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CENTRAL EXTENSIONS AND RECIPROCITY LAWS
by Jean-Luc BRYLINSKI

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XXXVIII-3 (1997)

R6sum6. Cet article d6veloppe la th6orie d’un groupe
agissant sur un group6ide connexe. Une telle action donne
lieu a une extension canonique du groupe. On d6montre que
toute extension de groupe est obtenue par ce proc6d6. Lorsque
le groupe a un objet fixe dans le groupoide, on prouve que
1’extension de groupe est scind6e. On donne diverses applica-
tions de ce th6or6me de point fixes. La prernibre est une preuve
cat6gorique de la loi de reciprocity quadratique sur un corps
global quelconque; c’est en fait une distillation de 1’essence

cat6gorique de la preuve due a A. Weil. La seconde applica-
tion est la d6monstration de la nature purement symplectique
du théorème des point fixes de Atiyah-Bott pour un fibr6 en
droites holomorphe sur une variete kaehl6rienne.

Introduction

In this paper we develop a geometric description of group exten-
sions based on the concept of a group acting on a groupoid. We prove
a new type of fixed point theorem: if the group fixes some object of the
category, then the extension splits. The splitting then has numerical
consequences. As an application, we derive the quadratic reciprocity
law over any global field E of characteristic not equal to 2. The rel-
evant groupoid has as objects the lagrangian subgroups of the group
A2, where A denotes the additive group of adeles of E. The morphisms
are given by intertwining operators between two models of the Stone-
von Neumann representation of the Heisenberg-Weil group associated
to A2. The group SL(2, E) acts on the groupoid in a natural way, and
the fixed object is the lagrangian subgroup E2 of A2.

When a group G acts on some manifold, one can make G act on
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various categories of bundles over the manifold, where the bun-
dles are equipped with extra structures such as a connection. Then
we show that the extension of G splits if and only if there exists an
equivariant bundle in our category. In the case of a group G of sym-
plectomorphisms of a quantizable symplectic manifold, the category
consists of the quantum line bundles and the central extension of G is
the well-known Kostant central extension. In general, one can often
interpret a fixdd object as corresponding to some equivariant bundle,
or to some equivariant fiber functor. If G has a fixed point, then the
central extension splits. Given two fixed points, the corresponding
splittings differ by an explicit character of G. This can be used to
show that in the case of a, torus acting by automorphisms of a Kaehler
manifold, the right hand side of the Atiyah-Bott fixed point formula
can be given a purely symplectic interpretation, up to a character of
G. This recovers a result of Jeffrey [4].

I first started thinking about the results of this paper in the Spring
of 1992, and I talked about some aspects of them at colloquiums at
Cornell and Princeton Universities at that time. I am grateful to Cor-
rado De Concini, Pierre Deligne, Lisa Jeffrey, Victor Kac and Dennis
McLaughlin for useful discussions. This research was supported in
part by NSF grant DMS-9203517.

1. ACTION OF A GROUP ON A CATEGORY

It hardly needs to be pointed out that the notion of a group acting
on a set is one of the most prevalent notions in geometry. In fact, if one
takes F. Kl%in to his word, this is the same as geometry. The notion
of a group acting on a category C is more complicated, although it is
implicitly encountered every time a group acts on a space.

Definition 1.1. An action of a group G on a category C consists
of a functor Tg : C -&#x3E; C for any g E G, together with invertible
natural transformations 1Jg,h : Tgh -&#x3E; Tg o Th, defined for any g, h E G,
satisfying the following conditions: 
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(A) For any 91, 92,93 E G, tlae following diagram is commutative:

(B) We have T1 == Id and o1,9 = Id, og,1 = Id.

I recently learned from Sasha Beilinson that this definition ap-
pears already in Verdier’s thesis. it was also recently proposed by
Kapranov [5] in connection with his conjectural framework for higher
dimensional Langlands philosophy.

The basic example is the following. Let G act by homeomorphisms
on a space X, ’and let C be the category such that an object of C is
a vector bundle E -&#x3E; X over X, and a morphism E -&#x3E; F is a bundle
isomorphism. Then for any g E G, define the functor Tg as the pull-
back by g-1 so that

For any vector bundle E, and for g, h E G, we have a natural iso-
morphism between (gh)* (E) and 9*(h*(E)). This gives the natural
transformation og, h . The coherency condition (A) is obvious (so obvi-
ous that it takes some time to convince oneself that there is something
to prove).

To obtain a group extension of G from an action of G on a category
C, one needs some assumptions on the category, which we now give:

(C) C is a groupoid, i.e. every arrow in C is invertible.
(D) C is connected, i.e. for two objects P¡ and P2 of C, there

exists an arrow from P¡ to P2.
Then for any object P of C, we have the fundamental group

7r¡(C, P) of C, which is the group Aut(P) of arrows from P to itself.
Given an arrow f : P1 -&#x3E; P2, we have an induced isomorphism f. :
7r1 (C, P1 ) -&#x3E; 7r1 (C, P2 ). The isomorphism depends on the choice of the
arrow f , but only modulo inner conjugations. Hence if we introduce
the category Out Gr, whose objects are groups, and whose arrows are
classes of group isomorphisms modulo inner automorphisms, we have
a well-defined object 7r,(C) of Out Gr. Note that the automorphism
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group of 7r E Ob(Out Gr) is the group Out(7r) := Aut(7r)/Inn(7r) of
outer automorphisms of 7r.

