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CAHIERS DE TOPOLOGIE ET Volume XXXVIII-4 (1997)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

WEAK SUBOBJECTS AND WEAK LIMITS IN

CATEGORIES AND HOMOTOPY CATEGORIES
by Marco GRANDIS

Résumé. Dans une catégorie donnée, un sousobjet faible, ou variation,
d'un objet A est défini comme une classe d'équivalence de morphismes a
valeurs dans A, de fagon a étendre la notion usuelle de sousobjet. Les
sousobjets faibles sont liés aux limites faibles, comme les sousobjets aux
limites; et ils peuvent étre considérés comme remplagant les sousobjets
dans les catégories "a limites faibles", notamment la catégorie d'homotopie
HoTop des espaces topologiques, ot il forment un treillis de types de
fibration sur l'espace donné. La classification des variations des groupes et
des groupes abéliens est un outil important pour déterminer ces types de
fibration, par les foncteurs d'homotopie et homologie.

Introduction

We introduce here the notion of weak subobject in a category, as an extension of
the notion of subobject. A weak subobject, or variation, of an object A is an
equivalence-class of morphisms with values in A, where x ~, y if there exist
maps u, v such that x = yu, y = xv; among them, the monic variations (having
some representative which is so) can be identified to subobjects. As a motivation
for the name, a morphism x: X — A is commonly viewed in category theory as a
variable element of A, parametrised over X (e.g., see Barr - Wells [1], 1.4). The
dual notion is called a covariation, or weak quotient, of A.

We claim that variations are important in homotopy categories, where they are
well linked to weak limits, much in the same way as, in "ordinary" categories,
subobjects are linked to limits. Nevertheless, the study of weak subobjects in
ordinary categories, like abelian groups or groups, is interesting in itself and
relevant to classify variations in homotopy categories of spaces, by means of
homology and homotopy functors.

In fact, subobjects, defined as equivalence classes of monics x: « = A (under
the same equivalence relation as above), are well related with limits: the inverse
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image f*(y) along f: A — B of a subobject y: » — B, given by the pullback of
y along f, is precisely determined as a subobject of A (and only depends on y
as a subobject of B). Thus, subobjects are important in "ordinary" categories,
where limits exist, and the common abuse of denoting a subobject by any of its
representatives does not lead to errors.

Consider now the homotopy category HoTop = Top/=~ of topological spaces
modulo homotopy (equivalent to the category of fractions of Top which inverts
homotopy equivalences). HoTop lacks ordinary pullbacks, but does have weak
pullbacks, just satisfying the existence part of the usual universal property: they are
provided by homotopy pullbacks in Top. Of course, a weak pullback (P, hy, hy)
of two morphisms (f}, f,) having the same codomain is just determined up to a
pair of maps u, v consistent with (hj, hp)

(1) u:P= Q:v h;.vu = h;.

Now, mimicking in HoTop (or in any category with weak pullbacks) our
previous argument on subobjects: "the" inverse image along f: A — B of a
variation y: « — B, given by the weak pullback of y along f, is determined as a
variation of A, and can still be written f*(y), up to a similar abuse of denoting a
variation by any of its representative. It is also of interest to note that each variation
of a space A in HoTop can be represented by a fibration, forming a (possibly
large) lattice Fib(A) of types of fibrations over A (2.1).

In a second paper, whose main results are sketched in 1.8, it will be shown that
variations in A can be identified to (distinguished) subobjects in FrA, the free
category with epi-monic factorisation system over A, extending the Freyd embed-
ding of the stable homotopy category of spaces in an abelian category [11].

Classifying variations seems often to be a difficult task. After some trivial cases,
where they reduce to subobjects, our main results here cover some classes of
finitely generated abelian groups; a complete classification within this category
should be attainable. Such results are the obvious tool to separate homotopy varia-
tions of spaces, via homology and homotopy functors, and are a first step in the
study of the problem for CW-spaces; this is only achieved here in a very particular
case, for a cluster of circles (3.4). As partial results, it may be interesting to note
that there is a sequence of homotopy variations of the 2-sphere S2, defined over
the torus, which is collapsed by all n; and separated by Hy; and a sequence S>
— §2 generated by the Hopf fibration, which is collapsed by homology, but sepa-
rated by =3, and can not be realised over closed surfaces (2.4). Of course, the
choice of the ground-category is crucial to obtain good classifications; e.g., finitely
generated abelian variations or covariations always yield countable lattices, whereas
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any prime order group Z/p has at least a continuum of abelian variations and a
proper class of abelian covariations (1.5-6). Further study should show which
restriction on spaces are more productive (see 2.2).

Concerning literature, normal or regular variations have appeared in Eckmann-
Hilton [9] and Freyd [13-14], under the equivalent form of "principal right ideals"
of maps, to deal with weak kernels or weak equalisers. Recently, Lawvere (21] has
considered a "proof-theoretic power set Pc(A)", defined as the "poset-reflection
of the slice category C/A", which amounts to the present ordered set Varc(A) of
weak subobjects. The Freyd embedding for stable homotopy [10-12] and his
results on the non-concreteness of homotopy categories [13-14] are also relevant
for the present study. Weak limits have been recently used in Carboni-Grandis [6]
and Carboni-Vitale [7]. For homotopy pullbacks and homotopy limits, see Mather
[23], Bousfield-Kan [5], Vogt [24]. A different approach to "subobjects" in
homotopy categories is given by Kieboom [18]. The author gratefully acknowl-
edges helpful remarks from F.W. Lawvere and P. Freyd.

Outline. The first section deals with generalities; some classifications of variations
and covariations are given for sets, pointed sets, vector spaces (1.4), abelian
groups (1.5-6) and groups (1.7). Homotopy variations are introduced in Section 2,
and studied for the circle, the sphere and the projective plane. In Section 3 we deal
in general with various transformations of weak subobjects, under direct and
inverse images, or adjunction, or product-decompositions. These tools are used to
classify the homotopy variations of a cluster of circles (3.4) and, in Section 4, to
give further classifications of finitely generated abelian variations, in particular for
all cyclic groups (4.3); some open problems are listed in 4.6.

1. Variations and covariations in a category

A is a category. A variation in A is an extension of the notion of subobject.

