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EXPONENTIAL OBJECTS IN THE CONSTRUCT PRAP
by E. LOWEN, R. LOWEN &#x26; C. VERBEECK

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CA TEGORIQ UES

Volume XXXVIII-4 (1997)

Resume. Dans cet article, on 6tudie l’exponentialité de la
cat6gorie PRAP des espaces de pr6-approximation (pre-approach
spaces) et contractions. Un espace de pr6-approximation peut
8tre consid6r6 comme un espace avec des pr6-distances entre des
points et des ensembles. On pr6sente une caract6risation interne
des objets exponentiels dans PRAP: ce sont les espaces de pré-
approximation pour lesquels les pré-distances sont d6termin6es par
les pr6-distances entre des points et des ensembles singleton. On
montre que la cat6gorie des objets exponentiels est 1’enveloppe bi-
cor6flective des espaces de pr6-approximation finis. Ce r6sultat peut
8tre appliqu6 a la situation des espaces pr6topologiques et alors
on trouve la caract6risation connue des objets exponentiels dans
PRTOP: ce sont les espaces pr6topologiques g6n6r6s de mani6re
finie.

1 Introduction

It is the purpose of this paper to give an internal description of the expo-
nential objects in PRAP, the category of pre-approach spaces. This category
was introduced by E. and R. Lowen in [4] as an extensional supercategory of
AP, the category of approach spaces [7]. With respect to AP, PRAP can be
viewed as the counterpart of PRTOP, the category of pretopological spaces
as introduced by G. Choquet in [ 1 ], with respect to TOP.

In [6] E. Lowen and G. Sonck were able to describe the exponential ob-
jects in PRTOP making use of the initially dense object 3, the space with
3 points and one non-trivial neighborhood. Their technique not only al-
lowed to give an internal description of the exponential objects in PRTOP,
but moreover allowed for an extensive investigation of exponentiality related
to coreflective subcategories of PRTOP. In [5] it was shown that in PRAP
there exists a canonical counterpart of 3, namely lP*, i.e., the set [0, oo] U {p}, I
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where p V [0,00], equipped with a particular pre-approach structure which
we do not describe here.1P*, as 3 in PRTOP, is initially dense in PRAP, but,
as it e.g. follows from the results of this paper, and unlike 3, it is not finitely
generated. The complexity of P* when compared to the simplicity of 3 made
the transposition of the technique for PRTOP to PRAP rather awkward and
elaborate.

. 

Recently G. Richter presented an alternative technique [ 12], based on the
fact that exponential objects allow for a particular interchange between the
construction of final structures and of products. His technique avoids the
intervenience of 3, and complementary to the results of [6] allowed for an
investigation of exponentiality in relation with certain epi-reflective subcat-
egories of PRTOP.

Using Richter’s method we are able in this paper to give an internal de-
scription of the exponential objects in PRAP. Whereas Richter’s technique in
PRTOP is relatively simple, for the case of PRAP it too becomes more elab-
orate. First we needed to devise a "functional" version of it in the setting of
PRAP, second we had to apply the technique a continuous number of times
and finally we had to "glue" everything together. Finally we are also able
to show that the terminology "finitely generated" for the exponential objects
justly applies also to the situation in PRAP.

2 Preliminaries

In 1988, E. Lowen and R. Lowen [4] introduced the category PRAP of pre-
approach spaces. Given a set X, we denote its power set by 2x and the set of
its finite subsets by 2 (X). A map 8 : X x 2x -4 [0,oo] is called a pre-distance
if it fulfils

There are several equivalent ways of defining a pre-approach space. In
this paper we will work mainly with local pre-distances and with limit func-
tions. If X is a set, a collection (5l(x) )XEX of ideals in [0, 00] x is called a
pre-approach system if it fulfils
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The members of A(x) are called local pre-distances in x. For ease in notation
we shall, whenever convenient denote a pre-approach system (51(x) )XEX also
simply by A. (X,.9l) is called a pre-approach space. If (X,5l) and (X’,A’)
are pre-approach spaces and if f : (X , A) -&#x3E; (X’, A’) is a function, then f is
a contraction if

The construct with as objects "pre-approach spaces" and as morphisms "con-
tractions" is denoted by PRAP. This construct is related to the construct AP
of approach spaces which has been extensively studied in [8]. One of the
motivations for introducing PRAP is that it provides a unifying theory for
both pretopological spaces (= Cech closure spaces) and pre-metric spaces.