The action of G on C induces an action of G on the object TTi(C’)
of Out Gr, i.e. a group homomorphism f : G - Out( 7rl ( C)).

Proposition 1.2. (1) For an object P of C, there is an associated
group extension

for which the induced group homomorphism G -&#x3E; Out( 11"1 (C)) coin-

cides with f . We have: GP = {(g, a) : g E G, a E Homc(Tg(P), P)}.
(II) Any arrozu P, --+ P2 in C induces an isorrLOrphism of exten-

sions from ë PI to G P2. This isomorphism depends on the arrow only
up to inner conjugation by a,n element of the subgroup 7r1(C).

Proof. We define Gp = {(g, a) : g E G, a E Homc(Tg(P), P)}
as in (1), with product law

The associativity follows from the commutative diagram (A). The in-
verse of (g,a) is (g-1,T9-1(a)-1 0 o9-1,g), where we use Ti (P) = P.
So Gp is a group, we have a group homomorphism p : Gp --j G,
p(g, a) = g; p is surjective because of condition (D). The kernel of
p identifies with Aut (P) = 7r1 (C, P), and the group homomorphism
G -&#x3E; Out(7rl (C, P)) with f..

Let h : Pi - P2 be an arrow in C. Then we have a homomorphism
of extensions h* : GPl -&#x3E; GP2 such that h* (g, a) = (g, haT9(h)-1).
The composition of arrows induces the composite of the corresponding
homomorphisms of group extensions. For PI = P2, an automorphism
h of PI induces the corresponding inner automorphism of GPl. This
proves (2). 1

We will now explain the significance of this group extension in
a geometric context. Consider some category C of geometric objects
over a space X. By geometric object we mean some type of bundle
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over X, maybe equipped with some structure like a connection, possi-
bly satisfying some condition on the curvature. We assume that this
category satisfies conditions (C) and (D). Assume that a discrete group
G acts on X by_homeomorphisms. Assume that for P in the category,
the pull-back object g* P also belongs to it. Then we have an action of
G on the category, so that Tg is the pull-back under g-1. We have the
notion of a G-equivariant object of C. This is an object to which- the
action of G lifts. The following result explains the geometric meaning
of the extension of G obtained in Proposition 1.2. 

Proposition 1.3. Assume that the group G acts by homeomor-
phisms on a space X , and let C some category. of geometric objects on
X, which satisfies (C) and (D). Assume that for g E G and P E ob(C),
the pull-back g* P belongs to C. Then the following conditions are
equivalent:

(I) The group extension 1 -&#x3E; 7r1 (C, P) -&#x3E; GP -&#x3E; G -&#x3E; 1 of Propo-
sition 1.2 splits.

(II) There exists a G-equivariant object of C.

Proof. A splitting s : G - G of the extension is a map g E G -&#x3E;
Og : g* P+ such that o9h = h* (og) 0 oh for all g, h E G. This amounts
exactly to an action of G on the bundle P which lifts the action on X.
This shows that (I) implies (II). The same reasoning, joined with the
fact that all objects of P are isomorphic, show that (II) implies (I). 8

We are mostly interested in the case where 7r1 (C) is abelian, in
which case Out(7r,(C)) = Aut(7r1 (C) ) . if the action of G on 7r1(C) is
trivial, then Proposition 1.2 gives a central extension of G by 7r1(C),
which is defined uniquely, np to a unique isomorphism.

We illustra.te Proposition 1.3 with the following example. Let
M be an oriented Riemannian manifold such that H1(M,Z/2) = 0.
Assume that G acts on M by orientation-preserving isometries. Let
P -&#x3E; M be the oriented orthonormal bundle, which is a principal
SO(n)-bundle. Assume that the structue group of this bundle can be
lifted to Spin(n), in other words M is a Spin manifold. We construct
a category as follows. The objects of C are Spin(n)-bundles Q -&#x3E;
M, together with an isomorphism o : Q/Z/2-&#x3E;P of SO(n)-bundles



198

over M. A morphism is a,n isomorphism of Spin (n)-bundles, which
is induces the identity on P. The group C acts on C by pull-backs.
The assumptions (A)-(D) are satisfied, therefore we have a central
extension G of G by 1rl (C) = Z/2Z. The central extension splits if
and only there exists a G-equivariant Spin (n) -structure on M.

If we work with differentiable categories and differentiable group
actions, we get extensions of Lie groups.

Proposition 1.4. Any group extension 1 -&#x3E; K -&#x3E; G-&#x3E; P G - &#x3E; 1
arises from an action of G on some groupoid C satisfying conditions
(A)- (D) .