1.1. Definition. For an object A of A, a variation, or weak subobject, of A
will denote a class of morphisms with values in A, equivalent over A with
respect to mutual factorisation

(1) x~ay iff thereexist u, v suchthat x=yu, y=xv
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In other words, x and y generate the same principal right ideal of maps with
values in A (or, also, are connected by morphisms x — y — x in the slice-
category A/A of objects over A). By a standard abuse of notation, as for subob-
jects, a variation & =[x]a will be generally denoted by any of its representatives Xx.
Note that the domain of the variation x: X — A is only determined up to a pair of
maps w: X — Y, v: Y — X such that x.vu =x (x sees its domain as a retract
of Y; and symmetrically, x'=xv: Y — A sees its domain as a retract of X).

The (possibly large) set of variations of A is written Var(A). It is ordered by
the relation x <y, meaning that x factors through y (independently of represen-
tatives). The identity variation 1, is the maximum of Var(A). If two variations x,
y of A have a weak pullback, then its diagonal is a representative of their meet
xay. However, a weak pullback is more than really needed; e.g., the trivial meet x
= xaX always exists, whereas a weak pullback of (x, x) need not; further, if it
exists, its diagonal is certainly equivalent to x as a weak subobject, but need not be
linked to it by an iso (see 2.3.2). If A has an initial object, Var(A) has also a
minimum Oj: L — A; similarly, if A has finite (or small) sums, then Var(A)
has finite (or small) joins, computed in the obvious way (weak sums are sufficient)

B) Vi Xi— A) = x: 5 X; — A.

A variation x will be said to be epi if it has a representative which is so in A,
or equivalently if all of them are so. Such a variation need not be the identity: x ~ 5
15 iff x: X — A is a retraction (a split epi); a split epi onto A should thus be
viewed as giving the same information with values in A as 1, with redundant
duplication (see also 2.3). The object A has only one epi variation (namely, 1,) iff
it is projective in A; more generally, an epimorphism p: P — A defined over a
projective object provides the least epi variation of A.

Dually, a covariation, or weak quotient, [x]* of A is a class of morphisms
starting from A, equivalent under A (x ~”y iff there exist u, v suchthat x =
uy, y = vx). The identity covariation is the maximum of Cov(A), written 14; its
representatives coincide with the split monics A — +. If A has terminal object,
Cov(A) has also a minimum 0A: A — T. Weak pushouts give meets of covaria-
tions, weak products give joins, V(x;: A — Xj) =x: A — Il; X;. A monic

-304-



M. GRANDIS - WEAK SUBOBJECTS AND WEAK LIMITS...

covariation is represented by monomorphisms. The zero-object 0, when it exists,
has only one variation (any X — O is a split epi) and only one covariation.

Plainly, the sets Var(A) and Cov(A) are small for every locally small category
having a small set of isomorphism types of objects. This condition is not necessary,
by far (see 1.4), but provides various concrete examples: given a concrete category
U: A — Set, where U is faithful and has small fibres (every small set has a
small set of A-objects over it), take the full subcategory of A whose objects have
underlying set bounded by a given cardinal.

1.2. Variations and subobjects. Two monics x, y in A are the same
variation iff they are equivalent in the usual sense, i.e., define the same subobject of
A (in 1.1.2, u and v are reciprocal isomorphisms, uniquely determined). Thus,
the ordered set Sub(A) of subobjects of A can be embedded in Var(A), and we
may define a variation x: X — A to be a subobject if it has some monic
representative m: M — A (all the other representatives are then given by the split
extensions of M, and include all monics equivalent to m).

If A has unique epi-monic factorisations, every weak subobject x has a well-
defined image, or carrier im(x), namely the subobject represented by the image of
any representative of x, and Sub(A) is a retract of Var(A). Then, x is an epi
variation iff im(x) = 1. Given a subobject m: M — X, the variations x of X
whose image is m are in bijective correspondence with the epi variations y of M,
via y — my. Thus, in a category with unique epi-monic factorisation, the
variations of A are determined by subobjects of A together with epi variations of
the latter; and a non-split epi over A provides a variation which no monic can give.

1.3. Variations and functors. Let A be afull subcategory of B containing
A. Two A-morphisms x: X — A, y: Y — A areequivalentin A iff they are so
in B, and we shall identify each A-variation with the B-variation containing it,
writing Vara(A) < Varg(A) (the embedding reflects the order); of course, A may
admit other B-variations, not representable in A (see 1.7). If B has weak
pullbacks and weak finite sums and A is closed in B with respect to (some
representatives of) them, then Vara(A) is a sublattice of Varg(A).

More generally, every functor U: A — B induces two monotonic mappings
(1) Var(U): Vara(A) — Varg(UA), Cov(U): Cova(A) — Covg(UA)

which reflect the order (and are injective) whenever U is full and faithful; they are
surjective if U is full and representative (essentially surjective on objects). Var(U)
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is also surjective for a category of fractions U: A — S'!A admitting a right
calculus [15], since then every S-!A-variation y = as’! has a representative in A,
namely a. Both mappings (1) will often be written as U.

Now, before progressing with the abstract theory, we give some examples
where weak subobjects and weak quotients can be easily classified.

1.4. Trivial examples. We noticed that, in a category with unique epi-monic
factorisations, it suffices to consider epi variations of subobjects and monic
covariations of quotients (1.2).

In Set, every epi splits, by the axiom of choice, and the unique epi variation of
aset A is the identity: variations and subobjects coincide. As to covariations, note
that a monic x: A — X splits except for A =@ # X. Thus, the covariations of a
non-empty set coincide with its quotients, whereas @ has two covariations, the
identity and 0%: @ — {*}, which is smaller and is not a quotient.

Similarly, in any category with epi-monic factorisations where all epis split (i.e.,
every object is projective), weak subobjects and subobjects coincide. This property,
and its dual as well, hold in the category Set” of pointed sets, or in any category
of vector spaces (over a fixed field), or also in a category of relations Rel(A) over
a well-powered abelian category. In all these cases, the sets Var(A) and Cov(A)
are always small. In the latter, the subobjects (and quotients) of an object A can be
identified to the subquotients of A with respect to A.

1.5. Abelian variations. Consider now the category Ab of abelian groups.
(Similar arguments can be developed for modules over any principal ideal domain.)
We discuss here the variations of free abelian groups and Z/2 (any prime-order
group behaves as the latter). More general results are given in Section 4.

We write Abgg the (abelian) full subcategory of finitely generated objects A
(fg-abelian groups, for short) and Vargg(A) the subset of fg-variations of A,
having representatives in Abgg; we already know it is a sublattice of the lattice
Var(A) of all abelian variations of A (1.3). The structure theorem of fg-abelian
groups proves that Vargg(A) is always small, actually countable: indeed, there are
countably many isomorphism types of fg-abelian groups X, and each of them
provides countably many homomorphisms x: X — A.