If X is endowed with a pretopological structure q:= ( V(x) )xEx, where
V(x) is the neighborhood filter in x (which need not satisfy the open kernel
condition) then there is a related pre-approach system (Aq(x))xEx where

I

and,

Through this embedding continuous maps between pretopological spaces
correspond exactly with contractions.

If X is endowed with a pre-metric d, i.e., a function d : X x X - [0, oo]
which is zero on the diagonal, then a natural pre-approach system
(Ad(x))xEx is given by

Through this embedding non-expansive maps correspond exactly with con-
tractions. So both the constructs PRTOP of pretopological spaces and con-
tinuous maps and PRMET of pre-metric. spaces and non-expansive maps are
fully embedded in PRAP.
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PRTOP is both coreflectively and bireflectively embedded whereas PRMET
is a coreflective and finitely productive subconstruct.

If (X, A) is a pre-approach space then (A(x) )xEx is a basis for A if it
fulfils A(x) = A(x) for every x E X, where

PRAP is a well fibred topological construct. Initial and final structures are
described as follows:
If f : X - Y is a map and (p E [0, oo]X then we denote f (p) the function
defined as f (p) : Y -&#x3E; [0,oo]: y -&#x3E; inf{p(x) f (x) = y}. Let ((Xi, A)) iEI be a
class of PRAP-objects. If (fi : X -&#x3E; (Xi,.9lï) )iEI is a source then the collection
(A(x)).IEX is a basis for the initial pre-approach system, where for all x E X

If (fi : (Xi,Ai;) --&#x3E; X) iEI is a sink then the collection (A(x))xEx is a basis for
the final pre-approach system, where for all x E X

if

if

Just like pretopological spaces, pre-approach spaces can also be character-
ized by convergence (see [4]). The difference with pretopological spaces
however is that with each filter and each point we can associate a distance
the point "is away from being a limit point" of the filter. First some nota-

tions. Given a set X, F(X) stands for the set of all filters on X; if F E F(X),
then U(F) stands for the set of all ultrafilters finer than F. If G c 2x then

if G consists of a single set G we write stackxg and if moreover G consists
of a single point a, we write stackxa for short. If no confusion can occur, we
drop the subscript X.

Definition 2.1 A map X: F(X ) -&#x3E; [0, oo]X is called a pre-approach limit if it
fulfils
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(CALl ) Vx E X : l(stackx) (x) = 0.

(CAL2) FC G=&#x3E;l(G)l(F).

(PRAL) For any family (Fj)jEJ of filters on X:

It follows from the results in [8] that all the above structures are equivalent.
We shall now state those transitions between the above structures which are
needed in the sequel.

Proposition 2.2 1. If J4 is a pre-approach system on X then the map
X A : F(X) -&#x3E; [0, oo]X defined by

is a pre-approach limit on X.

2. If À is a pre-approach limit on X then the system Al where for all
xEX:

is a pre-approach system on X.
.

Proposition 2.3 If (X, À) and (X’, l’) are pre-approach spaces and
f : X --&#x3E; X’ is a map then f is a contraction if and only if for every filter f
on X, l’(stackf (F) o f  l(F). 

Proposition 2.4 1. If 8 is a pre-distance on X then the system Ad where
for all xEX :
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is a pre-approach system on X and the map ld : F(X) -&#x3E; [0, oo] X de-
fined by

is a pre-appi-oach limit on X.

2. If d is a pre-metric on X then the map 8d : X x 2X -&#x3E; [0,00] defined by

is a pre-distance on X, the map ’Ad : F(X) -&#x3E; [0, -]x defined by

is a pre-approach limit on X and the system Ý1d where for all x E X,

is a pre-approach system on X.
.

A set X equipped with a pre-approach limit (or, equivalently, a pre-distance
or pre-approach system) is called a pre-approach space and is usually de-
noted (X, l,). The associated pre-distance or pre-approach system are usually
denoted simply 8, J4 instead of dl, Al unless confusion might occur.

Definition 2.5 An object X in a category C with products is called an ex-
ponential object in C provided that the functor X x - : C - C has a right
adjoint.