Proof. We define a groupoid C as follows. The set Ob(C) of
objects of C is equal to G. To g E G associate the set p-1 (g) C G
equipped with the action of K by right translations. Given gl, g2 E G2,
an arrow from gi to g2 is a bij ection 0 : p-1 (g1) = p- 1 (g2 ) which is K-
equivariant. Thus 0 is given by right multiplication by some element
h of G such that p(h) = g1-1g2. Given g E G, let Tg : C - C
be the following functor. Tg (g1 ) = ggl on objects, and Tg (h)= h
on arrows. More precisely, if we view right multiplication by h E G
as an arrow from gi to g2, then Tg (h) is the arrow h from gg1 to

gg2. It is clear that axioms (A)-(D) are verified. We then describe the
extension 1 -&#x3E; Aut(1 ) -&#x3E; E -&#x3E; G -&#x3E; 1. The group of automorphisms of
1 E G = Ob(C) identifies with K. The group E consists of pairs (g, h),
where g E G, h E G and p(h) = g, with product (gi, h1) (g2, h2 ) =
(g1g2, h1h2)- But this identifies with G. 8

So wc have a. sort of universal construction of group extensions
in terms of groups acting on groupoids. As an illustration, we study
a type of induction operation for group extensions. Let 1 -&#x3E; K -&#x3E;
p G --+ 1 be a group extension, and let f : G - Out(K) the
associated outer action of G on K. Let H be a group which contains
G as a subgroup. Then we construct a group extension 1 -&#x3E; A -&#x3E; H -&#x3E;
H - 1; when K is abelian, the group A is the group MapG(H, K) of
G-equivariant maps H -&#x3E; K, equipped with pointwise product, and
H acts on this group in the natural way. If K is not abelian, the
description of A is less sirnple. To construct the new group extension,
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we introduce a groupoid C. The set Ob(C) is equal to the set of maps
m : H -&#x3E; G such that m(gh) = g. m(h) for any g E G, h E H. Note
that such a map m is completely by m-1(1) C H, which is a set of
representatives for the left G-cosets in H. Given mi M2 : H -&#x3E; G as
above, an arrow mi -&#x3E; m2 is a family cPh of K-equivariant bijections
oh p-1 (m1 (h)) -&#x3E; p-1 (m2 (h)) such that for g E G, h E H, Øh and ogh
are given by the same element of G. The group H acts naturally on
C. For h’ E H, the functor Th, transforms the object (mh) into the
family (mh(h’)-1), and the arrow (oh) into the arrow (oh(h’)-1).

Given a set S c H of representatives for the left G-cosets, there
is an an associated object of C. its automorphism group A is simply
the cartesian power Ks. There results a homomorphism A : H -
Out(Ks), which may be described as follows. First for any g E G,
one needs to choose an automorphism i(g) of K representing 1(9) E
Out(K). Let h E H; then for any s E S, one can write sh-1 = gss’
for a unique pair (gs, s’) E G x S. Then A(h) is the class of the

automorphism which maps (hs)sES to the element of Ks whose s’
component is f (gs) . hs.

We summarize this construction in

Proposition 1.5. Let G cHand let 1 -&#x3E; K -&#x3E; G -&#x3E; G - &#x3E; 1 be
a group extensions. Then there exists an induced extension 1 -&#x3E; A -
if -&#x3E; H -&#x3E; 1, where A is isomorphic to the cartesian power KGBH
We have:

(I) For K abelian, A is isomorphic to MapG(H,K) as an H-
module, and the above construction represents the Shapiro isomor-
phism
H2(G, K)-&#x3E; H2(H, MapG(H, K)) in group cohomology.

(II) Assume that the homomorphism f : G -&#x3E; Out(K) lifts to a
homomorphism 1: G -&#x3E; Aut(K). Then the extension of G splits as a
semi-direct product if and only if the induced extension of H splits.

2. CONSTRUCTIONS OF CENTRAL EXTENSIONS

We will give several examples of our construction of central ex-
tensions, which are related to equivariant bundles and to reciprocity
laws.
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First let (M, w) be a symplectic manifold, and assume that the
cohoinotogy class ot w is integral so that there exists some line bundle
with curvature K = 21rv"--l - w. Let G be some group of symplecto-
morphisms of (M, w). Let C be the following category. The objects of
C are pairs (L, V), where L is a line bundle on M, and V a connection
on L with curvature w. A morphism h : (L1, V1) -&#x3E; (L2, V2) is an iso-
morphism h : L1-&#x3E; L, of line bundles which is compatible with the con-
nections. Then G acts on C by Tg (L, V) - (g-1) * (L,V) - g* (L, V).
The natural transformation og1,g2 is the obvious one. Axioms (A),
(B) and (C) are easily verified. Axiom (D) will hold true if all pairs
(L, V) are isomorphic, and this happens when any flat line bundle on
M is trivial, i.e. HI (M, C*). The group 1rl (C) is equal to C*, and the
action of G on C* is trivial. So in this case we get a central extension
of the group G of symplectomorphisms by C*. This is isomorphic to
Kostant’s central extension ([6], see also [3]).

There are several variants of this construction. If one works in-
stead with a category of circle bundles with connection, one gets a
central extension by the circle group T instead of C*. If w is not

integral, but has period group A C R, one can work with a cate-
gory of C/A-torsors, and one recovers Weinstein’s generalization of
the Kostant central extension [15].