To study Vargg(A), it suffices to consider epi variations of subobjects. And we
shall repeatedly use the decomposition 1.1.3 of the variation x

1) x = vxX; X = ®X;
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given by a (finite) decomposition of its domain X in indecomposable cyclic
groups, infinite or primary.

First, the abelian variations of a free abelian group F coincide with its
subobjects (and are all finitely generated when F is so0). Indeed, if x: X — F is
surjective, then it splits and x ~ 1; otherwise, apply the same argument to Im(x),
which is also free. In particular, the lattice Var(Z) = Sub(Z) is distributive and
noetherian (every ascending chain stabilises); the variations of Z, coinciding with
its subobjects, can also be represented by its "positive" endomorphisms

2) xpZ — Z, Xxp(@ = na @20)
Xm<Xx, iff mZcnZ, iff n divides m.

The two-element group A = Z/2 has two subobjects, O and 1. There is
precisely one non-surjective variation, the subobject 0 (provided by the unique
variation of the zero-object). But there are infinitely many fg-variations of A; in.
fact, consider the natural morphism x, (sending 1 to 1, surjective for n > 0)

3 xpZn2 - 712 n e [0, o]

1 =X1>X2>X3> .. >Xe>Xp=0
(including the natural projection X... Z — Z/2, by setting 2=Z = 0). These weak
subobjects form a totally ordered set V, anti-isomorphic to the ordinal w+2 (thus,
every subset of V has a maximum). The inequalities above are strict, because (for
neN) any morphism u: Z/2" — Z/2"*! takes the generator to an element 2a,
which is killed by x,41; and the unique morphism Z/2" — Z is null.

There are no other fg-variations; indeed, any x: X — Z/2 can be decomposed
as above, x = VxlIXj, and the restriction xIX; is the null variation unless the order
of X is infinite or a power of 2; thus, all xIX; fall in our previous set and have a
maximum there. Our lattice is again distributive and noetherian.

On the other hand, Z/2 has also non-finitely generated variations, and at least a
continuum of them. For any multiplicative part M of the ring Z (a multiplicative
submonoid containing —1), consisting of odd numbers, consider the (surjective)
variation yy defined over the subring M~1Z = {0/, | heZ, me M} of the rational
numbers (the ring of fractions of Z inverting all me M)

@ ym:MZ — 72, yM(Wm) = h
Xoo £ YM € Xp Z— M!Z—zZ/20 (n < o)
(where M~1Z — Z/2" is induced by the natural projection Z — Z/2").
Then, M = {1, -1} gives yMm = X». Excluding this case, ypm is not finitely
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generated: it does not precede X.. (any homomorphism M-'Z — Z is null, since
its image is divisible by any meM) nor follow any x, with n<e (any Z/2" —
M-!Z is null, since its image is a torsion group). All the variations yy are distinct:
ym<sym iff M c M. As any subset of the set of (positive) odd prime numbers
spans a distinct M, our variations form a non-noetherian, complete lattice having
the cardinal of the continuum,; its maximum is the 2Z-localisation of Z.

1.6. Abelian covariations. Weak quotients in Ab can be studied, in part, in a
dual way. For instance, the abelian covariations of a divisible abelian group, like
Q. Q/Z, R, R/Z, coincide with its quotients (divisible abelian groups are the
injective objects of Ab, closed under quotients).

Again, the lattice Covgy(A) of fg-covariations of an fg-abelian group is count-
able. And every weak quotient x: A — X can be decomposed as a join

(1) x = Vv (prix: A — X)), X = ®X;

of covariations with values in an indecomposable cyclic group. If A is torsion, we
may clearly omit the free component in @X; and assume that also X is torsion.

The fg-covariations of the prime-order group Z/p form a totally ordered set
anti-isomorphic to the ordinal w+1; all of them are monic, except for xo: Z/p — 0

(2) Xq: Zlp — Zip", xn(1) = p™! (n € [, o)
1 =X >%X2>x%x3>.. >%x0=0

(compare with the list of variations in 1.5.3, anti-isomorphic to ©+2: here, we
have no contribution from Z).

But Z/p has also non-finitely generated covariations, for instance y: Z/p —
Q/Z, y(1) = [1/p], and actually a proper class of abelian covariations. Indeed, as
shown by Freyd ([14], p. 30), one can construct a family of p-primary torsion
abelian groups (G), indexed over the ordinals, each with a distinguished element
A€ Go, Mg # 0, pAg = O which is annihilated by any homomorphism Gy — Gg,
for o > B. Therefore, all the covariations yq: Z/p — G, 1 — Ay are distinct.

The fg-covariations of Z can be viewed as monic covariations of its quotients.
One should thus classify first the monic fg-covariations of all cyclic groups.

1.7. Group variations. Also in the category Gp of groups, the weak subob-
Jjects of a free group coincide with its subobjects, by the Nielsen-Schreier theorem:
any subgroup of a free group is free. But things are more complicated than in the
abelian case, because a subgroup of a free group of finite rank may have countable
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rank (see Kurosh [20], § 36).

Consider the full subcategory Gpsg of finitely generated groups (fg-groups).
The set Varg(G) < Var(G) of fg-variations (having representatives in Gpgg) of
an fg-group G has at most the cardinal number of a continuum. In fact, the free
group on n generators is countable and the set of its quotients is at most a contin-
uum, whence the same holds for the set of isomorphism types of fg-groups (this is
indeed a continuum, by a theorem of B.H. Neumann [20}], § 38); and each type X
yields countably many homomorphisms X — G. For a finite group G, it may be
useful to consider the A-semilattice VardG) C Vargg(G) of finite variations; this is
countable because the set of isomorphism types of finite groups is so, by the
classical Cayley theorem (finite groups can be embedded in symmetric groups).

Consider now the full embedding Ab c Gp. For an abelian group A, the set
of abelian variations Var(A) is embedded in the set Vargy(A) of its group-
variations. Every group-variation y: G — A has an obvious abelian closure ®y:
ab(G) — A, the least abelian variation of A following y; y itself is abelian iff it
is equivalent to 2y, Var(A) c Vargp(A) is thus a retract (with the induced order).

