E; C, there is an obvious associated
idea of E-homotopy over C, and hence of E-fibre homotopy equivalence
(or E FHE) over C. An E-homeomorphism over C is an isomorphism
amongst £-maps over C, i.e. a homeomorphism and E-map over C that
is an E-homeomorphism on all individual fibres.
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An E-fibration is an 9-overspace that satisfies the E-weak covering
homotopy property or E WCHP [BI, p. 136]. We recall that if q : Y-C
is an E-overspace and C E W then q is an E-fib*ration if and only if q
is E-locally homotopy trivial or E LHT (see [BI, p.142 and theorem 6.3,
also p.141 for numerably contractible]).

Let F be a given £-space. We define T, the category of fibres con-
taining F, to be the subcategory of 9 consisting of all £-spaces that are
E-homotopy equivalent to F and all £-homotopy equivalences between
them. Taking UlT to denote the restriction of U to F, the category of
enriched spaces (F, UIF) will be called the category of enriched fibres
containing F.

Definitions 2.1 Let FFHE(C) denote the class of all FFHE classes
of F-fibrations over C. The category E will be said to be £FHE set-
valued if, for all categories of fibres Fin £ and all CW-complexes C,
the class FFHE(C) is a set. Hence F is FFHE set-valued if, for all
CW-complexes C, the class FFHE (C) is a set.

If q : Y-&#x3E;C is an F-overspace and f : D-&#x3E;C is a map, then there is an
induced T-overspace q f : Y H D - D [B1, p. 130]. If q is an F-fibration,
then it is easily seen that q f is also an F-fibration. If g : D-C is

also a map and f - g, then q f is FFHE to qg [Bl, prop.6.2]. So, if

f : D-&#x3E;C is a homotopy equivalence, the rule [q]-&#x3E;[qf determines a bi-
jection FFHE(C)-&#x3E;FFHE(D). Hence, if E is £F HE set-valued, F is
a category of fibres in 9 and C E W, then FFHE(C) is a set.

Let F be FFHE set-valued, q : Y-3C be an F-fibration and f : D-&#x3E;C
be a map. Then the rule ([q], [f]) -3 [qf] determines a function

FFHE(C) x [D,C] -&#x3E; FFHE(D). Hence the rules C -&#x3E; FFHE(C)
and [f] -&#x3E; ([q] - [qf]) define a contravariant functor FFHE(-), from
the homotopy category of spaces in W to the category of sets and
functions. If we fix q, the rule [f] -&#x3E; [qf] defines a natural function

0 = 0(q) : [D, C] -&#x3E; F-FHE(D), relative to all spaces D in W.

Definitions 2.2 Let F be an FFHE set-valued category of fibres and
PF : XF -&#x3E; Bg7 be a given F-fibration. If, for every D E W, the cor-
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responding function 8(PF): [D, BF] -&#x3E; FFHE(D) is a bijection, then
PF will be said to be free universal amongst F-fibrations. In that case

BF will be called a classifying space for F-fibrations.

In preparation for stating sufficient conditions for the existence of
such a PT, we will embark on a discussion of spaces under a fixed space
A. The reader may recall that in the main classification theorem 9.2 of

[M] there are separate cases (a) and (b) covering the situations where
the fibres are "unpointed" and "pointed", respectively; thus the fibres
of Hurewicz and principal fibrations are under the empty space 0, and
those of sectioned fibrations are under a one-point space *. In this pa-
per we will develop a single classification theorem that will cover both
cases. Thus our A will be either 0 or *, when our theory is applied to
these classical theories. It turns out that this complication is only a
"temporary" feature of our argument. Once we have completed module
I, by establishing the double retraction property of theorem 3.7, these
"under A" ideas will no longer be needed.

Let A be a given topological space. Then (X, z) is a space under

A if X is a space and i: A---+X is a map. If (Y,j) is another space
under A then a map f : X-&#x3E;Y such that fi = j will be called a map
under A. The category of spaces and maps under A will be denoted
by A. There is a functor UA : A-T that forgets both A and maps out
of A, and (A, UA) is clearly a category of enriched spaces. Hence we

immediately have associated concepts of A-homotopy (denoted by = A)
and A-homotopy of homotopies.

Let X be a space under A. The A-cylinder X xA I is defined to be
the quotient space of X x I via the relation (i(a), t) - (i(a),u), for all
a E A and t and u E I. There is a map 1 A - X xA I given by
il(a) = [(i(a),0)], where a E A; so (X xAI, i.L) is a space under A.

Let f : X - Y be a map under A and jl : X - X x A I denote the
A-inclusion jl : X-X xA I, where j1(x)= [(x,1)] for x E X. Then the
adjunction space (X xA I) U f Y, obtained using f and jl, will be de-
noted by AMC(f); it will be called the A-mapping cylinder for f . This
involves associated maps f - : X x A I -&#x3E; AM C(f ) with f- [(x, t)] =
I(x, t)] for x E X and t E l, and )1 : Y -&#x3E; AMC(F ) with ji (y) = [y]
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and y E Y. There is a map ji j : A-&#x3E;AMC(f), and so (AMC(f),. j1-j)
is a space under A. Clearly f - and ji are maps under A.

In the case where A = 0, we have A = T and X. x A I = X x l. The
"basic" mapping cylinder, I MC(f), will simply be written as MC(f).

The following definition refers to categories of E-spaces that are un-
der A, in the sense that their underlying spaces and morphisms are in
A. Our conditions (iii) and (vii) ensure that the E-spaces X xc I and
EMC(g) are under A.

Definition 2.3 A category of well enriched spaces under a given space
A is a triple (E, U£, fX x£ I}) consisting of a category 9 of 9-spaces
and E-maps, a faithful "underlying A-space" functor U£ from E’ to A
and, for each E-space X, an associated E-space X x£ I, to be known
as the E-cylinder of X. Given that both X and Y represent arbitrary
£-spaces, these data must satisfy the following axioms:

(i) if S is a space underA and f : S-&#x3E; Ug (Y) is an A-homeomorphism
into, then S can carry at most one corresponding 9-subspace struc-
ture, i. e. there can be at most one £’-space X with UE(X) = S
and such that there exists an E-map g : X-&#x3E;Y with UE(g) = f , 

(ii) in particular, if f : S -+ Uc(Y) is an A-homeomorphism onto then
there exists such an £ -space X and E-homeomorphism g : X -&#x3E; Y
with UE [(g) = f,
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(iv) given t E l, the rule (UE(jt))(x) = [(x,t)] defines an £-map
it: X-&#x3E;X xE I,

(v) if f : UE (X) x AI -&#x3E; U£ (Y) is a map under A, then there is an

£-map g : X xE I -3 Y, with U£(g) = f , if and only if there are
£-maps gt: X-+Y, with U£(gt) = !(U£(jt)), for all t E l,

(vi) given an E-map g : X -&#x3E; Y and the map jl : X -3 X x c I, there
is an £-space £MC(g), the £-mapping cylinder for g, and £-maps
ji : Y -+ £MC(g) and g- : X x c I -&#x3E; EMC(g), making £MC(g)
a pushout in £, and

(vii) if g and jl are as in (vi), then UE(EMC(g)) = AMC(UE(g)), and
U£ takes the pushout square described in (vi) to the adjunction
space square that defines AMC(UE[(g)).

Lemma 2.4 If (E, Uc, f X x£ I}) is a category of well enriched spaces
under a space A, then there is an associated category of enriched spaces
(E, UA UE) -

Proof. Clearly UAU£ : £-T is a faithful functor. Let X be a space,
Y be an £-space and f : X -&#x3E; UA UE (Y) a homeomorphism onto. Now
UE(Y) is a space under A via a map j : A-&#x3E; UAU£(Y), so (X, f-lj) is
a space under A and f is a A-homeomorphism onto. It follows from
condition (ii) of definition 2.3 that X carries an -E-structure and there
is an E-homeomorphism g : X-&#x3E;Y with UE (g) = f . The A-structure on
X is the only one making f into a ,A-homeomorphism and hence, using
(i) of definition 2.3, the £-structure on X is the only one for which g is
an E-homeomorphism and UAU£(9) = f.

The following classification theorem for F-fibrations is the (a) =&#x3E; (e)
portion of our main result, theorem 8.1.