We now introduce a category inspired by the Stone-von Neumann
theorem. This will be crucial in our proof of the quadratic reciprocity
law. Let, B be a locally compact abelian topological group which is
second countable. Let i3 be the Pontryagin dual of B. The there is an
associated Heisenberg group H = H(B) introduced by A. Weil [14].
We will give a description of it slightly different from Weil’s; we will
always assume that the map x H x2 from H to itself is invertible;
the inverse map will be denoted x -&#x3E; x1/2 . The Heisenberg group
H = H(B) is the group H = 1r x B x i3 with the product

The commutator factors through the non-degenerate skew-symmetric
pairing
S((b1, x1), (b2, x2)) = x2(bi) . X1 (b2). Note that H(B) is a central

extension of B x B by 7, with center equal to 7. Our description of H
hlBR the advantage that tlm symplectic group Sp(B x B), which consists
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of all automorphisms of H x B preserving the skew-symmetric pairing,
acts naturally on H, the action on the factor T of H = T x B x B
being trivial.

Recall now the generalized Stone-von Neumann theorem.

Theorem 2.1. (see !14] There is exactly one isomorphism class
of irreducible unitary representation p : H(B) - Aut(H) such that
p(z) = z . I d f or z E T.

A representation satisfying the assumption of Theorem 2.1 will
be called a Stone-von Neumann representation of H. A construction
of such a representation is obtained from any lagrangian subgroup A
of B x B. This means that A is maximal isotropic with respect to
S. Then T x A C H is a commutative subgroup, and we have the
character n(z, x) = z of T x A. Pick a Haar measure it on B x B.

Lemma 2.2. Let H-(A) be the induced representation

Let p(g) . f (h) = f (g-lh). Then (H-(A), p) is a Stone-von Neumann
representation of H.

Note that any g E Sp(B x B) induces an intertwining isomorphism
g. : H(A)-&#x3E;H(g . A), such that (g* f )(h) = f (g-1h).

We then come to the category C. An object of C is a lagrangian
subgroup A of B x B. An arrow f : A1 -&#x3E; A2 is a unitary intertwining
operator f : H(A1)-&#x3E; H(A2). The group G will be some subgroup of the
group Sp(B x B) of symplectic automorphisms of B x B. The action is
given by the functor Tg which sends A to g(A) and f : H(A1)-&#x3E;H(A2)
to the intertwining operator Tg (f) defined so as to give a commutative
diagram
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The natural transformation og1,g2 is the obvious one.

The group of automorphisms of an object A is equal to T, and
Sp(B x B) acts trivially on T. So from Proposition 1.2 one derives a
central extension

where Mp(B x B) is the so-called metaplectic gloup (Weil actually
gives this name to a subgroup of Mp(B x f3), which is a central ex-
tension of Sp(B x B) by Z/2).

Of particular interest is the case B = Kn, for K some local field,
i.e. K = R or C, or a finite extension of Qp, or a power series field
Fq((x)) over a finite field of characteristic not equal to 2. Then one
can identify k with K in the following way. One chooses a non-
trivial character V) : K - T; then the continuous homomorphism
z - (y -&#x3E; Y(x. y)) from K to K is an isomorphism. Thus for B = Kn
we have B-&#x3E;Kn, and Sp(B x Ê) is the symplectic group S’p(2n, K).

The last example is taken from work of Arbarello, De Concini and
Kac [1], and is an analog for hnilrlings of the Kostant central exten-
sion. Let k be a field, and let E be a vector space over k (not of finite
dimension). Two subspaces F, and F2 of E are called commensurable
if Fl n F2 is of finite codimension in both Fl and F2. We fix a com-
mensurability class S of subspaces of E. We introduce a category C,
whose objects are subspaces F C E in the given commensurability
class. To define the arrows, we need the following construction.

Proposition 2.3. There exists a unique way to assign a 1-
dimensional vector space (Fl F2) to a pair of subspaces in the class C,
together with isomorphisms

such that:

(I) For FI C F2, we have:

For Fl g F2 g F3, the isomorphism W(Fl, F2, F3) is the canonical
one.
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(II) Given F1,F2,F.1, F4 E S’, 11Je have a commutative diagram

Then we define H omc(Fl, F2) to be (F1lF2) B {0}, the set of non-
zero elements in the line (F1l F2). Composition of arrows is induced by
the isomorphism
w(F1, F2, F3), and (2) guarantees that composition of arrows is as-

sociative. The category C is a connected groupoid, and Aut(F) = k*
for any object F, so that 7r1(C) = k*.

Let G = GL(E, S) be the subgroup of GL(E) which preserves
the commensurability class S. Then G operates on the category C.
For g E G, define the functor Tg : C - C by Tg (F) = g . F, and
Tg : (F1lF2) -&#x3E; (g . F1|g . F2 ) is the canonical isomorphism, which exists
by the uniqueness part of Proposition 2.3. Then we actually have
Tgh = TgTh for g, h, E G, so we take Øg,h = I d. Thus we have an
action of the group G on the category C. Consequently we have a
central extension

In particular let E = k((x))n, and let S be the commensurabil-
ity class of the "lattice" k[[x]]n C k((x))n. Then the linear group
GL(n, k((x))) preserves this commensurability class, hence we have a
central extension GL(n, k((x))) of GL(n, k((x))). For n = 1 we have
the following computation

Proposition 2.4. Let f,g E k((x))*. Let f, 9 be elements of
k((x))* which map to f, resp. g. Then the commutator [f,g] is equal
to 

1 I-

where v denotes the valuation of a forinal power series (order of zero
at the origin).
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Proof. As both the commutator [f and the expression (7) are
bilinear in f and g and skew-symmetric, we may reduce the proof to
two cases:

(a) v(f) = 0,g = x;
(b) v(f) = v(g) = 0.
In the first case, we pick the object O = k[[x]] of C, and we take

/ = (f,1), where 1 is the canonical element of (1.010) = (O|O). And
we pick x = (x, [1]), where [1] E (x. O|O) = k . 1 is the element 1. The
product It is equal to (fx, w(1 0 f([1])). Now f([1]) E (x . 010) is the
transform of [1] under f , so it is the class [f (0)] of f in O/x . O. On
the other hand, we have: xl = (fx, w([1] @ x .1), and x . 1 is again the
canonical element of (xO|x(O). So we find [f,x] = f (0) as claimed.

