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ON THE MONADICITY OVER GRAPHS OF
CATEGORIES WITH LIMITS

by G.M. KELLY and I.J. LE CREURER*

CAHIERS DE TOPOLOGIE ET
GEOJIETRlE DIFFERE.’VTIELLE CATEGORIQUES

I ’olume XXXI III-3 (1997) 

R6sum6 : Donnée une classe petite M de categories pe-
tites, notons CatM la cat6gorie dont les objets sont les pe-
tites categories qui admettent, pour tout M E M, des M-
limites (choisies), et dont les morphismes sont les foncteurs
qui pr6servent (strictement) ces limites; notons Gph la
cat6gorie des graphes (petits); et notons U : Cat M - Gph
le foncteur d’oubli qui envoie une cat6gorie à M-limites
sur son graphe sous-jacent. Pour certaines classes M
il est connu que ce foncteur U est monadique; mais les
d6monstrations emploient pour chacune de ces M une as-
tuce diff6rente. Nous d6montrons que U est au moins "de
descente" si chaque M E M est une cat6gorie librement
engendr6e par un graphe, et que U est alors monadique
quand ce graphe est acyclique.

1 Introduction

As in the abstract above, we consider a small class M of small categories,
and write CatM for the category whose objects are small categories with
(chosen) M-limits for each M E M, and whose morphisms are those
functors which strictly preserve these chosen limits.

Although functors preserving chosen limits strictly would seem to be
of scant mathematical interest, there is a reason for considering them:
namely, the monadicity of the forgetful functor W : Cat m - Cat.

*The first Author greatlv acknowledges the support of the Australian Research Council.



180 -

This monadicity, already studied by Lair io [8], [9], and [10], is a special
case of the monadicity of the forgetful functor for structures given by
everywhere-defined operations (with arities in the base category), sub-
jected to equations between derived operations. A modern account of
this monadicity, adapted to our present context, was sketched in [6, Sec-
tion 8] and developed more fully in [7]; but these ideas are also related
to the notion of "algebras over a syntax on a base-category", initiated
by Coppey in [3] and developed further by Coppey and Lair in [4].

In the present case, the structure we are to place on a category A is
that of having M-limits for each M E M. To give these is just to give
a right adjoint L : AM -t A to the diagonal A : A -&#x3E; AM. Equivalently,
we are to give a functor L : AM -&#x3E; A, a natural transformation (the
unit of the adjunction) p : 1 - LA, and a natural transformation (the
counit) cr : AL - 1, satisfying the "triangular equations" Lo,.pL = 1
and s D.Dp = 1. To give the functor L on objects is to give an object
L(d) of A for each "diagram" d : !vI -t ¿4; this is an (object-type)
operation of arity M. To give L on morphisms is to give an arrow
L(o) : L(d) -&#x3E; L(e) in A for ea.ch arrow o d : d -&#x3E; e : M -&#x3E; A in AM;
since o may be seen as a diagr am M x 2 -&#x3E; A, where 2 is the arrow
category (0 - 1}, this is an (arrow-type) operation of arity M x 2.
The equations (between arrows) L(Yo) = L(Y)L(o) and L(I) = 1,
asserting the functonality of L, are of the respective arities M x 3 and
M, where 3 is the ordered set {0 -&#x3E; 1 -&#x3E; 2}. To give the components
p(a) : a -&#x3E; LA(a) of p for a E A is to give an arrow-type operation
of arity 1, since a is equally a diagram a : 1 -&#x3E; A; and the naturality
condition for p with respect to f : a -&#x3E; b in A is an arrow type equation
of arity 2. Similarly, to give the components s(d) : LD(d) -&#x3E; d of s is
to give an arrow-type operation of arity M, while the naturality of 0’ is
an arrow-type equation of arity M x 2. Finally, the triangular equations
are arrow-type equations of respective arities M and 1. This gives the
desired monadicity of W : Cat m - Cat, since the class M is small.
(If it were not, W might fail to have a left adjoint H; in other words,
the free M-complete category HA on a small category A might fail to
be small.)

In fact the results in [7] are given for enriched categories; and a
similar argument to that above can be carried out in the Cat-enriched
world, leading to the conclusion that the forgetful W : Cat m - Cat,
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now seen as a 2-functor between 2-categories, is 2-monadic. Structures
defined by 2-monads were extensively studied in [1], wherein are devel-
oped the chief results on the more-interesting non-strict morphisms of
such structures, using the strict ones as a necessary starting-point to
produce the 2-monad. However we do not follow this direction in the
present paper: for here we shall be concerned with the composite for-
getful functor U = VW : Cat m - Gph, where Gph is the category
of (small) graphs and where V : Cat - Gph sends a category to its
underlying graph; and in this context it is pointless to treat CatM and
Cat as 2-categories, since Gph is a mere category with no non-trivial
2-cells.