Theorem 2.5 Let (9, Uc, IX xE I}) be a category of well enriched
spaces under a given space A, where E is £FHE set-valued. Then, for
each category of fibres F in E, there is a free universal F-fibration
pF : XF -&#x3E; Bg7 over a path-connected CW-complex Bg7.
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The functors US and UAUC will often be omitted in what follows,
e.g. we may use X to denote an E-space, the A-space UE(X) and the
T-space UAU£(X).

3 MODULE I: On Retractions between

F-fibrations

Definitions 3.1 Let (E, U) be a category of enriched spaces, X be an
E-subspace of the £-space Y via the £-inclusion i : : X-4Y, and r : Y -&#x3E; X
be an E-map such that ri = I x . If, further, there is an E-homotopy un-
der X, from ir to ly, then r will be said to be an £-strong deformation
retraction of Y onto X, and X an £-strong deformation retract of Y.

Let (E, U) be such that, for every £ -homotopy equivalence h : X -&#x3E; Y,
(i) there is an associated E-space Z(h), such that both X and Y are

£-strong deformation retracts of Z(h) via £-inclusions t:X--tZ(h) and
J: Y-&#x3E;Z(h) and retractions r : Z(h)-&#x3E;X and s : Z(h)-Y, and

(ii) sz = f, for all such h.
Then the £-double retraction property will be said to be satisfied.

Let F be a category of fibres in E. The category of F -fib rations and
F-maps over the space C will be denoted by FC. If q : Y-&#x3E;C is an

F-fibration, then we will define Ul-(q) to be the topological space Y.
Taking qo : Y0-&#x3E;C and q1 : Yí --tC to be F-fibrations and f : Y0-&#x3E;Y1 to
be an F-map over C, we define Ul-(f) to be the map f : Y0-&#x3E;Y1. This
determines a functor Ul- : FC-&#x3E;7, and (FC, Ul-) is clearly a category
of enriched spaces. 

Definition 3.2 If the FC-double retraction property holds, for all CW-
complexes C, then the double retraction property will be said to hold for
F-fibrations.

We assume, for the rest of this module, that (9, UE, {X x£ I})
is a category of well enriched spaces under A and F is the cat-
egory of fibres containing the 9-space F. Our objective here is to
show that the double retraction property holds for F-fibrations.
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Lemma 3.3 (i) Let X be an £-space. Then kX : X x£ I - X, where

kX([(x, t)]) = x for x E X and t £ 1, is an 9-homotopy equivalence. For
each t E l, the 9-map jt : X-&#x3E;X x£ I, jt(x) = [(x,t)], where x E X,
is an £-homotopy inverse to kx.

(ii) Let Y and Z also be £-spaces and f E E(X, Y). We will assume
that g : EMC(f -&#x3E; Z is an A-map. Then g is an E-map if and only if
gji and gf -3t are 9-maps, for all t E I.

(iii) Let iu:EMC(f)-&#x3E;EMC(f)xI be the map defined by iu(w) =
(w, u), where u E I and w E EMC(f). If G : EMC(F ) x I -&#x3E; Z is

an A-homotopy, then G is an E-homotopy if and only if Giuji and
Giul- jt are E-maps, for all t and u E I.

(iv) We now refer to the £-homotopy of homotopies concept defined
early in §2. Given u and v E I, let iu v : EMC( f ) -&#x3E; EMC(f) x I x I
be the map defined by iu v(w) = (w,u,v), where w E EMC(f). Given
an A-homotopy of homotopies H : EMC(F ) x I x I - Z, then H is an
£-homotopy of homotopies if and only if Hiu,vjl and Hiu,vf-jt are
E-maps for all t, u and v E I.

Proof. (i) The A-map kx is an E-map via (v) of definition 2.3. Now
kxjt = 1x and, again using (v) of definition 2.3, jtkx is E-homotopic
to the identity on X x£ I. Part (ii) depends on parts (v) and (vi) of
definition 2.3; (iii) on the definition of £-homotopy and part (ii) of this
result. For (iv), we use the definition of E-homotopy of homotopies and
part (ii) of this result.

Proposition 3.4 The enriched category (E, UAU£) satisfies the double
retraction property.

Proof. (i) Let X and Y be 9-spaces and h : X-&#x3E;Y be an 9-homotopy
equivalence. We recall that there are E-maps 30 : Y-&#x3E;EMC(h) and
h-: X xEI-&#x3E;EMC(h). Then X and Y are E-subspaces of £MC(h), via
associated E-inclusions z = h-jo : X-£MC(h) and 3 = ji : Y-£MC(h)
(see definition 2.3, (vi) and (vii)).

(ii) (compare with [F]). Let g : Y -&#x3E; X be an E-homotopy inverse of
h, and K : X x I - X be an E-homotopy from 1X to gh. We define a
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map where and

if 

if

if

where [(x, t)] E X x £ I.
Clearly r is an A-map. We see via lemma 3.3(ii) that it is also an

9-map. Further rz = rh-jo = 1X. In the 9 = T case, a T-homotopy
from zr = h-jor to the identity on MC(h) is defined on p.290 of [F].
That argument generalizes directly, giving an E-homotopy from zr to the
identity on £MC(h). The details of the proof involve noticing that the
procedure produces an A-homotopy, and checking that this A-homotopy
is indeed an E-homotopy. In particular we have to use lemma 3.3(iii) to
verify that the combination of 9-maps and £-homotopies, by composi-
tion and track addition, gives rise to new 9-homotopies.

The reader will notice that the justification of a. statement on p.289
of [F], i.e. that "f*[L] = f*[K]", is not given in detail. However what
we need at the corresponding point in our argument, in the terminology
of [F], is the following: given the existence of f, g and K, we require
that there should be an 9-homotopy L : Y x I-&#x3E; Y from f g to lY such
that there is an £-homotopy of homotopies f K - L (f x 1I) relative
to its endpoints. Now this is justified in the T-case by an elementary
argument given in lemmas 1 and 2 of [V2], which generalizes directly
and easily using lemma 3.3(iv) to the category £. So r is an £-strong
deformation retract of £ M C (h) onto X.

(iii) There is a squeeze A-map s = s(h): AMC(h)-&#x3E;Y defined by
s(y) = y, where y E Y, and s[(x, t)] = h(x), where x E X and
t £ I. Then sj = sj1-= ly and sh-jt = h, so it follows from
lemma 3.3(ii) that s is an £-map. Let us now define an A-homotopy
H : AMC(h) xI-&#x3E; AMC(h) from the identity on AMQH) to JS ji s
by H(y, t) = y, and

where [(x,t)] E £MC(h),y E Y and t £ 1.
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Then H : EMC(h) x I -+ £MC(h) is an E-homotopy by lemma 3.3(iii),
H is clearly under Y and it follows that s is an £-strong deformation
retraction of EMC(h) onto Y.

(iv) The proof is completed by noticing that si = sh-jo = h.

Proposition 3.5 If U F = UE lF: T -&#x3E; A and, for each F-space X,
XxFI is the E-space X x£l, then (T, UT, fXxjrIl) is a category of
well enriched spaces under A.

Proof. We have to check that, for any F-spaces and £-homotopy equiv-
alences between those F-spaces, the £-spaces and E-maps that must
then exist according to definition 2.3 are in fact in F.

We know that jt : X -&#x3E;X xE I is an E-homotopy equivalence (lemma
3.3(i)); hence, if X is in F, so also is X x Fl. For (v), gt = gjt for all
t E l, so g is an E-homotopy equivalence if and only if all gt all have

that same property.
With respect to (vi), ji is an 9-homotopy equivalence by (iii) in the

proof of proposition 3.4, so if g is a morphism of F, then EMC(g) is in
F. We define FMC(g) = £MC(g). Then g-j1 = jIg, so g-jl is an

£-homotopy equivalence. But jl is an E-homotopy equivalence, hence
so also is g-.

We will now show that F-fibrations over C and F-maps over C can
be viewed as belonging to the category P, of spaces and maps under the
product space AxC.

Let q : Y-&#x3E;C an F-fibration. There is an A-space (Ylc, ic: A-&#x3E;Ylc),
for each c E C. We define a function iy : A x C-&#x3E;Y by the rule iy( a, c) =
tc(a) £ Ylc C Y, where a E A and c E C.