In the second case, it is easy that the two lifts f and g commute. 1

3. THE FIXED POINT THEOREM

Given a central extension 1 -&#x3E; A -&#x3E; G -&#x3E; G -&#x3E; 1 of G, we
have a natural homomorphism f : H2 (G, Z) - A. Recall its concrete
definition. First we compute the multiplier group H2 (G,Z) of Schur
using a free presentation 1 -&#x3E; R -&#x3E; F-&#x3E; P G - &#x3E; 1. Then H2 (G, Z) =
Fl H R/[F, R], where F’ denotes the commutator subgroup of F. Let
[x1, y1] ... [xg, yg] be an element of F’ fl R. Then setting ai = p(xs),
bi = p(yi), we have the relation [a,, bi] ... [ag, bg] = 1 in G. Then

chose lifts ai of ai and 6i of bi in G. The expression [5i, b1] ... [iig bg]
belongs to A, and is independent of the choice of a1,..., bg. We then
have:

This may be interpreted in a way which does not involve the given free
presentation of G: any family of elements (a1,..., ag, b1),..., b9) such
that [a1, bi ... [ag , bg] = 1 gives rise to an element of H2 (G, Z) .

A splitting of the central extension 1 -&#x3E; A - G-&#x3E;q G -&#x3E; 1 is a

group homomorphism s : G -&#x3E; G such that qs = I dG . The existence
of a splitting implies that the central extension is isomorphic to the
trivial one 1 -&#x3E; A -&#x3E; A x G -&#x3E; G -&#x3E; 1, hence that the corresponding
homomorphism f : H2 (G, Z) -&#x3E; A is trivial.
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Theorem 3.1. Let C be n. category satisfying the assumptions (C)
and (D) of § 1, and let the group G act on C. Assume that A = 1rl(C)
is abelian, and that the action of G is trivial. Assume that there exists
an object P of C such that Tg (P) = P for all g E G. Then the central
extension 1 -&#x3E; A -&#x3E; G -&#x3E; G -&#x3E; 1 of § 1 has a natural splitting.

Proof. Use the notations of the proof of Proposition 1.2. We use
the object P to describe the central extension. We set s(g) = (g, Idp).
This gives a splitting of the central extension. 1

4. THE QUADR.ATIC RECiPROCITY LAW

We will use the Fixed Point Theorem 3.1 to obtain a proof of the
ordinary reciprocity law.

First of all we consider the metaplectic central extension 1 -a

T -&#x3E; Mp(2,K) -&#x3E; SL(2, K) = Sp(2, K) -&#x3E; 1 of §2, for F a local
field. There is an induced homomorphism f : H2(SL(2, K),Z) -&#x3E; T.
We recall that for elements a, b E K* we have a corresponding ele-
ment of H2 (SL(2, K), Z), denoted by {a, b}; this construction of Stein-
berg [12] works over any field. In the language of §4, this element
{a, b} can be constructed as follows. One introduces the free group
F on generators X(u), Y(u) (for u E K). There is a surjective ho-

momorphism p : F -&#x3E; ,SL(2, K) such that p(X(u)) = 1 u and
p(Y(u)) =1 0 u 1 . Choose an element k of K* such that c = k2 -I 1.( )
Then introduce for u E K* the element w(u) = X (u)Y(-u-1)X (u)
of F, which maps to (0u -u-1 0) of SL(2, K). Then h(u) = w(u). 
w (1) maps to In SL(2, K) we have the expression

, and a similar expression for

Now write a product of commutators in F as follows. Write
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down h,(a)h(b)h(ab)-1 as a product of elements of the type X(u) or
Y(v), and replace each of these by a commutator in F which has
the same image in SL(2, K). Then one gets a product of commu-
tators which maps to 1 E SL(2, K); this gives the element {a, b} of
H2(8L(2, K), Z).

Lemma 4.1. [8] For K a local field and for the metaplectic
central extension of SL(2, K), we have:

where (a" b) is the Hilbert norm residue symbol

has a solution

otherwise

Proof. This well-known fact follows easily by comparing Mat-
surrloto’s formula [9] for a cocycle representing the central extension
of SL(2, K) by K2(K) with Kubota’s formula [7] for a cocycle repre-
senting the metaplectic central extension

Now assume that K is a non-archimedean local field with ring of
integers 0. The additive character Y : K -&#x3E; T is called unramified if
its kernel is equal to O.

Lemma 4.2. Assume the character K - 1r is unramified and
that the residue field of 0 has characteristic different from 2. Then
the central extension 1 -&#x3E; 1 - Mp(2n, K) -&#x3E; Sp(2n, K) -&#x3E; 1 splits
canonically over the subgroup Sp(2n, O) .