The study of categories monadic over Gph was initiated by Lair in
[9] and [10] and by Burroni in [2], and continued by various authors in
[6], [11], [4], and [5]. In particular, V : Cat - Gph is monadic; let us
write G for its left adjoint, and ,S’ = VG for the corresponding monad
on Gph. Our present concern is with the monadicity, for various M,
of U = VW : Catm -+ Gph. Let us write H for the left adjoint of W,
and R = W H for the corresponding monad on Cat; then U has the left
adjoint F = HG, with unit say 71 : 1 -&#x3E; UF and counit e : FU -&#x3E; 1. We
write T for the monad UF on Gph, and Ii : Cat m - T-Alg for the
comparison functor to the category of T-algebras; so that U is monadic
precisely when Ii is an equivalence. Recall that the functor U is said
to be of descent type when Ii has the weaker property of being fully
faithful. We may write UM for U when we wish to emphasize M.

It follows from the results of [7] that U = U M is monadic precisely
when the structure of an M-complete category A with the underlying
graph X can be expressed in terms of everywhere-defined operations
on X, and equations between derived operations, the arities now being
graphs. This is equally to ask that the existence of M-limits in a cate-
gory A should be expressible by operations on A, and equations between
derived operations, each of whose arities is a free category on a graph.
Note that the presentation by operations and equations given in the
second paragraph of this Introduction has free categories for its arities
only when each M E M is a discrete category; this allows us to infer
the monadicity of U when, for example, the class of M-limits is that
of finite products - a case discussed by Lair in [9] and [10]. Yet U may
well be monadic in cases where not every M E M is discrete: the point
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is that one may be able to find a. different presentation of M-limits by
operations and equations, this time with each arity a free category on a
graph. Burroni did this in [2] for tlic case of terminal ob jects (covered
by the above, since here M is empty and hence discrete), but also for
the case of pullbacks, where M is le -&#x3E; 0 - 0} ; this latter case was
also treated by Dubuc and Kelly [6], and was revisited by Cury in [5]. It
follows from the first sentence of this paragraph that, when the class M
is a union UMi for which each UMi : Cat m, - Cat is monadic, then
UM : Cat M - Cat is monadic. Thus we may conclude from Burroni’s
results that U is monadic when M consists of all finite categories (so
that to admit M-limits is to admit all finite limits); or equally where M
consists of all finitely presentable categories, since this gives the same
category C atM .

However, if UM is monadic, the results of [7] do not allow us to
conclude that UN is monadic when A( C M ; and indeed, as we shall see,
there is a finite category P for which U{P} not only fails to be monadic,
but is not even of descent type. Thus if E is the finite category f 0 01,
so that CatE consists of categories with equalizers, we cannot conclude
from Burroni’s results that U{E} is monadic; yet it is so, a suitable

presentation with free categories for its arities having been given by
MacDonald and Stone in [11]. Indeed, Coppey and Lair have established
in [4] the monadicity of U when M is any class of finitely-presentable
categories containing the category E above.

During a visit to Sydney in early 1995, Carboni raised the question
of these positive monadicity results: is each one, with its finding of
a suitable presentation, an isolated "clever trick", or is there a more
rational common basis to them’? The present article provides at least a
partial answer, by proving the following four results - the last of which
contains all the known positive cases of monadicity:

(A) There is a finite category P for which U{P} is not of descent type.

(B) However U M is of descent type whenever each category M E M
is the free category GX on a graph X.

(C) Even then, U M need not be monadic; in fact U{GY} is not monadic
when Y is the graph with one vertex * and one edge y : * -&#x3E; *.

(D) Yet UM is monadic when each A4 E M is the free category GX
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on a ,finite acyclic graph X (where X is sa,id to be acyclic when
GX has no endomorphisms except identities).

2 U need not be of descent type
Let X be the graph with three vertices a, B, y and with the three edges
0 : a -&#x3E; /3, 1/J : a -&#x3E; 0, and 0 : /3 -&#x3E; Y, and let P be the finite category
generated by X, subject to the single equation 00 = 00. We consider
now the composite U of W : Catm -4 Cat and V : Cat -&#x3E; Graph,
where A4 consists of P alone; and we begin by calculating the monad
T = UF = VWHG.