The group-variations of Z, which is also free as a group, coincide with its
subobjects and are all abelian. Instead, Z/2 has also non-abelian fg-variations. For
instance, if G ==;(K) is the fundamental group of the Klein bottle, generated by
two elements a, b under the relation a+b = b-a, consider the following
homomorphism y and its abelianised variation 2Py, equivalent to 1

(1) y:G— Z/2, y@=1, yb)=0

aby = pry: ZReZ — Z/2
but y = 1, since G has no element of order two, actually no torsion at all (it is
isomorphic to the semidirect product ZxZ, with action kxh = (~1)¥.h).

A sequence of finite non-abelian group variations of Z/2 can be easily
constructed, over the semidirect product G, = Z/2"xZ/4 (n € [2, =]), given by a
similar (well defined!) action of Z/4 over Z/2": A*a = (-1).a. On the other
hand, any variation of an abelian group y: S; — A defined over a symmetric
group is abelian, because ab(S,) =Z/2 for n>2 ([20], p. 102), so that S, —
ab(S,) is a split epi.

1.8. Formal aspects. We end this section with a sketch of some general results,
relevant for a better understanding of weak subobjects, which will be proved and
developed elsewhere.

Any category A has an obvious embedding in its category of morphisms AZ.
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The latter is equipped with a factorisation system (E, M), which decomposes the
map f=(,f"):x — y as f=(f, 1).(1, {'), through the object f = f"x = yf
(the diagonal of the square f)

X = X — Y
R L
X'— Yy = Y

making AZ2 into the free category with factorisation system, or factorisation
completion of A.

Consider now the quotient FrA = A%/R, introduced by Freyd to embed the
stable homotopy category of spaces into an abelian category [11]: two parallel
morphisms f, g: x — y of A2 are R-equivalent whenever their diagonals, f
and g, coincide. One proves the following facts. The factorisation system of A2
induces an epi-monic system over FrA, which becomes the free category with epi-
monic factorisation system; or epi-monic completion of A. The distinguished
subobjects of A in FrA coincide with the weak subobjects of A in A. If A
has products and weak equalisers (as HoTop and various other homotopy
categories), FrA is complete (and dually). Also the links between factorisation
systems and pseudo-algebras for the 2-monad A — A2, studied in Coppey [8]
and Korostenski-Tholen [19], can be translated for epi-monic factorisation systems
and the induced 2-monad A — FrA.

2. Variations for spaces

Homotopy variations, in Top/~ and Top'/~, are considered. A deep study is
beyond the purpose of this paper; we just aim to show the interplay of homology and
homotopy functors in separating homotopy variations.

2.1. Homotopy variations. Consider a category A equipped with a congru-
ence f >~ g (an equivalence relation between parallel morphisms, consistent with
composition), which may be viewed as a sort of homotopy relation, since our main
examples are of this type. The quotient category A/~ has the same objects and
equivalence classes [f]: A — B of morphisms of A as arrows. A =-equivalence
f: A — B is a morphism whose induced class [f] is iso: there is some g: B — A
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such that gf ~ 1, fg =~ 1.

A =~-variationof A in A is just a variation in the quotient category A/=~. But
it will be simpler to take its representatives in A, as morphisms x: « — A
modulo the equivalence relation

(1) x=~py iff thereexist u, v suchthat x =~ yu, y =~ xv.

We have thus the ordered set Var.(A). As a quotient of Var(A), it can be
more manageable. Further, it is = -invariant: each =~ -equivalence f: A — B
induces an isomorphism of ordered sets Var.(A) — Var.(B).

Thus, for a space X, we consider first of all the ordered set Var~(X) of its
homotopy variations, in the homotopy category HoTop = Top/=~ of topological
spaces modulo homotopy (which can be equivalently realised as the category of
fractions of Top which inverts homotopy equivalences [15]).

This ordered set is a lattice. In fact, Top has sums, consistent with homo-
topies, and homotopy pullbacks, which implies that the quotient Top/=~ has sums
and weak pullbacks. Moreover, each homotopy variation can be represented by a
fibration, because every map in Top factors through a homotopy equivalence
followed by a fibration; it is thus more evocative to think of Var.(X) as the lattice
Fib(X) of types of fibrations over X. Dual facts hold for the lattice Cov.(X) =
Cof(X) of homotopy covariations, or types of cofibrations starting from X. Every
homology functor H,: Top — Ab can be used to represent homotopy variations
as abelian variations and, in particular, distinguish them. But Fib(X) can be large.
In fact, Freyd [13] proves that HoTep is not concrete showing that a space may
have a proper class of regular variations (called "generalised regular subobjects");
of course, a regular variation of X is a weak equaliser of some pair f, g: X — Y.

All this can be repeated or adapted for pointed spaces; and much of this can be
adapted to various other "categories with homotopies" (see [16-17] and references
therein), as chain complexes, diagrams of spaces, spaces under (or over) a space,
topological monoids, etc.

2.2. CW-spaces. It is important to restrict the class of spaces we are consider-
ing, to obtain more homogeneous sets of variations, which one might hopefully
classify. The comprehensive investigation of homotopy types in Baues [3] is of
help in choosing relevant full subcategories of Top'/~ and Top/~; we follow
his notation for such subcategories, with some adaptation.

A standard object of study in Algebraic Topology is the category CW of CW-
spaces X, i.e. pointed spaces having the homotopy type of a connected CW-
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complex, with pointed maps; the variations of X in CW/=~ will be called cw-
variations. Because of the Cellular Approximation Theorem, CW/= is equivalent
to pointed connected CW-complexes, with homotopy classes of pointed cellular
maps (G.W. Whitehead [25], I1.4.5). A crucial J.H.C. Whitehead theorem says
that here amap f: X — Y which is a weak homotopy equivalence (m(f) iso, for
all i) is also a homotopy equivalence ([25], V.3.5).

Varew(X) is a sublattice of the lattice Var.(X) of all homotopy variations of X
(1.3), because CW is closed in Top' under finite sums and homotopy pullbacks
([9], thm. 2.13). But again, Var.w(X) may be large, as its subset of normal
variations (weak kernels) [14].

More particularly, n-type variations (n > 1) are given by the full subcategory
n-type of Top'/~ consisting of CW-spaces X with =i(X) =0 for i>n. For
n =1, the fundamental group gives an equivalence of categories ([3], 2.5)

(1) = 1-type — Gp
so that the I-type variations of X are classified by the group variations of mX.