If i : A-&#x3E;F is the map that makes F into an A-space and c E C, then
we define ic:A-&#x3E;Fx{c} by ic(a) = (i(a),c). Taking 7re:FxC---+C
to be the projection, we have iFxc = i x 1e : A x C -1- F x C. If q : Y-&#x3E;C
is an F-fibration that is FFHE to 7rc, then it follows by composition
that the function iY is continuous. Now any F-Rbration q : Y- C is
FLHT relative to a numerable open cover V of C, so A x C has the
weak topology relative to {AxV I V E V}. It follows that iyl(AxV) =
iYlv : A x V -&#x3E; YlV is continuous, for all choices of V E V, so iY is
continuous. Hence (Y, iY) is a space under A x C.
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If qo : Yo -&#x3E; C and ql : Yi -&#x3E; C are F-fibrations, and f : Y0 -&#x3E; Y1 is an

F-map over C, then it is easily seen that f is a map under A x C.
Hence there is a functor U FC: 0C - P, defined by U FC(q) = (Y, iY)
and UFC(f) = f.

Let q : Y-&#x3E;C be an F-overspace of the Ti-space C. Then there

is a cylinder projection map cyl(q): YxpI -&#x3E; C, defined by the rule
cyl(q)([(y,t)]) = q(y) where [(y,t)] E YXFCI. The Ti-property of C
ensures that Ylc is closed in Y, for all c E C. Applying lemma 1.1(ii),
with the "f" of that lemma being the identification YxI-&#x3E;YxPI, and
the closed subset "V" being (Yle)xAI, it follows that the quotient
space (Ylc)xAI is a subspace of Y xpl. Hence (Yle)xAI is the fibre
of cyl(q) over c E C. We give F-space structures (Ylc)xTI to such
fibres, and then Y x PI can be viewed as an 0-overspace Y x FC I of
C. Thus we have an 0-overspace cyl(q): Y x FC I -&#x3E; C.

There is an F-map over C, ky : Y x FC I -&#x3E; Y, ky([(y, t)]) = y,
where y E Y and t E I. We see, via the line of argument of lemma

3.3(i), that ky is an FFHE from cyl(q) to q. Now"q is an F-fibration,
so it follows that cyl(q) is an F-fibration.

Proposition 3.6 Let C be a given T1 -space. The corresponding triple
(FC, UFC, {cyl(q) :YxFCI -&#x3E;C}) is then a category of well enriched
spaces under A x C. Further Ul-, as defined after definitions 3.1, is

UpUjrC and the associated enriched category is (FC, Ul-).

Proof. The proof involves routine checking that the properties of
definition 2.3 for FC follow from the analagous properties for F (see
proposition 3.5). We will just check condition (v) - a typical condition
- and construct 0C-mapping cylinders; the rest is left to the reader.

(a)Proof of (v). Let qo : Y0-&#x3E;C be an F-fibration. Then there is an
FC - map jt : Y0 -&#x3E; Yo x FC I and there are corresponding F- maps
je,t:Y0lc-&#x3E;(Yolc)xFI, where c E C and t E I (see definition 2.3(iv)).
Let ql: Y1---+C be an 0-fibration, and f : Y0 x jrC I -&#x3E; Y1, be an under
A x C over C map. Then f is an F-map over C if and only if the
restriction fc = fl((Y0lc)xFI) : (Y0lc) x )FI -&#x3E; Y1lc is an F-map, for all
c E C. Now this holds when fcjc,t : Y0lc-&#x3E; Y1 Ie is an o-map for all c E C
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and t £ I, which is equivalent to f jt : Y0-&#x3E;Y1 being an F-map over C
for all t E I.

(b) oC-mapping cylinders. Let qo : Yo --t C and 9i Y1-&#x3E; C be a
pair of F-fibrations and f: Y0 -&#x3E; Y, an 0C-mapl Now UFC (f ) is

a map under AxC, and we define the mapping cylinder projection
mc(f): PMC(f) -&#x3E; C by mc(f)([(y,t)]) = qo(y) where y E Yo and
t E I, and mc(f)(y) = q1(y) where y E Yl. Then, by an argument
similar to that used for FC-cylinders, the fibre of mc(f) over c E C
has the same underlying A-space AMC(fl(Y0lc)) as does the F-space
-FMC(fl(Y0lc)). We give such fibres the corresponding F-space struc-
tures, and hence obtain an F-overspace mc(f): (FC)MC(f) -&#x3E; C.

There is an F-map over C, s : (FC)MC(f) -&#x3E; Yi, s([(y, t)]) = f (y)
where y E Yo and t £ I, and s(y) = y where y £ Yl. Then, following
the argument of the part (iii) portion of the proof of proposition 3.4,
we see that s is an F F H E from mc(f) to ql . Now ql is an 0-fibration
hence so also is mc(f).

Theorem 3.7 If (E, U£, {X x£ I) is a category of well enriched spaces
under a space A and F a category of fibres in S, then the double retrac-
tion property holds for F-fibrations.

Proof. This follows from propositions 3.4 and 3.6.

4 MODULE II: Pre-Pasting Procedures
We assume throughout this module that (E, U.) is a category of
enriched spaces and F is a category of fibres in E.

To apply Brown’s theorem to our problem we need to be able to paste
together certain F-fibrations, i.e. in cases where their restrictions over
a common subcomplex B of their base CW-complexes agree to within
FFHE. This will be simplified if we can first replace such F-fibrations
by F-fibrations that have identical restrictions over B. The essential

features of this step are made precise in definition 4.2; we will establish
conditions sufficient to justify such a property in this section.
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Definitions 4.1 Let B be a subspace of the space C and p : X --t Band
q: Y-4C be F-fib rations. Ifh:X--tYIB is an FFHEfrom p to qlB then
(q, h) will be said to be a p-grounded F-fibration.

Let (qA : YA-4C, h k : X-&#x3E;Yk IB) be p-grounded F-fibrations, for A =
0 and 1. Then (q0, h0) will be said to be p-grounded FFHE to (ql,h1)
if there is an FFHE g : Y0-&#x3E; Y, , such that (gl(Y0lB))h0:X -&#x3E; Y1lB
is F-homotopic over B to hl. In this case, we write (qo, hü) =p (ql, hi).
If qlB = p, then q will be said to be a p-extending F-fibration.

Let (q, h) be a p - grounded F-fibration. If h : X - Y lB is an

F-homeomorphism over B, then we may identify X with YIB and view
q as a p-extending T-fibration.

Let B be a subspace of D, as well as of C, and f : D-&#x3E;C be a map
that extends the identity on B. If (q, h) is a p-grounded E-fibration,
then so also is (q f, h). If q is a p-extending F-fibration, then so also is

qf.
Definition 4.2 The subfibration replacement property will be said to
be valid for T-fibrations if, for all choices of a subcomplex B of a
CW-complex C, an T-fibration p : X-&#x3E;B and a p-grounded F-fibration
(q : Y-C, h), there exists a p-extending F-fibration q 0 h : Y 0 X-&#x3E;C
such that (qOh,lx) =p (q, h).

We now give two technical lemmas that will be useful in this section
and later.

Lemma 4.3 Let p : X -&#x3E; B be an F-fibration and (q : Y -&#x3E; C, h) be a
p-grounded F-fib ration. Let B be a subspace of D, as well as of C, and
f : D - C be a map that extends the identity on B.

(i) If S is a space such that B C S C D then (qflS,h) = (qf ls, h).
(ii) If D is a CW-complex, g : D-C is also a map that extends the

identity on B, and f -B g, then (qf,h) =p (qg, h).
(iii) Let (qo, ho) and (ql, hi) be p-grounded F-fibrations over C.

Ifk:X#-&#x3E;X is an FFHE from the F-fibration p# : X# -&#x3E;B to p, then
(qo, hok) and (ql, hlk) are p#-grounded F-fibrations. If, also, (qo, ho)
is p-grounded FFHE to (ql, hI), then (qo, hok) is p#-grourcded F FHE
to (ql, hik).
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Proof. (i) This is obvious from the definitions involved.
(ii) Let Y n D denote the space obtained by pulling Y back over f ,

fq denote the projection YH D-&#x3E;Y and H: D x I -&#x3E;C be an under B
homotopy, from f to g, that is stationary on D x [0, 1 2] (see [B1, p. 136]).
Now q( fq) : (Y n D) x {0} = Y n D-C is H(q f x I I) 1((Y n D) x 101) and
q satisfies the FWCHP, so there is a homotopy K : (Y n D) x I -&#x3E; K,
extending fq : (Y n D) x{0} = Y n D -&#x3E; Y, for which  K, H &#x3E; is an

F-pairwise homotopy [B1, p.130] from qf x 1I to q. Then by the univer-
sal property of pullbacks L = (K, (qf x 1I)) : (Y n D) x I-&#x3E;Y H (D x I)
is an F-map over D x l. The restriction of L over .each point (d, 0) of
Dx1 is the identity on (Y n D) x {0}; it follows from [B1, thm.5.4] that
L is an FFHE. Restricting L over D x {1} and forgetting the {1}s, we
obtain an FFHE e from q f to qg.

