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A REMARK ON TOPOLOGICAL SPACES, GRIDS, AND
TOPOLOGICAL SYSTEMS

by J. ADAMEK* and M.-C. PEDICCHIO

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume,VMVIII-3 (1997)

RESUME. La variete des grilles introduite par Barr &#x26; Pedicchio contient la duale
de TOP comme sous-quasi-variete; on prouve ici qu’elle est equivalente a la comma-
catdgorie de toutes les algebres de Boole atomiques compl6tes dans la catdgorie des
cadres. Autrement dit, les grilles sont dualement dquivalentes aux syst6mes
topologiques de Vickers.

INTRODUCTION. The category TOP of topological spaces is dually
equivalent to a quasivariety of algebras. This has been proved in [BP1],
where a variety of algebras, called grids, was introduced together with a sin-
gle implication specifying a subquasivariety equivalent to TOPOP. A similar
result, using 2-sorted algebras, can be obtained as follows: every topology on
a set .JY is nothing else than a subframe F of the CABA (complete atomic
Boolean algebra) B of all subsets of X. Thus, topological spaces can be
identified with injective frame homomorphisms cp : F -&#x3E; B from a frame, F,
to a CABA, B. Now drop the injectivity and consider all frame homomor-
phisms cp : F -&#x3E; B. More precisely, consider the comma-category FRM !
CABA of the (non-full) subcategory of CABAs and CABA-homomorphisms
in FRM, the category of frames and frame-homomorphisms. This category
can be, in a very natural sense, considered as a variety of 2-sorted algebras:
we have sorts frame and boole, the operations are

(i) joins and finite meets in the sort frame,

(ii) joins and negation in the sort boole and

(iii) a unary operation cp in the sort frame -&#x3E; boole.

The equations are (i) those presenting frames in the sort frame, (ii) those
presenting CABAs in the sort boole, and (iii) those presenting w as a frame
homomorphism. Within this variety, then, the single implication
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specifies topological spaces as a dual subquasivariety.
The obvious advantage of grids in comparison to the above variety is that

grids are one-sorted algebras. We are going to show, following a suggestion
of A. Joyal, that the two approaches are in fact equivalent: the category
of grids is equivalent to FRM ! CABA. Moreover, we also observe that
the category of topological systems of S. Vickers [V] is dually equivalent to
FRM ! CABA, thus, the main result of our paper can be interpreted to say
that topological systems are dually equivalent to a variety of (single sorted)
algebras.

We are grateful to A. Carboni for fruitful discussions on the subject and
for a suggestion of a more direct proof that FRM ! CABA is a variety (see
Remark 12 below).

I. Topological Systems and Frame-Homomorphisms
Recall from [V] that a topological system is a triple (X, F, R) where X is

a set. F is a frame, and R C X x F is a relation satisfying

and

J"

A continuous map from one topological system (X, F, R) to another one
(X’, F’, R’) is a pair of functions f : X - X’ and h : F’ -+ F such that h is
a frame homomorphism satisfying

We denote by TOPSYS the resulting category of topological systems.

Notation. We denote by FRM ! CABA the category whose objects are
triples (F, B, cp) where F is a frame, B a CABA, and p : F -&#x3E; B a frame-
homomorphism. Morphisms from (F, B, cp) to (F’,B’,4?’) are commutative
squares

where h 1 is a frame-homomorphism and h2 a CABA-homomorphism.
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Proposition 1. The categories TOPSYS and FRM 1 CABA are dually
equivalent.

Proo,f. For each topological system (X, F, R) w-e denote by H(X, F, R)
the map 

which, due to (1) and (2), is a frame-homomorphism. Any continuous map
( f , h ) : ( X , F, R) -&#x3E; ( X’ , F’ , R’ ) yields a morphism (h, Pf) :
H(W’, F’, R’) -&#x3E; H(X. F, R) in FRM ! CABA, by (3), and it is obvious
that H : TOPSYSop -t FRM ! CABA is a functor, which is full and faith-
ful, since (3) is eqllivalent to Pf. cp = cp’ - h. It remains to show that H is

isomorphism-dense: every ob,ject of FRM ! CABA is isomorphic to one of
the form cp : F -&#x3E; PX , and the latter is H(X, F, R) for R defined by xRu iff
x E cp(u). 0

Proposition 2. TOP is dually equivalent to the full, regularly epireflective
subcategory of FRM ! CABA formed by all monomorphisms W: F -&#x3E; B.