For X E Gph, a functor P - GX is given by a diagram in GX of
the form

where h f = hg. Since GX is the free category on X, this equation
implies the equation f = g; so that the functor P - GX has the
limit a, the limit-cone having la for its a-component. Since any functor
GX - A into a, category A with M-limits preserves the limit above, GX
is in fact the free M-complete category on itself; so that, if the choices
of limits in Catm are suitably made, we have W HGX = GX. Thus
T X = VW HGX = VGX, so that the monad T on Gph coincides with
the monad S = VG. Hence T-Alg = S-Alg = Cat, and the compa.rison
functor h : Cat M - T-Alg coincides with W : Cat M - Cat. Since a
general functor between M-complete categories does not preserve M-
limits, W is not fully faithful; and so U is not of descent type.

3 U is of descent type when each M E M
is free on a graph

Recall that, if W : A-&#x3E; C is a faithful functor, a morphism e : C - A
in A is said to be W-final if, whenever a morphism t : WA -&#x3E; W B in
C is such that the composite t.We : WC -&#x3E; I/V B is of the form Wg for
some g : C1 -+ B, then t is of the form Ws for some s : A -&#x3E; B. An

easy argument shows that e is certainly W-final if e is a coequalizer in
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A and W e is epimorphic in C. We shall use the following result of Kelly
and Power, from [7, Section 3]:

Lemma 3.1 Let U = vW where W : A -&#x3E; C is faithful and V : C -
9 is of descent type; and let U have a left adjoint F with counit 6
FU -&#x3E; 1. Then U is of descent type if and only if each cA : FUA -&#x3E; A
is W -final.

For the reader’s convenience, we shall sketch here the proof of the
"if" part, which is what we shall use below. The comparison functor
K : A -&#x3E; T-Alg sends A E A to the algebra (UA, UeA : UFUA - A);
whence it easily follows that K is fully faithful if each -A is U-final. In
the circumstances above, W-finality of theea suffices for this; because
each WeA is v-final. This follows from the remark preceeding the
lemma: for VWeA = U eA is a retraction, whence W,6A is a coequalizer
because V is of descent type - for more details see [7, Section 2].

We now apply the lemma to our case of W : Cat m - Cat and
V : Cat -&#x3E; Gph, where each M E M is of the form GX for a graph X.
We are to prove W e A : W FUA -&#x3E; W A to be YV-final. Suppose then
that t : WA - WB has t.WeA = Wg for some g : FUA -+ B; we are
to show that t is of the form W s, or equally tha,t t preserves M-limits.

With M = GX E M, consider any functor f : GX - W A. Since
G -1 V, there is a corresponding morphism f : X - VWA = UA of
graphs. Write h for the composite graph-morphism

where 17 : 1 -&#x3E; UF is the unit of the adjunction; noting that, since
U£A.17UA = 1, the composite

is f . It follows that, if h in turn corresponds under the adjunction
G -1 V to h : GX - W FUA, then the composite
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is the functor f we began with.
Our desired conclusion, that t preserves M-limits, is now obtained

as follows. We have

t . lim f = t. lim(WeA.ia)
= t.WeA.limh because WEA preserves M-limits
= Wg. lim h since t.WeA = Wg
= lim(Wg.h) because Wg preserves ,M-limits
= lim(t.WaA.h)
.-- lim(t f ).

4 UIGYI is not monadic when Y is the loop
with one vertex and one edge

For this M = {GY}, a functor GY -&#x3E; A is just an endomorphism e in
A, and A is M-complete precisely when each such endomorphism has
a limit - that is, a universal arrow f with e,f = f .

We now describe, in the language of Mac Lane’s book [12], a V-split
fork

in Cat. Each category Ai is generated by a graph Xi, subject to some
relations. Each Xi has three objects ai, bi, ci, and edges ei : ai -&#x3E; ai, fi :
bi -&#x3E; ai, and gi : ci -&#x3E; ai; in addition, Xl has another edge g’1 : CI -&#x3E; al.