Now ((YnD)xI)/(BxI) can be identified with (YIB)xI, so the
restriction of L over BxI gives an F-homotopy over B from 1YlB to
el(YlB). Hence e is the required p-grounded JFFHE.

(iii) This is immediate.

Lemma 4.4 (i) If f : B--tC is a cellular map between CW-complexes,
then MC(f) is a CW-complex with B = Bx{0} as a subcomplex.

(ii) Let B be a subcomplex of the CW-complex C and i : B--tC be the
incdusion. Then s = s( i) : MC(i)-&#x3E;C - see the 7--version of (iii) in the
proof of proposition 3.4 - is an under B homotopy equivalence. We will
use n = n(i): C-&#x3E;MC(i) to denote an under B homotopy inverse of s.

Proof. (i) follows from [FP, ex.2, p.63] and (ii) from [B(R), 7.2.8].

Let p : X-&#x3E;B, po: Xo-+B, and p1 : :X1-&#x3E;B be F-fibrations. We will
assume that there are FB-inclusions X-&#x3E;X0 and’X-&#x3E;X1 (= "home-
omorphisms into" that are also F-maps over B). We then have the
concept of F B-maps (= F-maps over B) from Xo to X1 that are under
X, and =xFB will denote homotopies of such maps.

Let P: X-&#x3E;B be an 0-fibrations and (q : Y-C, h) be a p-grounded
F-fibration. Then i : B - C and j : YIB --t Y will denote the inclusion
maps. Let us assume that the double retraction property holds for
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F-fibrations. Thus there must exist an F-fibration 03BC: Z(h)-&#x3E;B, and
FB-maps z : X -&#x3E;Z(h),J: YIB--tZ(h), p: Z(h)-&#x3E;X and a: Z(h)-&#x3E;YlB, z

and j also being homeomorphisms into. These must satisfy:
and

We define Y 4 X to be the quotient set of

obtained by identifying (x, i-) with (z(x), -1) where x E X, (y, 1) with
(j(y), 1) where y E YIB, and (y,1) with y where y E YIB. We give
Y 4 X the obvious quotient topology. The function q Q h : Y 4 X --t M C (i)
is defined by

if ,

if ,
if and

Clearly q4 h is continuous.
If we take the "f" of lemma 1.I(ii) to be the identification map that

takes the above union of spaces into Y 4 X, we see that the fibres of q4 h
can be identified with the corresponding fibres of p,03BC and q. Hence q4 h
can be made into an F-overspace in the evident fashion.

Proposition 4.5 Let (q : Y-&#x3E;C, h) be a p-grounded F -fibration. If,is
such that the double retraction property holds for F-fibrations, then q 4h
is a p-extending F-fibration.

Proof. Let us define the function a : X x [0,5 9 ) -&#x3E; (Y4 X ) l ( B x [0, 5 9 ) ), by
a(x, t) = (x, t) for x E X and t E [0, 1 3), and a(x, t) = (i(x), t) for x E X
and t E (1 3, 5 9). Then a is continuous by lemma 1.1 (iii). Hence a is an
F-map over Bx [0, 5 9). Now p2 = 1X , so we can define the F-map
B: (Y4X)l(Bx[0,5 9))-&#x3E;Xx[0,5 9) over B x [0,5 9)) by ,8(x,t) = (x,t) for
x E X and t E [0, 1 3, and ,8(z, t) = (p(z), t) for z E Z(h) and t E [1 3, 5 9).
Again using pz = 1X, we see that j3a is the identity on X x [0, 5 9). Also
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ip = XF B 1 Z(h), so 0;(3 is F-homotopic over Bx[0,5 9) to the identity func-
tion on (Y4 X)l(B x [0, 5 9)). Thus a; is an FFHE and so (q4 h)l(Bx [0,5 9))
is an F-fibration.

If f:P-&#x3E;Q is a map and t E [0,1) then MC(f,t) will denote the
quotient space of Px(t, 1] and Q that is o6tained by identifying (z,1)
with f(z), for all z E P.

Now q x 1I : Y x I-&#x3E;C x I is an F-fibration, MC(i,4 9) C Cx(4 9, 1], and
(qx1I)-1(MC(i, 4 9)) = MC(j, 4 9) C Yx(4 9, 1]. It follows that the restric-

tion (qx1I)lMC(i,4 9), with underlying map MC( j, 4 9)-MC(i,4 9)), is an
F-fibration.

Let us define y:MC(j,4 9) -&#x3E; (Y4X)lMC(i,4 9) by (y,t) -&#x3E; (J(y),t),
where y E YIB and t E (4 9, 2 3], and as the identity function elsewhere.
Then y is continuous by lemma 1.1(iii). Hence y is an F-map over
MC(i, 4 9). We define 6 : (Y4 X) 1M C( i, 4 9) -&#x3E; MC(j, 4 9) by (z, t)-&#x3E;(o-(z), t),
where z E Z(h) and t E (4 9, 2 3, and as the identity elsewhere. Now

UJ = lYIB, so 6 is well defined. Clearly 6 is an F-map over MC(i,4 9).
It follows from o-J = ly that 6y is the identity on MC(j, 4 9). Also

ja =YlB FB 1 Z(h) ensures that y6 is F-homotopic over MC(i,4 9) to the
identity function on (Y4 X)lMC(i, 4 9). So, is an FFHE, and hence
(q 4h)lMC(i, 4 9) is an F-fibration.

Now {Bx[0,5 9), MC(i,4 9)} is a numerable cover of MC(i), hence
the F-overspace q 4 h is an F-fibration [Bl, thm.4.7]. Identifying the
restriction (q4 h)l(Bx {0}) with p, we see that q 4 h is p-extending.

Corollary 4.6 Let B be a subeornplex of the CW coraplea C. If s de-
notes the under B retraction of lemma 4.4 (ii) , and qsl (B x {0}) is iden-
tified with qlB, then we have (q 4 h, Ix) =p (qs, h).

Proof. Let us define g : Y 4 X-&#x3E;Y by g(x, t) = h(x) for x E X and
t E [01 3], g(z,t) = o-(z) for z E Z(h) and t e (1 3, 2 3], g(y, t) = y for
y E YIB and t E [2 3, 1], and g(y) = y for y E Y. Now crz = h and
UJ = 1YlB so 9 is a well defined map. Then qg = s(q4 h)),  g, s&#x3E; is
an F-pairwise map from q 4 h to q and k = (g, q 4 h : Y 4 X -&#x3E; Y H MC( i)
an F-map over MC(i).

If C E C then k l ((F t) X) C ) = k I (Y l c) is the obvious canonical

F-homeomorphism Ylc-&#x3E;t(Yle)x{c}, and if b E B and t £ I then (b,t)
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is in the same path component of MC(i) as i(b) E C. Now MC(i)
is a CW-complex (lemma 4.4(i)), so it follows from [Bl, thm.5.4] that
k is an FFHE. Identifying Xx{0} with X and the space obtained by
pulling Y back over sl(Bx{0}) with Y I B, we see that klX = h. So k is
the required p-grounded FFHE.

Definition 4.7 Let (q : Y - C, h ) be a p-grounded F -fibration. Tak-

ing n = n(i) as in lemmas 4.4 (ii) , we define q 0 h: Y 0 X -&#x3E; C to be the
induced p-eztending F-fibration (q 4 h)n.

Theorem 4.8 Let (E, U) be a category of enriched spaces and F be a
category of fibres in E. If the double retraction property is valid for
F-fibrations, then so also is the subfibration replacement property. If
(q, h) is a p-grounded F-fibration, then the p-extending F-fib ration q 0 h
is as specified in definition 4.7.

Proof. We adopt the terminology of definition 4.7. Pulling the k of
corollary 4.6 back over n we obtain a p-grounded FFHE from (q 0 h, Ix)
to ((qs)n, h). Now ((qs)n, h) = (q(sn), h), and (q(sn), h) =p (q, h) by
lemma 4.3(ii) since sn =B Ic by lemma 4.4(ii). Hence (q 0 h, 1x) -p
(q, h).