On the other hand, in connection with homology functors, one can consider the
full subcategory M" of Top/=~ consisting of the Moore spaces of degreen > 1,
i.e. CW-spaces X with reduced homology H(X)=0 for i#n ([3)],§ 1.3); X
is said to be a Moore space of type (A, n) if Hp(X) = A; for n2 2, these
conditions determine the homotopy type of X, written M(A, n) ([3], Lemma
1.3.1). Again for n>2, the homology functor H,: M" — Ab is representative
and full, but not faithful ([3], same lemma), and induces surjections

(2) Hp: Varmn(X) — Varap(HnX);
the suspension identifies Varym(X) with Varym+1(ZX), consistently with Hj,.

Some cw-variations of S!, S2, P2 are described below; further results will be
given in 3.3-4.

2.3. The circle. The group variations of Z, coinciding with its abelian
variations x,:Z — Z (1.5.2; 1.7), have corresponding cw-variations of the
pointed circle S! =R/Z

(1) yn:S'— sh, YalA] = [nA] (n20)
ni(yn) = Xn» Ym<Yyn Iiff n divides m

which realise them through ;. This shows that the order relations considered
above, which obviously hold, are the only possible ones.
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This sequence classifies the 1-type variations of the circle (by 2.2.1); but we
have actually got all its cw-variations (3.4). For n>0, y, is the covering map of
S! of degree n; the universal covering map p: R — S! corresponds to the weak
subobject yo, also represented by {*} — Sl

It is also interesting to note that the homotopy pullback of two "standard”
representatives y, need not give a standard representative of their meet, even up to
homotopy, but may contain "redundant duplication of information". For instance,
the (ordinary) pullback of the fibration y,: S! — S! with itself, homotopy
equivalent to the standard homotopy pullback, is the subspace {[A, u] | [2)A] =
[2u]} of the torus S!xS! = R%/Z2

€3] al’ a

consisting of the union of two disjoint circles, the "solid" and the "dotted" one. The
diagonal of the pullback can thus be described as y = y,.pry: S!x8® — S! and
determines the same variation y; = yay,; but the domain of y is not homotopy
equivalentto S!. (The variation y2 amounts to an information, turn twice, which
is not modified by having two copies of it.)

2.4. The sphere. The suspension of the homotopy variations of the circle yields
a sequence of cw-variations of the sphere, the standard mappings of degree n >0

1) sp: 8?2 — 82, Sm<Sp iff nlm

realising the abelian variations x,: Z — Z via H; and =p. There are no other
homotopy variations of S2 defined over itself, since any endomap of S2 is
homotopic to s, or s_; = s,.5_]. But it is easy to construct other cw-variations of
S2 defined over compact manifolds.

Consider first the map f: T2 — S2 defined over the torus T? = I*/R, by
collapsing the boundary of the standard square I? to a point. Hy(f) is an
isomorphism (use the projection I? — T2 as acubical generator of Hy(T?)), but
f is trivial on all homotopy groups: =;(S?) =0, while T2 is aspherical: =(T2) =
7i(S'xS!) =0 for i # 1. We obtain thus a new sequence of variations syf: T2 —
$2, realising the abelian variations X,: Z — Z via Hy: this sequence is separated
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by Hj; and collapsed by all n;, whence all its terms are distinct variations,
different from the previous ones for n> 0.

The map g: P2 — S?, defined over the real projective plane in a similar way,
yields a new homotopy variation. In fact, this map is trivial in reduced homology
(obviously) as well as on homotopy groups: =ni(g) =0 forall i (obvious for i=1;
otherwise, the covering map p: S2 — P2 has fibre S°, whence =;(p) is iso for
i>1; and gp: 82 — S? is contractible, since Hy(P2) = 0). But g is not
contractible, as Hj(g; Z/2) is an isomorphism (of two-element groups).

The Hopf fibration h: 83 — S2 induces an iso on =3; it yields a third
sequence of "Hopf" variations syh: 83 — §2, realising x,: Z — Z via n3. This
sequence is separated by n3 and collapsed by w1, ny and all homology functors
with arbitrary coefficients, whence disjoint from the previous variations (n > 0).
Moreover, this sequence can not be realised over closed surfaces: if X is so, then
n3(X) = 0 unless X is the sphere or the projective plane (all the other closed
surfaces are aspherical, see [25], V.4.2); but the first case only gives the sequence
(sn); and any map g": P2 — S? has all m(g') =0, as proved above for g.

2.5. The real projective plane. Also P2 has infinitely many homotopy
variations. It is easy to exhibit a sequence (y,) of them, realising via =; all the fg-
abelian variations (x,) of nj(P2) =Z/2 (n e [0, +o°], 1.5.3). Setting apart the
null variation yg: {*} — P2, let n>0. After noting that x, is "produced" by the
left-hand square of the following diagram, by taking cokernels

20 Pn
Z — 17 — 1"
-1
w ol e (%o = P1)

Z —s 7 —— 7N

consider the mapping cone of the standard endomap of the circle of degree 2"
(2) P = C2":S! — S

a Moore-space of type (Z/2", 1), which can be realised as the quotient of the disk
under the obvious action of Z/2" on its boundary; it is called a "pseudo-projective
plane", because P, = P2, We can thus replace the diagram (1) above by the
following one, where the right-hand square is obtained by taking mapping cones
(homotopy cokernels in Top”, and weak cokernels in HoTop'); note that
n1(qn) is our previous homomorphism p,, whence also =;(y,) = Xp
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st st p
2n
-1
@ ™y Lo (Yoo = Q1)
S! > St P, =P2

We already noticed that the covering map p: S2 — P? induces isomorphisms
ni(p), for i> 1 (2.4); thus, it turns the endomaps s,: 82 — S2 of the sphere
(2.4.1) into a new sequence of cw-variations ps,: S — P2 of the projective
plane, which realise the abelian variations of Z through =, and are annihilated by
n1. Similarly, from the "Hopf" variations syh: S3 — 82 (2.4), we get a third
sequence psyh: 83 — P2 realising the weak subobjects of Z via n3 and
annihilated by =, m;. The obvious mapping K — P2 defined over the Klein
bottle (think of K as a quotient of the square, and collapse "two parallel edges")
realises the non-abelian variation n;(K) — n;(P?) considered in 1.7.1, and is a
variation of P2 distinct from all the previous ones. (A classification of the maps
P2 — P2 can be found in [2], ITI, Appendix B.)

Finally, it would not be difficult to exhibit variations of P2 which realise, via
x1, the non-finitely generated variations ym: M~1Z — Z/2 considered in 1.5.4.
For instance, if M =My is the multiplicative part of Z spanned by an odd integer
k> 1, then My'Z = Z[!/] is the direct limit of the sequence

@) ZC%ZCI—(%ZCI(%ZC...

and ypm, can be realised as amap zy: Vi — P2, defined over the homotopy direct
limit of the following diagram (a sort of k-adic funnel)

k k k
5 s — sl — st — sl —

3. Transformations of variations

Some formal transformations of weak subobjects are considered, which are of help
for further classifications (3.4, Section 4).