In a topological construct, exponential objects are characterized by the ex-
istence of canonical function spaces: X is exponential in a topological con-
struct C if and only if for each C-object Y the set C(X , Y) of all C-morphisms
from X to Y can be endowed with a C-structure 4 such that

1. The evaluation map evX Y : X x (C(X, Y),§) -&#x3E; Y : (x, f) H f (x) is a
C-morphism.



265 

2. For each C-object Z and each C-morphism h : X x Z - Y the map
h* : Z -&#x3E; (C(X, Y), 4) defined by h*(z)(x) := h(x,z) is a C-morphism.

A category C is called cartesian closed if every C-object is exponential. For
more information on cartesian closedness and exponential objects we refer
to [2], [3], [9], [10]. PRAP is not cartesian closed [4]. However, there exists
a cartesian closed supercategory of PRAP. It is defined as follows:

Definition 2.6 A map X : F(X ) -&#x3E; (0,oo]X is called a convergence-approach
limit if it fulfils the properties (CALI) and (CAL2) of Definition 2.1, and the
following weakening of (PRAL):

The pair (X, À) is called a convergence-approach space.
A map f : (X, X) -&#x3E; (X’,À/) between two convergence-approach spaces is
a contraction if and only if VF E F(X) : l’(stackf(F) o f  l(F). In

[4], it was proved that the category CAP of convergence-approach spaces
and contractions is a cartesian closed topological supercategory of PRAP.
If (X, Àx) and (Y, Ày) are convergence-approach spaces then the canonical
convergence-approach limit Àc on the set C(X,Y) of all contractions from X
to Y is defined by

for all ’PEF(C(X,Y)) and f E C(X,Y). Note that the infimum is actually
a minimum, and that the set of numbers a satisfying the above condition is
[lc,T (f), oo].

In [5], E. and R. Lowen proved that PRAP is finally dense in CAP. Ap-
plication of Theorems 3.1 and 3.3 in Schwarz [ 13] gives the following useful
characterization of exponential objects in PRAP.

Proposition 2.7 For a pre-approach space X the following are equdvalent:

1. X is exponential in PRAP.

2. %cis a pre-approach limit on C(X , Y) for all pre-approach spaces Y.

3. X x - preserves coproducts and quotient maps..
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Although this characterization is useful at times, it does not give an internal
description of the exponential objects in PRAP. Making use of this result,
this however is what we shall obtain in the following section.

3 Exponentiality in PRAP
First of all we begin by observing that every pre-metric pre-approach space is
exponential in PRAP. For a pre-metric pre-approach space (X, kx) = (X, d)
we will denote the open ball with center x and radius e in (X, d) by B(x, £).
If T is a filter on C(X,Y) and F c X, we denote T(stackF) by T(F). We
require the following lemma.

Lemma 3.1 Let (X, lX) be a pre-metric pre-approach space.

then stackB( 

2. If furthermore (Y, Â,y) is a pre-approach space, f E C(X, Y), ex, E [0, oo],
and T is a filter on C(X,Y), then the following are equivalent:

Proof.

1. This follows from the observation that

2. To show that (a) =&#x3E; (b), let 8 &#x3E; 0 and x E X, choose F :=stackB(x, e)
and note that
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To show that (b) =&#x3E; (a) let F be an arbitrary filter on X. Then, accord-
ing to the first part of the lemma

for every x E X and for every E &#x3E; 0 satisfying Àx j(x)  E. This com-

pletes the proof.

0

Theorem 3.2 Every pre-metric pre-approach space is exponential in PRAP.

Proof. Let (X,Àx) = (X, d) be a pre-metric pre-approach space and let
(Y, Ày) be a pre-approach space. Let (’¥i)iEI be a family of filters on C(X,Y),
f E C(X, Y), let x E X and c &#x3E; 0. It is easily verified that

Define a := supic EIlcTi (f). Note that

Now,foranyi EI

due to the definition of lcTi(f). Noting that lx(stackB(x,£))(x)  E, we
get

According to Lemma 3.1.2, it then follows that
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for every x E X and every filter jF on X. Applying the definition of Âc we
can thus infer 

which, the other inequality being trivial, entails

This means that (C(X,Y),Âc) is a pre-approach space, and consequently it
follows from 2.7 that (X,lx) is exponential in PRAP. ·

Proposition 3.3 Let (X, A) be a pre-approach space. Then the following
are equivalent:

1. A(x) has a largest element for every x E X.

2. Vx E X,b’A c X : d(x,A) = infa EAd’x {a}).

3. (X , 5l) is a pre-metric pre-approach space.
.