5 MODULE IIIa: Combining Fibrations
by Pasting

We assume, throughout this module, that (£, U) is a category
of enriched spaces, F is a given £-space and is the category
of fibres containing F.

Let us assume that p : X-&#x3E;B is a given 0-fibration and that q : Y-C
is a p-extending 0-fibrations. We use i : B-&#x3E;C and j : X-&#x3E;Y to denote
the inclusion maps. Then we define q* : MC(j)---+MC(i) by q*(x, t) =
(p(x), t), for x E X and t E I, and q*(y) = y, for y E Y. Now

MC(j) and MC(i) are subspaces of YxI and CxI, respectively, q*
is the restriction of the F-fibration q x 1I: Y x I-&#x3E;C x I over MC(i) ,
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and hence q* is an F-fibration. We will refer to q* as the p-cylindrical
F-fibration associated with q. Identifying p xI {0} : X x {0}-&#x3E; B x {0} with
p : X-&#x3E;B we see that q* becomes a p-extending F-fibration, and (q*, 1X)
a p-grounded T-fibration.

When p-extending F-fibrations are pasted together by identifying
their copies of X, we may not know if the resulting objects are themselves
F-fibrations. This difficulty does not, however, occur if we are able to
use p-cylindrical F -fibrations. In this section we investigate the relation-
ship between p-extending F-fibrations and their associated p-cylindrical
F-fibrations, and then describe a procedure for pasting such cylindrical
F-fibrations together.

Proposition 5.1 Let B be a subcomplex of the CW -complex C,
p : X - B be an 0-fibration and q : Y-&#x3E;C. be a p-extending F -fibration.

(i) If s : MC(i)-&#x3E;C denotes the usual retraction, then there is an

induced p-extending F-fibration, gs : Y n MC(i) -&#x3E; MC(i). Also there

is an F-homeomorphism MC(j)-+Yn MC(i) over MC(i), i.e. from q*
to qs, that restricts over B to Ix.

(ii) ((q*)n,1x) =p (q,1x), where n : C-&#x3E;MC(i) is as in lemma

4.4 (ii) -

Proof. (i) Let 7r: C x I -&#x3E; C denote the projection. Then the induced
F-fibrations q 7r:YH(CxI)-&#x3E;CxI and qx1,:YxI-&#x3E;CxI can be
identified together, via an F-homeomorphism g : Y x I -+ Y n (C x I)
over C x I, i.e. g(y, t) = (y, (q(y), t)) where y E Y and t E I. Restricting
these F-fibrations over MC(i) C CxI, we obtain the p-extending
F-fibrations qs and q*. Then k = glMC(j): MC(j)-+Y H MC(i) is an
F-homeomorphism over MC(i), with klX = lx.

(ii) By part (i), ((q*)n,1x) =p ((qs)n,1x) = (qsn,1x), and by
lemma 4.3(ii) (qsn, 1x) =p (q, Ix).

We introduce a generalization of the wedge construction. Let B be a
subspace of each of the family of spaces {C k} k EA; we define Bl À EA C À
to be the quotient space obtained from UÀEA C k by pasting (i.e. identi-
fying) together the copies of B. If fk : B---+C À are maps, for A E A, then
we define the multiPle mapping cylinder MMC( fk : A) to be the space
VkEAMC(fk) that is obtained by identifying the copies of B x {0}.
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The identified copies of Bx{0} will in turn be identified with B; hence
B is a subspace of M MC(f).. : A). In particular if A = {0,1} the corre-
sponding double mapping cylinder will be denoted by DMC(fo, fl). If

also B = Co fl C1 and fo and fl are inclusions then B1).. EA C).. can be
identified with Co U Cl.

Lemma 5.2 (i) Let J = VkEA,[0,1 2)A, the indexed intervals [0, 1 2)k 
being attached by identifying Os; then B x J is an open subspace of
MMC(fk: A).

(ii) If fA: B-&#x3E;Ck are cellular maps between CW-complexes, for all
A E A, then MMC(Fk: A) is a CW-complex that contains all of the
CW-complezes MC(fk) as subcomplexes, for all A E A. In particular
if A = f 0, 11 then DMC(f0, f1) is a CW-complex containing MC( fo)
and MC(fl) as subcomplexes.

(iii) Let B be a subcomplex of each of the CW-complexes CA and
ZA : B-&#x3E;Ck denote the inclusions, for all A E A. Then there is an under
B homotopy equivalence S:MMC(ik A-&#x3E; VACA CA; N will denote
an under B homotopy inverse of S.

(iv) If B = Co n C1 is a subcomplex of the CW-complexes Co and
Cl, with inclusions io : B-Co and il : B--tCt, then there is an under

B homotopy equivalence S:DMC(i0,i1)-&#x3E;C0 U C1.. N will denote an
under B homotopy inverse of S.

Proof. (i) The spaces BxJ and VkEA(Bx[0, 21) A) are the same quo-
tient space of Bx (HkEA [0, 1 2) A) = UkEA(Bx[0, 1 2)k) (use lemma 1.1 (i)).
Also U)..EA(Bx[O, 1 2)A) is open in UxeA MC(fk), so applying lemma
l.l(ii) with the obvious identification UÀEA MC(fk)-&#x3E;M MC(fk : A),
we see that VA EA (B x [0, 1 2-)k) is an open subspace of MMC(fk. A)
Thus B x J is an open subspace of the latter space.

(ii) MMC(Fk: A) can be viewed as the adjunction space determined
by the map UÀEA B).. ---+B that identifies together a family of indexed
copies Bk of B, and the inclusion HkEABk = UkEA (Bk x{0})c
UkEA MC(fk). The result follows from lemma 4.4(i) and [FP, thm.2.3.1].

For (iii) we attach copies of s A = s(i)): MC(ik)-&#x3E;Ck to form S,
and of nA = n(ik): Ck-MC(ik) to obtain N (see lemma 4.4(ii)).

If A = {0,1} then (iii) reduces to (iv).
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Let B be a subcomplex of the CW-complex Cx, with inclusion
ik : B -&#x3E; Ck , for all k £ A. Also let qk : Yk -&#x3E; CA be a p-extending
0-fibration with inclusion Jk: X -&#x3E; Yk, for all A E A. Then we define

by A.(y) = qx(y) if y E Yx, and A. (x, t) = (p(x), t), if x E X and t is
in the indexed interval Ix = [0,1]k. Clearly A. is an 0-overspace.

Proposition 5.3 In the notation just given, the F-overspace A. is a

p-extending F-fibration. Further A.lMC(ik) = (qÀ)*’ for all A E A.
Such a A. will be said to be a p-multicylindrical F-fib ration.

Proof. For all A E A, MC(ik) and MC(jk) are subspaces of the spaces
MMC(iÀ A) and MMC(jÀ A), respectively. Hence each A8IMC(iÀ)
is the corresponding cylindrical 7-fibration (qÀ)*’ for all A E A.

Now MC( i À’ 0) is an open subspace of MC( i À)’ so A. lMC( ik, 0) co-
incides with (qk)*lMC(ik,0) and is itself an F-fibration, for all A £ A.
B x J and X x J are subspaces of MMC(iÀ A) and MMC(jÀ A), re-
spectively (proposition 5.2(i)). So A.l(BxJ) must be the F-fibration
px 1j: X x J-&#x3E;B x J. The CW-complex MMC(1k: A) has a numerable
open cover consisting of BxJ and all open sets in {MC (ik, 0)}k EA
[FP, thm.A.3.3]. It follows that A. is an 7-fibrations [B1, thm.4.7].

Clearly B and X are subspaces of MMC(iÀ A) and MMC(jÀ A),
respectively, for all A E A. So A 81 B = p and A is p-extending.

We consider an exarraple of the above construction. Given that

q: Y-&#x3E; B1 ÀEA Ck is a p-extending 7-fibrations, we define qA to be the
F-fibration qlCk: YlCk-&#x3E;Ck, for all A EA. The associated A. will be
denoted by q : Y.-&#x3E;MMC(iA: A).

Proposition 5.4 Let z A B-&#x3E;Ck denote the inclusion of the subcom-
plex B of the CW-complex CÀ’ for all A E A. We take q, qA and q. as
in the preceding example and j k : YlC -&#x3E; Y as the inclusion.