Proof. It is easy to see that 02n is a lagrangian subgroup of
K2n, which is fixed under Sp(2n, 0). This gives an object 02n of the
category C, such that Tg . O2n = 02n for any g E Sp(2n,O). By the
fixed point theorem, the central extension of Sp(2n, 0) splits.
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Using this splitting, we may view Sp(2n, O) as a subgroup of
Mp(2n, K).

Now let E be a global field of characteristic not equal to 2. Let
S be the set of non-trivial places (not-trivial absolute values) of E.
For each place P denote by EP the completion of E at P, which is
a local field. There exists a choice a choice of non-trivial characters

0-p : Ep - T such that

(1) for almost all non-archimedean places P, the character 1/J’P is
unramified.

(2) for all a E E, we have the product formula:

Note that Lemma 1 ’ and condition (1) imply that all but finitely
many 1/Jp ( a) are non-trivial.

For a number field, the construction of such a family (YP) is given
in Tate’s thesis [13]. For the field of meromorphic functions on a curve
over Fq, it involvcs the choice of a meromorphic differential on the
curve.

In order to obtain the quadratic reciprocity law in the form given
to it by Hilbert, we introduce the ring of adeles A, which is the re-
stricted product A = n;ES Ep. The ring A consists of families
(xp 6 Ep), such that for almost all P, Xp belongs to Op. We have
the diagonal embedding E - A, which identifies E with a discrete
subring of A, with compact quotient. We have the character 1/J of A
such that Y((xp)) = TTPES Yp(xp). This character has trivial re-
striction to E. We use this character to identify A with its dual [13].
We consider the central extension

of the symplectic subgroup with coefficients in A. We are concerned
mostly with the case n = 1.

The group Sp(2n, A) is the restricted product of the groups Sp(2n, EP)
with respect to the subgroups Sp(2n, OP). One can take the restricted
product
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TTrpES Mp(2n, EP) of the groups Mp(2n, EP), with respect to the sub-
groups Sp(2n, Op). This is a central extension of TTrpEs Sp(2n, Ep)
by EÐPES T. We have a commutative diagram

Consider the case n = 1. Let a = (aP)PES, b = (bP)PES be
invertible adeles (i.e. ideles). For each P E S, we have the element
fap,bp} of H2(SL(2,Ep),Z). Let f : H2 (SL(2, A), Z) -&#x3E; T be the
homomorphism associated to the central extension (1-11) of SL(2, A), 
and let fP : H2(SL(2, EP), Z) -&#x3E; T be the homomorphism associated
to the local central extension. Then we have:

For utmost, every pla ce ’P E S, we have: ap,bp E 0*, hence
fp ({ap, bp}) = 1. So the product in (13) is indeed finite.

Now we note:

Lemma 4.3. The subgroup E2 of Â 2 is lagrangian.

Proof. The character 0 : A --4 T which we use to identify A with
the dual group has the property that E is its own orthogonal with
respect to the pairing A x A -&#x3E; T given by Y (x . y) . Hence E2 is its
own orthogonal with respect to the pairing

We see that the subgroup SL(2, E) of SL(2, A) fixes the lagrangean
subgroup E2 of A2. We view E2 as an object of the category C, such
that Tg(E2) = E2 for all g E SL(2, E). So we have:
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Theorem 4.4. The restriction to SL(2, E) of the central exten-
sion (11) has a canonical splt*tting.

This is a group-theoretic version of the quadratic reciprocity law.
Indeed, the expression (13) must be equal to 1 when a and b belong
to E* . Therefore we obtain:

Corollary 4.5. (Hilbert’s form of the quadratic reciprocity law)
For a, b E E*, we have:

We refer to [11] for (B discussion of the equivalence between this
product, formula of HUbort and the usual reciprocity law in the case
E = Q; this equivalence is of course an elementary fact.

Tlle proof given here is somewhat similar spirit to Weil’s proof
[14], whicl itself is akin t,o one of Gauss’s proofs, namely the one
l)Hsed on theta-functions. The role of theta-functions in Weil’s proof
is to give concrete vectors in t,lie model ?nC(E2) of the (adelic) Stone-
von Neumann representation. The point of the present categorical
approach is to get rid of all computations, save those over local fields
which were recalled in §2.

5. THE ATIYAH-BOTT FIXED POINT THEOREM

Theorem 3.1 is not the only case when the existence of a fixed
point implies a "reciprocity law". For a group of symplectomorphisms
we have an analogous theorem.

Theorem 5.1. (sere [3, Theorem 2.4.12]) Let (M,w) be a con-
nected symplectic manifold such that H1 (M, C*) = 0. Assume that the
cohomology class of w is integral. Let G be a group of symplectomor-
phisms of (M, w). Assume that there exists a point x of M which is
,fixed by G. Then the Kostant central extension 1 - 1r -+ G -&#x3E; G -&#x3E; 1
splits.
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Proof. Let (L, V) be a line bundle with curvature 7riw. From
§2 we know that G is the group of pairs (g, 0), where g E G, and
ø :  g* ( L, V ) -&#x3E; ( L, V) . We define a section s : G -&#x3E; G by s (g ) = (g, Ø)
where 0 is the unique such isomorphism which induces the identity on
the fibers at x. This makes sense because the fiber at x of g. (L) is the
fiber Lx, as g - x = x . Then s is the required section of G -&#x3E; G. I

We note a Lie algebra analog of Theorem 5.1. For (M, w) a sym-
plectic manifold, we have the Lie algebra HM of hamiltonian vector
fields on M, and the central extension

Here for f E Coo(M), p(f) is the hamiltonian vector field X f. This
central extension may be described, for any x E M, by the Lie algebra
2-cocycle

(see [10]. [3]).