3.1. Transfer. Let us resume the abstract situation, assuming that our category
A has weak pullbacks. Then every morphism f: A — B defines a covariant
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connection (or adjunction) f, — f* between the meet-semilattices
(1) fy: Var(A) = Var(B): f*
fu(x) = fx,  f*(y) = weak pullback of y along f (1 <f*fy; fuf*<1)

A 5 B A - B
) x] T 3) ' I
X — X . — Y

which actually satisfies the right-exactness condition f«f*(y) = yafu(1) = yAf (the
diagonal of the weak pullback in (3)). If f is monic, the square (2) is a pullback
and f*fy(x) =x, whence Var(A) is a retract of Var(B).

Since weak pullbacks can be pasted, we have a functor with values in the
category of (possibly large) semilattices and their right-exact connections
(4) Var: A — SLR, A — Var(A), f — Var(f) = (fx, £*).

If A has pullbacks, the counterimages of subobjects agree with the counterim-
ages of variations. If A has unique epi-monic factorisations, the direct image
im(fx) of a subobject x is the carrier of the covariant transfer fx (as a variation).

Dually, in a category with weak pushouts, we have a transfer functor for
covariations, Cov: A — SLR°P
5) fo: Cov(A) = Cov(B): f*, f*—f,
f°(y) = yf, fo(x) = weak pushout of x along f.

3.2. Adjunctions and reflections. Transformations of weak subobjects
produced by functors (1.3) have already been used.

Consider now an adjunction F — U, with unit u and counit v
() F:Y=A:1U, u: 1 — UF, v:FU — 1
(y:Y = UA) — (fy = vAFy:FY — A)
(@FY — A) — (¥ = UauY:Y — UA)
and recall that the functor U is faithful (resp. full; full and faithful) if and only if all
its counit maps vA: FUA — A are epi (resp. split monic, iso) [22]. The last case

is called a reflection; we have considered above the full embedding U: Ab — Gp
and its reflector ab — U (1.7).

First, U induces the transformation U: Vara(A) — Vary(UA) (1.3).
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Backwards, the mapping y — Fy is monotonic at the level of arrows (with values
in UA), hence well defined and monotonic at the level of weak subobjects. We
obtain an associated adjunction between the ordered sets of variations

(2) F(-): Vary(UA) = Vara(A): U
[yl = [UFy)uY] < [UFY)],  [F(Ua)] = [VAFUa] = [avA] < [a]
so that Fy is the least variation a € Vara(A) such that y < Ua, say the A-closure

of y. Wesay that y: Y — UA is an A-type variation if it coincides with U(Fy),
or equivalently with some Ua.

If the adjunction is a reflection, also the associated adjunction of weak
subobjects is so: for any variation a: A' — A we have F(Ua) =a, and Vara(A)
is a retract of Vary(UA). But it is sufficient that each counit map vA: FUA — A
be a split epi; in this case, any section VA of VA gives

(3) [a] = [a.vA'VA'] = [F(Ua).vA"] < [F(Ua)).

3.3. Groups and CW-spaces. If CW is the category of pointed (connected)
CW-spaces and pointed maps (2.2), the previous construction can be applied to the
fundamental group functor over CW/= and its right adjoint K;

(1) m: CW/2 = Gp: K, r — K.

The existence of K; is a consequence of the Eilenberg - Mac Lane space
Ki(G) =K(G, 1) of agroup G (a cw-space with =(K(G, 1)) @ G and trivial
higher homotopy groups), combined with a second classical result: if X is a 1-type
pointed space (nj(X) =0 for i#1) and Y a CW-space, then =; induces a
bijection [Y, X] — Gp(m(Y), =1(X)) ([25], thm. V.4.3). Any isomorphism vG:
71K1(G) — G is thus a universal arrow from =) to G, proving the existence of
the right adjoint K; [22]; the latter is determined up to functorial isomorphism (and
strictly determined by an arbitrary choice of all K(G, 1) and all vG).

Since the counit is iso, our reflection yields an adjoint retraction for variations
(2) Vargp(G) = Varew(KiG) — Vargp(G)
x:G — G — Kx:K;G'— K|G)
y:Y = KiG) —~ (y:mY — G)
"Kix) = x, y < Ki("y).
The cw-variation y: Y — K;G can be viewed as a spatial variation of G,

since K; is full and faithful. It has a group-closure Ty: 1;Y — G, the least
group-variation of G such that y < K;("y); our y will be called a group-type
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variation of K;G if it coincides with K;("y), or equivalently, with some K;(x).

Note also that, for any CW-space X, nj: CW/~ — Gp induces a lattice-
epimorphism

(3) my: Varew(X) — Vargp(nX)

since ) preserves weak pullbacks, as a left adjoint, and pointed sums.

3.4. Clusters of circles. We can now prove that the cw-variations of S! are all
of group-type, classified by the canonical maps y,: S! — S! of degree n>0
(2.3.1). In fact, let y: Y — K,Z be a cw-variation, x ="y: ;Y — Z its group
closure, with Im(x) =nZ and x ~ x,: Z — Z. Because of the adjunction =n; —
K, we already know that y < K;(™y) = Kj(xp) =yn. But y,<y, asthereisa
loop A: S! — Y such that (m;y)([A]) =n, and y.A -~ y,.

This argument can be easily extended to an arbitrary cluster of circles X1S! (a
categorical sum of pointed circles over a small set 1, i.e. a disjoint union of circles
with base-points identified). The group variations of the free group F = %;Z
coincide with its subgroups xy: H — F (1.7; free, but possibly not finitely
generated, even for a finite I), and yield an isomorphic lattice of group-type
variations for the cluster K;F = X;S!

(1) yu = Kixg: KiH — %S, my(yn) = xu,  (yusyw iff HcH).

Again, there are no other cw-variations . Let y: Y — K|F be a cw-variation, x
="y: ;Y — F its group closure, with Im(x) =H and x ~ xyg, y< K;(®y) =
Ki(xg) = yu. To show that yy <y, choose a basis B c H and for each beB a

loop Ap: S! — Y such that (n1y)([Ap]) =b. We have thus a map A: K|H =
2pS' — Y suchthat yA ~ yy.