(i) If S : MMC(ik : A) -&#x3E; Vk£A Ck is the homotopy equivalence un-
der B of lemma 5.2(iii), then qs: Y n MMC(ik:A)-&#x3E;MMC(ik:A) is
a p-extending F-fibration. Furthermore, there is an F-homeomorphism
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Y. -&#x3E; Y n MMC(ik: A) over the space MMC(ik:A), i. e. from q. to

qs, that restricts over B to 1 x .
(ii) ((q8)N, IX) =p (q, IX), where N is as in lemma 5.2(iii).
(iii) If A 8 is as in proposition 5.3, then there exists a p-extending

,1’-fibratz*on q : Y- Vk£A Cx such that (q8, IX) =p (A, Ix).

Proof. (i) Let Ix denote a copy of I that is indexed by A E A. We
define the F-map e:Y.-&#x3E;nMMC(ik:A) by f(y) == (y, q(y)) for

y E Yx, and e(x, t) = (x, (p(x),t) for (x, t) E X x Ik. Let s (A)
S(ik): MC(ik) -&#x3E; CA denote the usual retraction. We see, via lemma
5.1(i), that the restriction of i over MC(i)..) is an J’-homeomorphism
MC(jA) -&#x3E; (YlCk) n MC(ik) over MC(iA). It then follows, utilising
lemma 1.1 (iii), that e is a homeomorphism over MMC(ik: A).

(ii) This is a direct generalization of the proof of proposition 5.1(ii).
(iii) Let N and S be as in lemma 5.2(iii). We define q to be (A*)N.

Then (q8, Ix) = (((A8)N)8, lx) =p (((A8)N)S, Ix) by (i) of this propo-
sition. Further (((A.)N)s,1x) = ((A8)Ns,lx) =p (A8,lx) by lemma
4.3(ii). Hence we have (q, 1x) =p (A., 1X).

6 MODULE IIIb: On the Mayer-Vietoris
and Wedge Conditions

If B is a singleton space and base point * for C, F a given F-space and
p the 0-fibration F -&#x3E; * then various p-concepts simplify.

Definitions 6.1 An F-grounded F-fibration (q, h) is an F-fibration
q: Y - C over a pointed space C, and an .7-homotopy equivalence
h: F--tYI*. For example, if 7rc: F x C-C denotes the projection, then
(rea, IF) is the trivial F-grounded F-fibration over C.

If (qA : Y -&#x3E;3 C, hk : F-&#x3E;Y l(*), for A = 0 and 1, are F-grounded
F-fibrations then an J’FHE g : Y0 -&#x3E; V1 will be said to be an F-grounded
F FHE from (q0, h0) to (q1, h1) if hI -jr (gl(Y0l*))h0, where the range
of this homotopy is restricted to Y, I*. We then write (qo, ho) =F (ql, hi).

The class. FFHE F(C) will consist of all F-grounded F FHE- classes
of F -grounded F-fibrations over C. Then F will be said to be FFHE F
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set-valued if F F H EF (C) is a set, for all choices of a pointed CW-
complex C.

The set-theoretical difficulty referred to in §1 is th.e problem of en-
suring that, for all spaces in W’, the classes F F H EF (C) are sets. Oth-
erwise F F H EF is not a functor and Brown’s theorem cannot be applied.

If (q, h) is an F-grounded F-fibration over C and f : D - C is a
pointed map then, using the identification (Yl*)xf*1 = Yl*, there is
an F-grounded 0-fibrations induced from (q, h) by f, i.e. (qf, h). If D

is a pointed CW-complex and f and g are pointed. maps from D to C
such that f cti° g, then (qf, h) =F (qg, h) (lemma 4.3(ii)).

We argued after definition 2.1 that, if F is F FHE set-valued and
C E W, then F FHE(C) is a set. The parallel "pointed" argument uses
lemma 4.3(ii) to show that, if F is FFHE F set-valued and C E W°,
then FFHEF(C) is a set.

Lemma 6.2 If F is F F H E set-valued and the subfibration replacement
property for F-fibrations is satisfied, then F is F F H EF set-valued.

Proof. Let C be a pointed CW-complex. We see, from the subfibra-
tion replacement property for F-Hbrations, that each F FHE class of
F-fibrations over C contains a member with distinguished fibre F. Let
R(C) be a set consisting of one representative from each F FHE class of
0-fibrations over C with such fibres.

If (q: Y -&#x3E; C, h: F -&#x3E; q-1(*)) is an F-grounded F-fibration then
there is a q’ in R(C) that is FFHE to q. Hence (q, h) is FFHE F
to (q’, h’), for some choice of an F-homotopy equivalence h’: F-+F.
So [(q, h)] = [(q’, h’)], and F FHEF(C) is a set. It follows that F is
FFHE F set-valued.

Let F be FFHEF set-valued. Then C -&#x3E; (FFHEF(C), [(7rc, IF)]),
defines a function from Wo to the class of pointed sets, where (7rC, IF))
is as defined in definitions 6.1.

Also, any pointed map f : D-&#x3E;C between spaces in Wo determines
a function j#: F FHEF(C)-&#x3E;FFHEF(D), with ([(q, h)])-&#x3E;[(qf,h)]), 
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where (q, h) is an F-grounded F-fibration over C. If g is also a pointed
map from D to C and f =0 g, then (q f, h) =F (qg, h), and so f# = g#.
Further these functions f # preserve the distinguished F FHE-classes
of F-grounded F-fibrations, i.e. f#([(7rC,1F)]) = [(7rD, 1F)I- Also, if

k : K-&#x3E;D and f : D-&#x3E;C are pointed maps between pointed spaces, then
(fk)# = k# f# clearly holds.

Let us assume that is FFHE set-valued, and that the subfibra-
tion replacement property holds for 0-fibrations. Then there is a con-
travariant functor F FHE F (-), from the homotopy category of spaces
in Wo to the category of pointed sets and pointed functions. The rule for
morphisms is given by F FHE F([f]) = f#, where f is a pointed map
between spaces in W°.

Let H be a contravariant functor from the homotopy category of
pointed CW-complexes to the category of pointed sets. If B is a pointed
subcomplex of the pointed CW-complex C, 1 denotes the inclusion

B --t C and u E H(C), then ulB will be used to denote H([i])(u) E H(B).
We consider the situation where Co and C1 are pointed subcomplexes

of the pointed CW-complex Co U Cl, with B = Co fl C1 being a pointed
subcomplex of both Co and Cl. Then H will be’said to satisfy the
Mayer- Vietoris condition if, for all such Ck and all u x E H(Ck), for
A = 0 and 1, and such that uolb = u11 B, then there exists a u E
H(Co U Cl) with UICA = UA, for A = 0 and 1.

Theorem 6.3 Let (9, U) be a category of enriched spaces, F be a given
£-space and F be the category of fibres containing F. If F is FFHE set-
valued and the subfibration replacement property holds for F-fibrations,
then the functor FFHEF (-) satisfies the Mayer- Vietoris condition.

Proof. Let B, Co and C1 be as specified in the statement of the Mayer-
Vietoris condition. Also let i(k) : B -&#x3E; CA, I (A) : CA -+ Co U Ci and
t(A) : MC(i(k)) -&#x3E; DMC(i(0), i(1)) denote the inclusions, for A E A =
{0,1}. If * denotes the basepoint of B then (*, 0) will be the basepoint
of MC(i(0)),MC(i(1)), and DMC(i(0),i(1)). We then have based ho-
motopy equivalences s(0): MC(I(0)) - Co, s(1): MC(i(1)) -&#x3E; Cl, and
S: DMC(i(O), i(l)) -&#x3E; Co U C1 (see lemmas 4.4(ii) and 5.2(iv)). We
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will use n(O), n(l) and N to denote respective based homotopy in-
verses of these maps. We further assume that (qk : Yk -&#x3E; Cx, hk)
are F-grounded F-fibrations, for A E f 0, 11, such that (q0lB, h0) =F
(qIIB,hl) via an FFHE h: Y0lB -&#x3E;Y1 l B. So in particular (hl (Y0 l *))h0
is F-homotopic to hl.