Proposition 5.2. Let hx c HM he the Lie subalgebra of HM
consisting of those hamiltonian vector fields which vanish at x. Then
the central extension 7f --1 (nx) - f) x induced by (14) is split.

Proof. This is obvious from the formula, (15) for the 2-cocycle of
this extension. I

Returning to a group G of symplectomorphisms which admits a
fixed point, Theorem 5.1 has a numerical consequence which we state
in the simplest case G = Z2.

Corollary 5.3. (sere [3, Corollary 2.4.13]) Let (M, w) be a sym-
plectic manifold, and let f. 9 be commuting symplectomorphisms. As-
sume that there exists a point x E A1 which is fixed by both f and
g. l’hen given any smooth ma,pping a : [0, 1] - [0, 1] - M such that
s(t, 1 ) = f - s(t, 0) and s(1, u) = g . s(0, u), me have:
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We will show how the splitting theorem can he deduced from
the abstract fixed poilt theorem (Theorem 3.1). Given a connected

groupoid in which all automorphism groups are identified with C*,
a fiber functor is a functor F from C to the category Co of C*-sets
on which the C*-action is simply transitive. There is a groupoid C*
whose objects are the fiber functors F : C - Co, and whose arrows
are natural transformations between fiber functors. Given an action
of the group G on C in the sense of §1, one obtains in a natural way
an action of G on C* ; indeed to any g E G we associate the functor

Tg* : C* -&#x3E; C* which sends a fiber functor F to F o Tg-1. The central
extension associated to the G-groupoid C* is the opposite of the one
associated to the G-gronpoid C. In the situation of Theorem 5.1, the
category C, constructed in 82. has as objects the line bundles over M,
equipped with a connection V whose curvature is equal to 21rH . w.
Every point x of M gives a fiber functor Fx : C -&#x3E; Co, such that
Fx ( L, V ) = Lx /{0}. If x is a fixed point of G, then the fiber functor
Pc is fixed 1)y T.(; for all g e G, since Tg*(Fx) - L = Fx(g-1) =
[(g-1)*L]x, = Lg-lx Lx. I3y Theorem 4.1 the central extension of G
associated to C* must split.

It may happen that the group G of symplectomorphisms has no
fixed point but that there is a fiber functor which is fixed under the
G-action. This is illustrated by the following Theorem.

Theorem 5.4. Let (M, w) be a simply-connected quantizable sym-
plectic manifold, and let G be a Lie groups which acts on M by sym-
plectomorphisms. Assume there is a connected lagrangian submanifold
A C M which is invariant under G. Then the Kostant central exten-
sion of G splits if either

(a) A is simply-connected
or (b) G is 1-connected.

Proof. As usual, let C be the category of pairs (L, V) consisting
of a line bundle L and a connection whose curvature is 21rH . w.
In cases (a) and (b) we describe a fiber functor F : C -&#x3E; Co from C to
the category of C*-torsors, which is invariant under the group action.
Since A is lagrangian, the restriction of L to A is a flat line bundle. In
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case (a), we let F(L, B7) be the (C*-torsor T*hor(A, L) consisting of the
non-zero flat sections of L / A. Then for 9 E G we have:

In case (b), let A -&#x3E; A be a universal covering space. Since G is 1-

connected, it is easy to see that the action of G on A lifts to a an
action on A. Then we let F(L, V) be the C*-torsor consisting of the
non-zero flat sections of the pull-back of LIA to A- So if f : Ã -4 M is
the composite map, then F(L. V) = T*hor (A.f* L). It is then easy to
show that T*g F = F for any g E G. I

We will study what happens when the group G of symplectomor-
phisms admits two fixed points ’x and y. Then we have two splittings
Sx, Sy : G -&#x3E; G of the central extension 0 of G by C*. We thus
have sy (g) = Sx (g)x(g), where X : G -&#x3E; C* is a character. We have
two descriptions of x. The first description involves choosing a G-
equivariant line bundle L with connection V, whose curvature is equal
to 27r V-1. o. Such an equivariant line bundle exists because the cen-
tral extension is split. Tlen let Az : G -&#x3E; C* be the character giving
the action of G on the fiber Lx, and define Ay similarly. Then we have:

On the other hand, anypath 7 from x to y determines an isomor-
phism of fiber functors Fx-&#x3E; Fy. The character X(g) may be inter-
preted as the composition Hg.yHy-1, which in turn is the holonomy of
the line bundle L around that loop (gy) * y-1. Comparing these two
descriptions of X(g), we obtain