The third condition actually is a restatement of the second, saying that 8(x,A)
is just the pre-distance between x and A as defined in the pre-metric space
(X, dd) where d8 (x, a) : := d(x, {a}).

Second we shall now show that every exponential object in PRAP is a
pre-metric space. Hereto we need the following preliminary results. Given
a pre-approach space (X,5l) with limit function % and given 8 E [0,oo] we
define a pretopological structure qF on X in the following way: a filter F
converges to x in q£ if and only if l,F(x)  c. Further we put, for any x E X,
£x := sup{ £ E [0,oo[ | qE is discrete in x}. Furthermore for every x E X and
e E [0, oo] let 01 be the function defined by 8£x (y ) : = £ if y # x and 8£x(x) := 0.

Lemma 3.4 1. For every cp E A(x):

2. For every 
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Proof.

1. Suppose there exists a (p E A(x) with infy#xp(y) &#x3E; Ex. Fix positive
real numbers a and 8 such that Ex  a + 8  infyox cp(y). Now let f be
a filter on X, different from stackx. Then

Now supyEF p (y) &#x3E; a + 6 for every F E F, so lF(x) &#x3E;a + d &#x3E; a,
qa

hence F #x. By the arbitrariness of F this means qa is discrete in x,
but since a &#x3E; Ex, this is a contradiction.

2. Let E  Ex and suppose 8£x does not belong to 5l(x), then, by Proposi-
tion 2.2, there exists an ultrafilter H on X such that

whence there exists some U E f£l not containing x and lU(x)  E, i.e.,
H differs from stackx and Uq£-&#x3E; x. This however implies that qg is not
discrete in x, which contradicts the definition of Ex.

0

Lemma 3.5 For every x E X, 8£xx belongs to A(x).

Proof. For £x = 0 there is nothing to show. Suppose ex- &#x3E; 0 and for every

y E 0, £x[, define ’1’1 = 8£xx-y. Then ’1’1 belongs to A(x) for all y E 0, ex [
because of the previous lemma. Since moreover for every y E ]0, Ex[:

it follows from (A2) that 8£xx E A(x).

Theorem 3.6 If (X, À) is exponential in PRAP, then A(x) has a largest ele-
ment for every x E X.
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Proof. Fix x E X. Define

equipped with the coproduct structure in PRAP. Let Y be the quotient of Z in
PRAP by identification of the points (x, 9), (p E J4(x) , i.e., the quotient with
respect to the map

Now for every cp E A(x) and for every vp E J4(x) define

A straightforward verification shows that every v belongs to the pre-
approach system AZ(x, (p). This implies that

for every 4 E A(x) and every vo E A(x), where prxxyz and przxxz are the
projections of X x Z onto X respectively Z. Let us now consider the final
PRAP-structure on X x Y with respect to the map

It is easy to see that for every x’ E X, every y E X B {x}, and every J1 E A(x),

is the value in (x’, (y,03BC) ) of a local pre-distance in (x, a) with respect to this
final structure on X x Y for every collection (Vp)pEAt(x) C JI(x). Since (X, À)
is exponential in PRAP and f : Z - Y is final, 1x x f : X x Z - X x Y is also
final (see Proposition 2.7), so (1) is also a local pre-distance in (x, a) with
respect to the product structure on X x Y. Let us first investigate this product
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structure. The final local distances in a on Y are characterized as follows:

X E J4y (a) if and only if there exists a family (v’p)pEA(x) in A(x) such that:

We further know that

is a basis for the product pre-approach system on X x Y, where prf:xY and
Ply are the projections of X x Y onto X respectively Y. From these obser-
vations we infer that for every £,N E ]0, oo[ there exist a function 4F-N E A(x)
and a collection (v’£N,p ) cp) pEA(x) C A(x) such that for every x’ E X, every(v’£N,p)pEA(x)
y E X B {x}, and every p E A(x),

If we choose vv := 0 for every p E A(x), this reduces to

Now take N E ]0, -[ fixed and choose 03BC E AN(x) := {p E J4(x) I p  N}.
Then for every x’ E X, for every y E X B {x}, and for every E E J0, oo[:

Hence for every x’ E X and every c E ]0, oo[:

Since vl, E A(x) , we know however from Lemma 3.4 that



272-

whence

If we now define

then 4N E J2W(x). Moreover, 4N is the largest element of AN(x), as it follows
from (2) that every p E J0N (x) is smaller than§ N.