It follows from the subfibration replacement property for F-fibrations
that there must be an 0-fibrations q1 0 h : Y1 0 (Y0 l B) -&#x3E; C1 such that
(ql 0 h)IB = q0lB. Then’, taking 1 to denote the identity on Y0l*,
(qi 0 h, 1) is (Y0l*)-grounded F FHE to (ql, hl(Y0l*)). Hence by lemma
4.3(iii) (q1 0 h, h0) =F (ql, (hl(Y0l*))h0) =F (ql, hl). Now qo and q1 0 h
are both (q0lB)-extending F-fibrations, and so proposition 5.3 allows
us to define a (qolB)-extending 0-fibrations A over DMC(i(0),i(1)).
Then:

by lemma 4.3(i)
since Nj(0) = t(0)n(0),

by proposition 5.3
by proposition 5.1 (i)

by lemma 4.3(ii)

If we repeat this series of equivalences, but starting instead with
((A.) NlC1 , h0) and replacing C0,j(0),i(0),n(0),s(0),q0 and (qo)* by Cl,
t,(1), i(1), s(1), q, 0 h and (ql0h)* respectively, we will then ob-
tain ((A’)NICI,ho) =F (q1 0h,h0). Now (q1 0h,h0) =F (qt,h1), so

((A8)N/C1, ho) =F (ql, hi). Hence [((A.)N, ho)] is the required "u".

If C is a pointed space then the associated whiskered space C’ will
be C with a whisker grown at its distinguished point, i.e. C’ = MC(l)
where i : * -&#x3E; C takes * to the basepoint of C. Then (*, 0) at the isolated
end of the whisker will be the basepoint of C’. If C is a CW-complex
then so is C’, (lemma 4.4(i)) and (*, 0) can be taken to be a 0-cell (and
(*, 0)} a subcomplex) of C’ [FP, lemma 2.3.7].

We will again take p to be the map F-&#x3E;*; further p-concepts then
simplify. Thus q : Y -&#x3E; C is an F- extending F-fibration means that q is
an F-fibration with Yl* = F. We then have associated concepts of
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an 0-fibrations over C’ being F-cylindrical and of an 0-fibrations over

VkEA C’k being F-multicylindrical.

Let {Ck} kEA be a family of pointed CW-complexes and H be
a contravariant functor from the homotopy category of pointed CW-
complexes to the category of pointed sets. Then there is a function

w: H(V kEA Ck) -&#x3E; TT kEA H(Ck) defined by w( u) = {ulCk} kEA, where
u E H(VkEACk). If w is a bijection for all choices of {Ck}kEA, then
H will be said to satisfy the wedge condition.

Taking H to be F FHE F(-), the wedge condition function is then
w: F FHE F(VkEACk) -&#x3E; TTkEA F FHE F(Ck), defined by the rule

w[(q, h)] = ([(q]Ck , h)]} kEA, where (q, h) is an F-grounded F-fibrat ion
over V ÀEA C À. We now define an analagous function cv’ for cylindrical
and multicylindrical fibrations, and reduce the problem of proving the
bijectivity of ca to the corresponding problem for w’.

If C is a pointed CW-complex, then F FHE F cyl (C’) will denote the
set of all F-grounded JFFHE classes of pairs (q*, 1 F ), where q is an

F-extending 0-fibrations over C. Further F FHE F mcyl (VkEAC’k ) will
denote the set of F-grounded F FHE classes of pairs (q., 1F), where
q is an F-extending F-fibration over V ÀEA CÀ. There is a function

w’ :F FHE F mcyl (VkEAC’k)-&#x3E; TTkEA F FHEF cyl (C’k), defined by the rule
w’[(q., 1F)] = {[( q.lC’k, 1F)]}kEA, where q is an F-extending F-fibration
over VkEA Ck.
Lemma 6.4 If F is F FHE set-valued and the subfibration replacement
property holds for F-fibrations, then w is bijective if and only if w’ is

bijective.

Proof. We state and prove three conditions: the result then follows.
(i) §:F FHE Fcyl (C’)-&#x3E;F FHE F(C), §([(q*,1F)]) = [((q*)n,1F)] is a

bijection, where C is a pointed CW-complex, n : C -&#x3E;C’ the based ho-

motopy equivalence of lemma 4.4 (ii), and q an F-extending F-fib ration
over C.

If (q, h) is an F-grounded F-fibration over C then we know, by the
subfibration replacement property for F-fibrations, that there exists an
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F-extending F-fibration q 0 h over C such that (q 0 h, 1F) =F (q, h).
Then §([((q0 h)*, 1F)]) = [(((q0 h)*)n, 1F)] = [(q.0 h, 1F)] by proposi-
tion 5.l(ii). Now [(q 0 h, 1F)] = [(q, h)] and so fl is surjective.

Let qo and ql be F-extending 0-fibrations over C and §[(q0, 1F)] =
g[(q1,1F)] , i.e. ((q0)n ,1F) =F ((q1*)n , 1F) . It follows from proposi-
tion 5.1(ii) that (q0, 1F) =F ((q0)n, 1F) =F ((q1)n, 1p.) =F (q1, 1F). So
(qo, IF) =F (qi, IF), and ç is injective.

(ii) If {Ck}kEA is a family of pointed CW-complexes, then there is
a bijection E : F FHE F mcyl (VlEAC’k)-&#x3E; F FHE F (VkEACk), defined by
E([(q., Ip)]) = [((q.)N, 1F)], where q is an F-extending F-fibration over
VaEACw

The proof of (i) applies verbatim once we replace §, C, C’, n:C-&#x3E;C’,
q*, (q0h)*, qo, qi, and proposition 5.l(ii) by E, VkEACk, VkEAC’k
N:VkEACk-&#x3E;VkEAC’,q.,(q0h).,q0,q.1 q1, and proposition 5.4(ii), re-
spectively.

(iii) There is a bijection §k:F FHE F y(Ck)-&#x3E;F FHE F(Ck), for
each k £ A. If TTk£A§k: TTkEA FFHEF cyl(C’k) -&#x3E; TTk£A FFHEF(Ck)
denotes the obvious associated bijection, then w E = (TTk EA § k )w’ .

Let j(k) : C -&#x3E; V ÀEA CÀ and L(À) : C’ -&#x3E; V kEA C’ denote the in-
clusions, and n(k) be a based homotopy equivalence Ck -&#x3E; C’k (see
lemma 4.4(ii)). Given an F-extending F-fibration q over V kEA Ck,
we have:

Theorem 6.5 Let (E, U) be a category of enriched spaces, F be a given
£ -space and F be the category of fibres containing F. If T is TFHE set-
valued and the subfibration replacement property holds for F -fibrations,
then the functor :FFHEF (-) satisfies the wedge condition.
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Proof. We will verify the bijectivity of Ct/; the result then follows from
lemma 6.4. Let {Ck}k£A be a family of pointed CW-complexes.

(i) The surjectivity of w’. A typical member of TTkEA FFHEFcyl( C’k)
has the form {[((qk)*, 1F)])k£A, where qk: Yk-&#x3E; C.À is an F-extending
F-fibration for each A E A. We know via proposition 5.3 that we can
construct an F-multicylindrical F-fibration A over VkEA C’k, such that
A.lC’k = (qk)*, for all k £ A. According to proposition 5.4(iii), there
exists an F-grounded F-fibration q : Y -&#x3E; VkEA Ck such that (q., IF) =F
(A., IF). Hence (q.lCk, 1F) =F (A.lC’k, 1F) = ((qx)*,1F) , for all A E A.
Then w’[(q., 1F)] = {[(q.lC’k, 1F)]}kEA = {[((qk)*,1F)]}kEA, for all
A E A. It follows that cV is surjective.

(ii) The injectivity of w’. Typical members of FFHEF mncyl(Vk£AC’k)
take the forms [(q.,1F)] and [(q.1,1F)], where q0:Y0 -&#x3E; VA£ACk and
q1:Y1 -&#x3E; VkEACk are F-extending F-fibrations. If w’[(q0., 1F)] =
w’[(q.1,1F)], then there exist F-grounded FFFHEs fk : Y0lC’k-&#x3E;Y1.c’k
from (q0l C’k , IF) to (q1.lC’k, IF), for all A E A. Thus we have F-grounded
FFHEs fk:(Y0lCk)*-&#x3E;(Y1lCk)* from ((q0lCk)*,1F) to ((q1lCl)*,1F),
for all A E A (see proposition 5.3). Restricting over the basepoint (*,0),
we obtain maps fk](*,0) : Fx{0}-Fx{0} which satisfy 1Fx{0} =F
fkIl(*,0) via an F-homotopy Fx{0}xI-&#x3E;Fx{0}. Identifying Fx{0}
with F, we obtain a family of F-homotopies Hk : FXI -&#x3E; F, with

Hk(z,0) = z, and (H,B(z, 1),0) = fk(z,0), where z.E F.
Let 1rF denote the projection FxI -&#x3E; F. We define f: Y0.-&#x3E; Y1. by

f(y) = fk (y), if y £ Y0lCk, and
if . and
if and

Then f is [Bl, thm.5.4] an F-grounded FFHE from (qo, IF) to (qi, IF).