Theorem 5.5. Let G be a group of symplectomorphisms of (M, w)
and let L be a G-equivariant line bundle, equipped with a connection
V whose curvature is equal to 27rvf--l - w. Let x, y be two fixed points
of G, let ’Y be any path from x to y, and let g. ’Y be its transform under
g. Then me have
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This result was proved by Jeffrey in her thesis [4]. We will explain
its significance in relation with the Atiyah-Bott fixed point theorem
and geometric quantization. First recall that in the absence of a group,
if X is a compact Kaehler manifold with symplectic form w and L is
a holomorphic line bundle with curvature 27rB/-1w, the holomorphic
Euler characteristic X(X, L) = Ei(-1)idim Hi(X, L) is computed by
the Riemann-Roch theorem X(X, L) = (ch(L) - Td(X), [X]). The right
hand side of this formula only depends on the symplectic manifold M,
as the Chern character ch,(L) depends only on w and the Todd class
Td(X) only depends on the symplectic structure of X. In many cases
of interest we have the vanishing Hi(X, L) = 0 for i &#x3E; 0, and then
the quantization space H°(X, L) has a climension which is an intrinsic
invariant of the symplectic manifold.

Now assume that T is a compact torus which acts on X as a group
of Kaehler automorphisms, and that the line bundle L is (holomor-
phically) equivariant under T. The Atiyah-Bott fixed point formula
gives an expression for the virtual character 
in terms of the components F of the fixed point set XT. For each

component F, the character Ax of T is independent of x E F, and
will be denoted by AF. Let where Np is
the conormal bundle to F - X. The Atiyah-Bott fixed point formula
then says:

Assume that X is simply-connected. We wish to show that up
to a character of T, the right hand side is a purely symplectic invari-
ant of T acting by on X by symplectomorphisms. Indeed, we cannot
compute each character AF by purely symplectic methods, but from



214-

Theorem 5.5 we see that for two components F, F’ of X T , the ra-
tio AFA-1 only depends on the symplectic structure of X and on the
action of T. It is well-known that DF (t) only depends on the symplec-
tic structure on the normal space to F, not on its complex structure.
And we have seen that that the same is true of the Euler characteristic

Ei (-1)iTr(t, Hi(X, L)). Hence we obtain

Corollary 5.6. Let (X, w) be a simply-connected compact sym-
plectic manifold, let T be a compact torus acting on X by symplecto-
morphisms, and let L be a T -equivariant line bundle equipped with a
T -irzvarwia,rzt connection 1uhose curvature is equal to 27rH . w. Then
there exists a virtual reprc8cntation V of T with the following prop-
erties. Assume that X admits a complex structure for which w is a
Kaehler form. Then L is a holomorphic line bundle and the action of
T on L preserves the holomorphic structure. Furthermore, there exists
a character X of T suctz that

We note that this ambiguity of a character of T cannot be avoided,
because a given action of T on L can always be twisted by such a
character, which symplectic geometry does not see.

The significance of Corollary 5.6 for geometric quantization is that
the virtual representation of T produced by holomorphic cohomology
with respect to a Kaehler polarization is intrinsically associated to the
T-symplectic manifold.

REFERENCES

[1] E. Arbarello, C. DeConcini and V. Kac, The infinite wedge
representation and the reciprocity law for an algebraic curve, Theta
Functions, Proc. Symp. Pure Math. vol 49 Part I, Amer. Math.
Soc. (1987), 171-190

[2] M. F. Atiyah and R. Bott, Lefschetz fixed point formula for
elliptic complexes: II Applications, Ann. Math. 88(1968), 451-491



215 -

[3] J-L. Brylinski, Loop Spaces, Characteristic Classes and Geo-
metric Quantization, Progress in Math. vol. 107 (1993)

[4] L. Jeffrey, D. Phil. Dissertation, Oxford Univ. (1991)
[5] M. Kapranov, Analogies between the Langlands correspondence

and topological quantum field theory, Functional Analysis at the Eve of
the 21st Century. In Honor of the Eightieth Birthday of I. M. Gelfand
vol. I, Progress in Math. vol. 132 Birkhaüser, 119-152

[6] B. Kostant, Quantization and unitary representations, Part I:
Prequantization,Lecture Notes in Math. vol. 170 (1970), 87-208

[7] T. Kubota, Topological coverings of SL(2) over a local field,
J. Math. Soc. Japan 19 (1967), 114-121

[8] G. Lion and M. Vergne, The Weil Representation, Maslov In-
dex and Theta Series, Progress in Math. vol. 6, Birkhaiiser (1980)

[9] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes
semisimples déployés, Ann. Sci. Ec. Norm. Sup. 2 (1969), 1-62

[10] A. Pressley and G. Segal,Loop Groups, Oxford Univ. Press

(1986)
[11] J-P. Serre, A course in Arithmetic, Springer Verlag (1973)
[12] R. Steinberg, Générateurs, relations et revêtements de groupes

algébriques,
Colloque Théorie des Groupes Algébriques, CBRM, Bruxelles (1962),
113-127

[13] J. Tate, Fourier analysis in number fields and Hecke’s zeta
functions, Ph. D. Dissertation, Princeton Univ. (1950), published in
J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic
Press (1967), 305-347

[14] A. Weil, Sur certains groupes d’operateurs unitaires, Acta
Math. 111 (1976), 143-211

[15] A. Weinstein, Cohomology of symplectorraorphism groups and
critical values of hamiltonians, Math. Z. 201 (1989), 75-82

Penn State University
Department of Mathematics
305 McAllister

University Park, PA. 16802
Etats-Unis
e-mail address: jlb@math.psu.edu