3.5. Product variations. Coming back to the abstract situation, consider an
object A = A|xA; ina category A with finite products and zero object, like an
abelian category or Gp, Set’, Top™, Top'/~. It will be useful to understand
to which extent the weak subobjects of A can be reduced to variations of its
factors. We always have monotonic mappings
(1) ¢: Var(ApxVar(Ay) — Var(A), (x5, x2) — xpxxp: XxXz = AxAz
(2) v: Var(A) — Var(A)xVar(A), » X = (pri.X, pr2.x)
with ye = 1, showing that Var(A)xVar(A3) is a retract of Var(AxA;) (among
ordered sets).

(In fact, if x <y as maps with values in AjxAj, the same holds for their

-318 -



M. GRANDIS - WEAK SUBOBJECTS AND WEAK LIMITS...

projections. Similarly, if x; = ypu;: X;j — Aj, then xixxz = (y1xy2)(uixuy). This
shows that y and ¢ are well defined on variations and monotonic. The composite
y¢ turns a pair of variations (xj, x3), with x;: Xj — A, into the pair y; = x;.pr;:
X1xX3 — A;, which factors through the former; also the converse holds, as x; =
yi.in;; the injections in;: X; — X;xX; being provided by the zero-object.)

Say that a variation xe Var(A) is a product variation if it belongs to Im(e), or
equivalently if y(x) = x (within variations, of course). Say that the product
AxAy has (only) product variations if all its weak subobjects are so (¢ is
surjective); or equivalently, if the above mappings are reciprocal; or also, if y is
injective. Of course, the notion of a product variation is relative to a given
decomposition of an object A as a product AjxAj; in particular, we shall see that
each weak subobject of the non-cyclic four-element group A is a product variation
with respect to a suitable representation of A as Z/2®Z/2, but not with respect to
a fixed one (4.4-5).

4. Further classifications of abelian variations

Finally, we classify the abelian fg-variations of finite cyclic groups (4.2-3) and of
Z/2®Z/2 (4.4-5). The main tools are the notion of product variation (3.5; 4.1) and,
again, the structure theorem of fg-abelian groups.

4.1. Abelian product variations. Recall the notion of product variation (3.5).
In Ab or Gp, itis plain that any power AxA (A # 0) has non-product
variations: the diagonal d: A — AxA isnot so, as d < 1axa = oy(d) (im(d) < 1).

On the other hand, if the abelian groups A; and A; are annihilated by two
coprime integers a and b (aA; =0, bA; = 0), then all the abelian variations of
A1®A, are product variations (and all fg-abelian variations are product of fg-
abelian ones). Starting from a variation x = <xj, Xo>: X — A|®A;, we obtain y
= X19Xy: XX — A|®A,, and x =yd <y through the diagonal d: X — XeX.
Choose now two integers h, k such that ha + kb =1, so that the multiplication by
ha kills A; while the multiplication by kb induces the identity on A;. Consider
the morphism v: X&X — X, v(A,u) = kb + ha.u (here, we need X
commutative). Then xv =y, as

(1) xv.in; = <kb.xy, kb.xp> = <x, 0> = (X19x3).in;

and similarly xv.iny = (x|®x5).ins.
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Applying this to the structural decomposition of any finite abelian group A asa
(finite) direct sum of its indecomposable (primary cyclic) components, we have

(2) Var(A) = IIVar(A)), Vargg(A) = IIVarg(A) (A =DA).

4.2. Primary cyclic groups. We proceed now to classify the abelian fg-
variations of a finite, indecomposable group A = Z/p" (p prime), showing that
they form a distributive noetherian lattice. All the subobjects of Z/p" are p-primary
cyclic groups, and form a finite chain of length r+1

(1) xy: Z/p* —~ Zip", x(1) = p°¥ (0<ksrn)
0=Xxp<Xj<.. <X=1

One shows as above, in 1.5.3, that the surjective fg-variations of Z/p¥ (k > 0)
form the totally ordered set of natural homomorphisms

(2) yin: Z/p™ —~ Z/pk (0O<k<ngo)
I = ykk > Yikel > Ykks2 > o > Ykeo

and it follows (by 1.2) that each non-null fg-variation of Z/p" is of the type

(3) Xkn = Xk.Ykn: Z/p" — Z/p* — ZIp* (O<ks<r; ksn<eo)
Xkn(T) = Eﬁk_ im(Xkn) = Xk = Xkk-

We do not yet know that such variations are indeed different. But we can
organise them as follows, an arrow meaning < (in fact, <)

Xp], —™ X3 —/™ .../ X — X =1
o T 1 1
X12 — X223 — ... Xelr T Xnr+l
@ [ | ] |
X13 —> X4 > ... 7> Xelrdl T Xpre2
| | [ |
0 — Xjow = X2o — ...™ Xpleo — Xroo

the inequalities being provided by the following morphisms between their domains,
either induced by p-multiplication (the horizontal ones) or by the identity of Z
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P P P P
Zip — Zip? — ...— ZIhp"! — ZLp*

[ RO

(5) Zip? — Zp’? — ...— ZLp — ZLp™!
T P T P P T P T %,
0 — 2 — 1Z — ..— 1 — 1"

Now, it is not difficult to show that no other inequalities, not considered in (4),
may subsist, using the fact that x <y implies im(x) < im(y). Note also that each
weak subobject in (4) may be read in (5), as the composite of any string starting
from the corresponding position in (5) and ending in Z/p".

4.3. Cyclic groups. The previous two points completely characterise the lattice
of fg-variations of any finite cyclic group (the infinite case being already known): if
n=1II; p{fi is the decomposition of n>0 in primary factors

(1) ZIn = &;Z/p, Varg(Z/n) = IT; Vargg(Z/p;")

and again, this lattice is distributive and noetherian.

From the description of weak subobjects of Z/p* (4.2.4), it follows that any
finite variation of Z/n can be be represented over a cyclic group, as

) x(a,b) = (Zb — Z/a — Z/n)
for a pair of positive integers (a, b) such that

- aln (Z/a — Z/n is the multiplication by n/a)

- alb and these two numbers have the same prime factors (Z/b — Z/a is the
natural projection).

Moreover x(a, b) < x(a, b") iff ala' and b'divides b.a'/a

n/a

Zb —» Z/a —> Zhn
(3) ala l a'la I " ”
a
Z/v'—> Z/a'— Zin

4.4. The variations of the Klein group, Part I. Let us begin the classifi-
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cation of the fg-abelian variations of the Klein group A =Z/20Z/2.