Proof. I. The category M of all monomorphisms in FRM ! CABA is
equivalent to TOP°p. In fact, let P :TOPop -&#x3E; CABA be the functor as-

signing to each space the CABA of all subsets, and to each continuous map
the preimage-map, and let S2: TOPop -&#x3E; FRM be the usual subfunctor of P
of all open sets. The following functor H : TOPop -&#x3E; M:

and

is an equivalence of categories: it is, obviously, full and faithful, and it is

isomorphism dense since each object of .1.B1 is isomorphic to one of the form
cp : F -&#x3E; PX, cp an inclusion map, and then F is a topology on X, yielding
a space with HX = (cp : F -1- PX).

II. h4 is regularly epireflective in FRM ! CABA.

In fact, for each object cp of FRM ! CABA consider a (regular epi,
mono)-factorization in FRM
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(see [BGO]). Then

is a regular epimorphism in FRM ! CABA, and this is a reflection of cp
in M. In fact, given a monomorphism cp" : F" -&#x3E; B" and a morphism
(hi , h2) : cp I"" in FRM ! CABA, we use the diagonal fill-in

to obtain a morphism (d, h2 ) : cp’ - cp" with (hi, h2) = (d, h2) . (e, id) . D

Corollary 3. TOP°p is equivalent to a quasivariety of 2-sorted algebras.

Remark 4. The category FRM ! CABA also contains FRM as a full.
coreflective subcategory if each frame F is identified with the homomorphism
of F into P(ptF) (where ptF denotes the set of all points of F), assigning
to each y the set of all points p with p(y) = 1. This, as well as the above
Proposition 2, is a dualization of the corresponding statement on TOPSYS
in [V].

II. Grids and Frame-Homomorphisms

Definition 5 (see [BPI]). A grid is a frame G together with a unary oper-
ation ’ satisfying the following axioms, where ut = u V u’ and u! = u A u’:

(Gl) u" = u

(G2) ( - ) 1 and ( - ) ! are V-homomorphisms

(G3) ( - ) 1 is a A-homomorphism

(G4) (u A v) ! = u A v! 
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(G5) for each u the interval [u!, ut] is a CABA with ’ and V the CABA-
operations.

Lemma 6. For every elerraent u of a grind we have

thus

and

(iii) ’ is a frfLTne-homomorphism from [0, 1’] to G.

Proof. (i) follows from (G4) applied to v = 1 (for u and u’). (ii) follows
from (i). Using (ii) and (G2), we see that for ui E [0,1’]

and using (ii) and (G3),

Lemma 7. For each element u of a grid put

Then

and

and

This representation of u is unique:

and

then x = u1 and y = u2.



222 

Proof. The equality u = u1’ A U2 is derived as follows:

by Lemma 6 (i)

by distributivity.
by Lemma 6 (i)

Next

by Lemma 6 (i).

Given x. y as above, we compute

by Lemma 6 (i)

and due to 1’  y  x’ V I’ also

Denote by GRID the category of grids and grid homomorphisms, i.e.,
frame homomorphisms preserving the given unary operation. We will prove
that this category is equivalent to FRM 1. CABA. Define a functor

on objects ( G,’ ) as follows: the interval [0; 1’ in G is a frame and the interval
[1’, 1] is a CABA by (G5); put
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where

(Due to Lemma 6 (iii), cp is a frame homomorphism). The definition of K
on homomorphisms h : (G,’ ) -&#x3E; (G,’ ) is by means of the domain - codomain
restriction of h: since h(1’) = h(1)’ - I’ we have restrictions hl : [0, 1’]G -&#x3E; 

[0, 1’]0 and h2 : [1’, I]G -&#x3E; [1’, 1]G. and we put

The square

commutes because

It is easy to verify that K is a well-defined functor. We are going to verify
that K is an equivalence of categories.