7 MODULE IV: Brown’s theorem applied
We assume, throughout this module, that (E, U) is a category
of enriched spaces, F is a given £-space and F is the category
of fibres containing F.
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The following version of the Brown Representability Theorem will
be justified at the end of this section.

Theorem 7.1 Let H be a contravariant functor from the homotopy
category of pointed CW-complexes to the category of pointed sets and
pointed functions, satisfying the Mayer- Vietoris and Wedge conditions
and such that H(S0) contains only one elerrtent. Then there exist a path
connected pointed CW-complex Coo and a universal element u E H(Coo),
i.e. for each pointed CW-complex D the rule 0([f]) = H ([f]) (u) specifies
a natural bijection O: [D, Coo]0 -&#x3E; H(D), where [f] E [D, Coo]0.

Let F be FFHEF set-valued and (q : Y-C, h ) be an F-grounded
0-fibrations. It follows via lemma 4.3(ii) that [f -&#x3E; .[(qf’ h)] determines
a natural transformation 0 = O(q, h) : [D, C]o -&#x3E; F F H EF (D), relative
to all D E W0.

Definition 7.2 Let us assume that F is FFHE F set-valued and that
there is an F-grounded F-fibration (PF : XF -&#x3E; B F, hF : F - X Fl*).
Then (PF’ hF) will be said to be grounded universal amongst F-grounded
F-fibrations if, for all choices of spaces D E Wo, the associated function
O= O(PF, hF) : [D, BF]0 -+ FFHEF(D) is a natural bijection.

Proposition 7.3 If 0 is FFHE set-valued and FFHE F(_) satisfies
the Mayer-Vietoris and wedge conditions, then there is a path con-
nected pointed CW=complex B F and a grounded universal F-grounded
F-fibration (PF:XF7-&#x3E;BT, h.F).

Proof. We first restrict the domain of our functor F F H EF ( -) to the
homotopy category of pointed CW-complexes. Now F is a category of
fibres, so clearly FFHE F(S0) is a singleton set. Taking H to be this
restriction of TFHE F(-), the existence of (PF,hF) follows immedi-
ately from our assumptions and theorem 7.1. Thus O is a bijection for
pointed CW-complexes D.

If C and D are in Wo and there is a based homotopy equivalence
C-D, then there are induced bijections FFHE F (D)-&#x3E;FFHEF(C)
(see lemma 4.3(ii)) and [D, BF]0-&#x3E;[C, BF]0. Our result, i.e. for do-
main W°, follows via the naturality of 0.
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Proposition 7.4 If (p F, hF) is grounded universal amongst F-grounded
F-fibrations, then PF is free universal amongst F-fibrations.

Proof. If (p, : X, - Bjr, hF) is a grounded universal F-grounded
0-fibration and D E W then D U 1*1 E W° and 8(PF) is the composite
bijection:

Theorem 7.5 Let (E, U) be a category of enriched spaces, F be a given
£ -space and F be the category of fibres containing F. If F is FFHE
set-valued and :FFHEF (-) satifies the Mayer-Vietoris and wedge con-
ditions, there exists a free universal :F -fibration PF : XF-&#x3E; Bjr over a
path connected CW-complex B.F.

Proof. The result is immediate from propositions 7.3 and 7.4.

Let us suppose that fx : C -+ D À and 9 À : Dk-&#x3E;E are pointed maps
between pointed CW-complexes, for A = 0 and 1, such that gofo -°
9111. Then {f0,f1,g0,g1} will be said to be a weak pushout if, for all
choices of a pointed CW-complex K and pointed maps go : Do-&#x3E;K and
gi : D1---+ K such that go fo -° g’1f1, there is a pointed map k : E-&#x3E;K
such that g’ -0 kgo and g’1 =° kgi.

Let H be a contravariant functor from the homotopy category of
pointed CW-complexes to the category of pointed sets and pointed
functions. Then H will be said to satisfy the weak pushout condition
if, for all weak pushouts {f0,f1,g0,g1}, uo E H(Do) and ul E H(Di)
such that H(fo)(uo) = H(f1)(u1), there exists a u E H(E) such that
H(go)(u) = uo and H(g1)(u) = u1.

Proof of theorem 7.1. According to [B(E), thm.2.8] and the remark that
follows it, we just need to verify the wedge and weak pushout conditions;
hence it is sufficient for us to use the Mayer-Vietoris condition to prove
the weak pushout condition.

Let us assume that {f0,f1,g0,g1} is a weak pushout; the cellu-
lar approximation theorem allows us to take these four maps to be
pointed cellular maps. If * denotes the base point of C, then the
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points (*,0), (*,0) and [(*, 0)] will be taken as base points for the CW-
complexes MC(f0), MC(f1) and DMC( fo, fl) respectively (see lemmas
4.4(i) and 5.2(ii)). For each A E {0, 11, we will write ik : C-&#x3E;MC(fk)
for the inclusion determined by ik (c) = (c, 0) with c E C. The inclusion
MC(fk)-&#x3E;DMC(f1,f1) will be denoted by tk. Also there is a pointed
homotopy equivalence s x = s(fk):MC(fk)-&#x3E;Dk, with a pointed ho-
motopy inverse n x : Dk-&#x3E;MC(fk), for A E {0, 11 (see lemma 4.4(ii)).

We know that fA = s xi x and that n xs x is based homotopic to
the identity on MC(fk)), so nkfk = nkskik =0 ik, for A E fO,11.
Hence tonofo -° toio = t1i1 -° tini fi . It follows from the weak pushout
property that there is a pointed map k : E-&#x3E;DMC(fo, f1) such that
kgk =0 tknk, for A £ {0,1}.

We will assume that u x E H(D,,), for A E f 0, 11, are such that
H(f0)(u0)= H(f1)(u1). Each n x is a pointed homotopy equivalence, so
for each A there is a unique vk E H(MC(fk)) such that H(nk)(vk) =
Ux. Then volC = H(nofo)(vo) = H(fo)H(no)(vo) = H(fo)(uo) =
H(f1)(u1) = H(fl)H(nl)(vl) = H(n1f1)(v1) = vi IC. We will now view
Io and I, as two distinct copies of I, and Me (1),) = (C x 1).J U j A D,
for A = 0 and 1. Identifying C with Cx{00} and CX{01}, we see that
C = MC( fo) n MC(f1) and DMC( fo, f1) = MC( fo) U MC( fl). Hence
the Mayer-Vietoris condition applies. So there is a v E H(DMC( fo, fl))
such that vlMC(fk) = vk, for A = 0 and 1. Let us define u =

H(k)(v) E H(E). Then H(gk)(u) = H(gk)H(k)(v) = H(kgk)(v) =
H(txnx)(v) = H(nk)H(tk)(v) = H(nk)(vk) = uk, for k £ 10,11.
So H(gk)(u) = uk for each A E A, and the weak pushout condition is
proved.

8 MAIN RESULT: Combining the Mod-
ules

Theorem 8.1 Let (£, U) be a category of enriched spaces that is £FHE
set-valued, F be an £ -space and F denote the category of fibres deter-
mined by F. Then the following conditions are related as indicated:



115

(a) (£, U£, {X xE I}) is a category of well enriched spaces
under a space A, with associated category of enriched spaces
(9, U) (see lemma 2.4).

(b) The double retraction property holds for F-fibrations.

(c) The subfibration replacement property holds for F-fib rations.

(d) F is FFHE set-valued, and the functor FFHE F(-) satis-
fies the Mayer - Vietoris and wedge conditions.

(e) There exists a free universal F-fibration PF:XF-&#x3E;BF,
over a path - connected CW-complex BF.

We notice that this result includes the particular case where E is
itself a category of enriched fibres, i.e. where E F.

Proof. (a) =&#x3E; (b), (b) =&#x3E; (c), (c) =&#x3E; (d), and (d) =&#x3E; (e) follow from the
main results of modules I, II, III, and IV respectively, i.e. theorems 3.7,
4.8, 6.3 and 6.5, and 7.5, respectively.
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