We shall use the family (x,) of fg-abelian variations of Z/2 (1.5.3), which is
here convenient to re-index over the ordinal sum [1, '] =[1, o] + {='}, letting
Xeot 0 — Z/2 be the least variation, previously written Xo.

For A, we have to distinguish between relative facts, inherent to our presenta-
tion of the group A as a product, and absolute facts, invariant under automor-
phisms of A. To begin with, it is an absolute fact that the lattice of subobjects of
A is the "elementary modular, non-distributive lattice", which has three atoms (the
three non trivial cyclic subgroups)

1
VA RN (a=100: Z/2 — A)
M a b (b=001: Z/2 — A)
NS (c=<l,1>:Z/2 — A)

0

while the description of the atoms in brackets is relative to our presentation; accord-
ingtoit, a and b are product variations, while c¢ is not; from an absolute point of
view, there is no distinction between the atoms, since the automorphisms u, v
permute them (and c is a product variation for other decompositions of A)

2) w:A— A, u(d, p) = (A, p, uva=a, ub=c, uc=b
ViA — A, v(A, u) = (A, A+u), va=c, vb=b, vc=a.
Now, each weak subobject of A is produced by a surjective variation of one
subobject. For a generic fg-abelian variation x: X — A, the structural decomposi-
tion x = VvxlX; (1.5.1) shows that we can start from studying indecomposable

variations, necessarily of type x: Z/2" — A. Since such a weak subobject has a

cyclic image, and can not be surjective, we deduce that x is either null or belongs

to precisely one of the following totally ordered sets (n < "),

(3) ap=ax,:Z/R2" — A (ap = x,@0)
by =bxy: Z/2" — A (bn = 0@xy)
Ch=CXp Z2" — A

and that elements of different families are never comparable. Thus, every fg-abelian

variation of A can be expressed as a join of zero, one, two or three indecompos-

able ones, picked in different families. But different "expressions" of these joins
may give the same element; a precise description of the variations is given below.
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4.5. Theorem. The finitely generated abelian variations of A = ZI2®Z/2 are
classified in the following disjoint lists of distinct elements, based on the three
Sfamilies of indecomposable variations a,, by, ¢, (4.4.3)

(1) e, = apvby = apvey = bpven (= Xp®Xy) ne [1, ']
) erl‘k = apvby = agvek (= xp®xg) n<k, in [1, e']
(3) €2, = byvag = bpvek (= xk@®xp) n<k, in [1, ']
) egk = cpvag = cpvbg n<k, in [1, e'].

Setting e,{n = eﬁn = eﬁn =ep, the order relation is described as follows, for n <

k and n'<k' in [1,°9'], and i#j in {1,2,3}
(5) el <el. iff  nzn, k2K
el s el iff  n2k' (e n'<ksnsgk).

A

The lattice Vargy(A) is modular and can be described as the union of three
triangles Ti= {eli|k Iin<k} (i=1,2,3) along their common "oblique" edge (ep)

el, — el — .. el — . el, — ¢=1
i oo Ty
el — el — ... el — ... e
(©) ! [
el, — ei — ... e
I I
el . — e
|
0=e

the union of any two of them forming a distributive sublattice isomorphic to
Var(Z/2)xVar(Z/2). In particular, T{ Ty consists of the weak subobjects Xpu®Xy
listed in (1)-(3), the product variations with respect to our presentation. The "free"
vertices € L. of the three triangles are the atomic subobjects a, b, c.

Proof. The indecomposable variations have been classified above (4.4.3). First, it
is easy to see that the definition (1) of the sequence e, is correct: the joins of any
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pair of the three indecomposable variations aj, by, ¢, (with the same index)
coincide.

It follows that, in any join of two indecomposable variations of different
families, we can replace the one having the highest index with the corresponding
one in the third family; e.g., for n <k, a,vby = a,vayvby = ayvagveg = apvek SO
that also our definition of the remaining lists (2)-(4) is correct. It follows also that,
in any join of three indecomposable variations of different families, we can omit the
one having the highest index. All the weak subobjects are thus listed in (1)-(4).

But the product variations, of type xp®x, (m, n € [1, «']), are known to form
a lattice isomorphic to Var(Z/2)xVar(Z/2), so that the order between two of them
is indeed described by (5), for i, j = 1, 2. Now, the automorphisms uy, vy of
Vargg(A) (4.4.2) permute our families (ua, = ap, ubp =cp, ucy =by; vap = cp,
vbp = by, ven =ay) and show that (5) is globally correct.

Finally, suppose that Vargg(A) is not modular. Then, it contains a sublattice
isomorphic to the "elementary non-modular lattice" (Birkhoff [4])

'a

)

The generators &, n, { are in different lists (2) - (4) (otherwise, they would be
in a distributive sublattice of Vargy(A)), and we may take & = e,{k, n= e;ﬁk., ¢ =
e,ﬁ.k... Since &<m and { is not comparable with them, we have n'<k'<n<k;
n'<k"; n" <k. Itis now easy to show that &v{ and nv{ can not coincide.

4.6. Extensions and problems. It is easy to extend these results (4.4-5) to any
square power A =Z/p®Z/p of a prime-order group. The lattice of subobjects of A
has now p+1 atoms, the non-trivial cyclic subgroups (these subgroups have order
p and induce a partition over A—{0}); the lattice of weak subobjects is the union
of p+1 triangles as above (4.5.6), each pair of them forming a sublattice
isomorphic to Var(Z/p)®Var(Z/p).

By 4.1, we also know the lattice of fg-variations of a direct sum

(1) B = & (Z/pn, Vargg(B) = II; Vargg(Z/py)™
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where (p;) is a finite family of distinct primes and n; = 1, 2. In particular we
know the fg-variations of a square (Z/n)?, provided that the integer n is square-
free (its decomposition in prime factors has no exponent > 1).

The following problems on fg-abelian variations or group variations (1.7) arise.
a) Characterise the lattice of fg-abelian variations of (Z/p")", for p prime. (Then,

applying the decomposition 4.1.2, one would get a classification of fg-variations
for any finite abelian group.)

b) Is Vargg(A) a noetherian modular lattice, for every fg-abelian group A?
¢) Classify the finite (or fg-) group variations of Z/n.

d) Deduce information about the cw-variations of the lens space L=(n) = K(Z/n, 1)
and the MK-variations of the Moore space M(Z/n, k).

e) Classify the homotopy variations within closed surfaces (see 2.4-2.5).
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