Lemma 8. For each object cp : F - B of FRNI t CABA the followzng
subframe

of F x B together with the unary operation

forms a grid.

Proo f. (Gl): From b  cp(u) we have cp(u ) A b = b, thus
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(G2) and (G3): In fact, since b  cp(u), we have

and

Thus (G2) and (G3) easily follow from the fact that cp is a frame homomor-
phism. 

(G5): The interval [(u;0B), (u,cp(u))] is isomorphic to the interval

[OB, W(U)l of B. which is a CABA. 0

Now we can define a functor H : FRM ! CABA -GRID, which assigns to
each homomorphism F -&#x3E; cp B the grid H(F, B, w) of Lemma 8, and to each
morphism (h1,h2): (F, B, cp) -&#x3E; (F, B , §3) the homomorphism
H(h1, h2) : H(F, B, cp) -&#x3E; H(F, B, 0) given by

This is well-defined, since b  cp(u) implies h2 (b)  §3(hi (u)) (due to cph1 =
h2 cp) , and since hI,h2 are frame homomorphisms, so is H (h1, h2). Let us

check that H(h1, h2) preserves ’ :

Thus, H is a well-defined functor.

Theorem 9. The categories GRID and FRM ! CABA are equivalent. In

fact, both HK and KH are naturally isomorphic to identity functors.

Proof. I. We define a natural transformation

by
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It is easy to see that this mapping is a frame homornorphism, let us verify
that it preserves ’, i.e., that (u A 1’, u V I’)’ = (1),’ A 1’, u’ V 1’). The first coor-
dinates agree by Lemma 6 (i), since u A l’ = H’ /, 1’. The second coordinate
of the left-hand side is, by definition of K and H.

t 

by Lemma 6 (i)

by distributivity

by (G5)
by distributivity and (G5).

To prove that the last expression is equal to the second coordinate of the
right hand side, i.e., to u’ V 1’, it is sufhcient, by (G5) to verify that (u’ V
1’ A (u V 1’ ) = I’ (since this is equivalent to u’ V 1’  (u v1’)’):

by distributivity
by Lemma 6 (i)

Thus, O(G,I) is a grid homomorphism. It is bijective, which follows from
Lemma 7. The naturality ofO follows immediately from the fact that every
grid homomorphism preserves 1’.

II. KH is naturally isomorphic to the identity functor of FRM ! CABA.
In fact, given an object cp: F -&#x3E; B put G = H(F. B, cp), then Ie = (1F, OB),
thus

We see that KH assigns to cp : F -&#x3E; B the homomorphism from F x {0B}
to {1F} x B given by (u, 0B) -&#x3E; ( 1 F, cp(u)). The canonical isomorphism from
the latter object to cp: F -&#x3E; B (given by dropping OB on the first sort and
1F on the second one) is obviously natural. 0

Corollary 10. The category of topological systems is dually equivalent to
the category of grids.

Remark 11. TOP°p is presented in the variety FRM ! CABA by the single
implication cp(x) = cp(y) =&#x3E; x = y (see Introduction). This translates,
under the above equivalence K, to the single implication ut V I’ = v1 V 1’ -
ufi = vfi for grids, which is precisely the implication used in [BP1], [BP 2]’
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Remark 12. (A. Carboni) The fact that FRM ! CABA is equivalent to a
I-sorted variety can be seen directly as follows: if a many sorted variety
has the property that the terminal object in 2 has no proper subobjects,
then ’Y is equivalent to a 1-sorted variety. (In fact, 2 has then a regular
projective regular generator, viz., the free 2-algebra generated by a single
variable in each sort.) Since FRM ! CABA has the terminal object id: 1 -&#x3E; 1

which has no proper subobjects. the result follows.
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