Finally we now define

then for every N E ]0, oo[: § /B N &#x3E; §N. On the other hand,

and since 4m A N belongs to AN(x) for every M E ] 0, - [, it follows that

§/BN§ N  4N. By (A2) this implies that 4 belongs to 5t(x). Furthermore 4 is
the largest element of 5l(x). Indeed, suppose there exist a function y E A(x)
and an element z in X such that Y(z) &#x3E; §(z). Take N &#x3E; yr(z), then we have
Y(z) nN &#x3E; 4 (z) nN = §N(z) and VAN E .9W(x), which contradicts 4N being
the largest element of .9W (x). This completes the proof 0

Combining Theorem 3.2, Proposition 3.3 and Theorem 3.6, we can now
give the following internal description of the exponential objects in PRAP:

Theorem 3.7 For a pre-approach space (X,,%) the following are equivalent:

1. (X, X) is exponential in PRAP.

2. (X, À) is pre-metric.

3. J4(x) contains a largest element for every x E X.

.
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As already stated, PRTOP is a bireflective and bicoreflective subcategory of
PRAP. Moreover, the class of exponential objects in PRTOP shows much
resemblance with the class of exponential objects in PRAP, as well categor-
ically as objectwise.

Definition 3.8 A pretopological space (X, q) is finitely generated if every
point x in X has a smallest neighborhood Vx.

Of course, this means Vx = n Vq(x) E Vq(x) for every x E X. In [6], E.
Lowen and G. Sonck proved the following result:

Theorem 3.9 A pretopological space is exponential in PRTOP if and only
if it is finitely generated..

Note the similarity with the situation in PRAP: by Theorem 3.7 a pre-approach
space (X, X) is exponential in PRAP if and only if A(x) possesses a largest
element for every x E X. Since the concept of neighborhood filter in a pre-
topological space is generalized by the concept of pre-approach system in
a pre-approach space, we see that such a "finitely generated" pre-approach
space could be a logical generalization of a finitely generated pretopological
space. This is justified by the following fact.

Proposition 3.10 A pretopological space (X, q) is finitely generated if and
only if Aq (x) has a largest element for every x E X.

Proof. Note that Aq(x) has {8v| V neighborhood of x for q} as a basis
where 9v(y) := 0 if y E V and 8v(y) :=oo if y E V. Suppose for every x E X
there exists a smallest element Vx of the neighborhood filter Vq(x). Then

Conversely, suppose Aq(x) has a largest element cpx for every x e X. Then
for every neighborhood V of x, 8v  (pjc. If we define Vx := n Vq(x), then
we see that 9vx = supvEVq(x) 8v  cpx, so 9vx belongs to .9Iq(x). This implies
Vx = {8vx  1 } E VA(x) where VA(x) is the neighborhood filter of x in the
PRTOP-bicoreflection of (X ,Aq ) , i.e., in (X,q)..
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So we can conclude that the exponential objects in PRAP are c4aracter-
ized by a generalization of the property which characterizes the exponential
objects in PRTOP. There are also categorical similarities between the cate-
gories of exponential objects in PRTOP and PRAP. It is a well known fact
that the full subcategory FING of PRTOP whose objects are the finitely gen-
erated pretopological spaces is the bicoreflective hull of the finite spaces in
PRTOP. We will prove a similar result for PRMET in PRAP.

Proposition 3.11 PRMET is the bicoreflective hull of the finite spaces in
PRAP.

Proof. Let (X, 8) be a finite pre-approach space, then for the subsets A of
X and for all elements x of X,

so by Proposition 3.3 (X, 8) is a pre-metric pre-approach space. As PRMET
is bicoreflective in PRAP, the bicoreflective hull of the finite pre-approach
spaces is a subcategory of PRMET.

Conversely, let (X, d) be a pre-metric space. We have to show that
(X, Ad) belongs to the bicoreflective hull of the finite pre-approach spaces.
For every finite subset A C X define dA (x,y) := d(x,y) for every x,y E A and
define

Then

is final in PRAP for every A C X ( jA is the canonical injection):
Let A(x) be the final pre-approach system in x. We are to show that

J4 = Ad. A basis for A(x) is given by
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So

so.

Remark 3.12 PRMET is cartesian closed since it is the bicoreflective hull
of the finite pre-approach spaces and it contains only exponential objects
([11]).
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