The relations describing Al are el2 = 1 and e1 f1 = 11; those describing
A2 are e22 = 1 and e2 f2 = f2; and those describing A3 are e3’ = 1,
e3 f3 = f3, and e3g3 = g3. Each of the functors p, q, r and each of the
graph morphisms i, j is the "identity on objects", in a loose manner of
speaking - we mean more precisely that pal = a2, pbl - b2, PC1 = c2,
and so on. Their effects on arrows are given by

pe, = e2, pfi = f2, Pgl = g2, pg’1 = 92;
qel = e2, qfl = 12, qg1 = g2, q9’i = e2 g2 ; 
re2 = e3, rf2 = f3, r92 = 93;
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ie3 = e2, if3 = f2, ig3 = g2i
je2 =e1, jf2 =f1, jg2 = g1, j(e2g2) = g’1
One verifies at once that p, q, r are indeed functors and that we

have rp = rq and, at the level of graph-morphisms, ri = 1, q j = 1, and
pj = ir; so this is indeed a V-split fork - indeed a V-split coequalizer
- in Cat.

What is more, Al and A2 lie in Cat, the endomorphisms el and
e2 having the limits fi and f2; and these limits are preserved by p and
q, which are accordingly morphisms in Cat. If U were monadic, we
could conclude from Beck’s theorem that A3 too was M-complete: but
this is false, since clearly the endomorphism e3 has no limit.

5 U is monadic when each M E A4 is free
on a finite acyclic graph

Finally, we establish the result of the heading above, which encompasses
all the positive results given by Burroni or by Mac Donald and Stone.
Recall that the graph X is said to be acyclic when the free category GX
on X has no endomorphisms except identities. Let us write IXI for the
set of vertices of X, which is the set of objects of GX . Because GX is a
category, the relation "there is some arrow z - y in GX" is a preorder
relation x a y on IXI; and because X is acyclic, it is in fact a (partial)
order relation. By choosing a minimal element x 1 of IXI with respect
to this preorder, and then a minimal element X2 of IXI - {x1}, and so
on, we enumerate the elements of the finite set IXI as {x1, x2, ... , xn}
in such a way that xi  xj implies i  j. In fact, since X is acyclic,
we have more: if there is an edge from xi to xj, then i  j. Finally we
simplify the notation further still, by writing just i for the vertex xi . So
now the vertex-set of X is {1,2,...,n}, and i  j whenever there is a
non-identity arrow i - j in GX.

In the second paragraph of the Introduction, we gave a presentation
of M-limits in the category A in terms of operations on A and equations
between these; the various arities occuring were the categories M, M x 2,
M x 3, 1, and 2. In the present case, where each M E M has the form
GX , each of these arities is free on a graph except M x 2 (the arity
for the limit-functor L : AM -&#x3E; A as given on morphisms, and also
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the arrow for the naturality condition on the counit cr), and M x 3
(the arity for the functoriality equation L(Yo) = L(Y)L(o)). We now
complete the proof by so modifying the presentation as to avoid these
arities GX x 2 and GX x 3, in favour of others that are free categories
on graphs.

The point is that, because M = GX with X finite and acyclic,
the giving of L(o) : L(d) -&#x3E; L(e) for a natural transformation o :
d -&#x3E; e : GX - A can be reduced to the giving of L(o) for those
special o having all’but one of their components oi : d(i) -&#x3E; e(i) (for
i E IX 1 ( 1 , 2, ... , n}) equal to an identity. This is so because a general
o : d -&#x3E; e : GX -3 A can be written as a composite of such special ones;
explicitly, 0 is the composite

where the functors d2 : GX - A (or equivalently the graph-morphisms
di : X -&#x3E; A) are given on objects by

and are given on the edge u : j -&#x3E; k of X (whose existence entails j  k)
by

while the natural transformations 0’ are given by

so that each has at most one non-identity component.
Instead of giving the operations L(o), therefore, it suffices to give

operations Li(o) : L(d) -3 L(e) for 1  i  n, where Li(o) is defined
only for those 0 : d -&#x3E; e having qlj = 1 for j fl i; then, if 0 has the
canonical factorization 0 = onon-1...o1 as in (5.1), we re-find L(o) as
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Ln (on) Ln-1(on-1) ... L1(01). Moreover the arity of the operation Li is

clearly the free category GX on the graph X described as follows: the
vertices of Xi are those vertices of X other than i, along with two further
vertices i’ and i"; to each edge u : j -&#x3E; k of X with j =1= i and k =/ i,
there is a corresponding edge u : j -+ k of X i ; to each edge v : j -&#x3E; i

of X (where we necessarily have j  i ), there is a corresponding edge
v : j - i’ of X’; to each edge w : i -&#x3E; k of X (where we necessarily
have i  k), there is a corresponding edge w : i" -&#x3E; k of X’; and finally,
besides the above, X has one further edge * : i’ -&#x3E; i".

In ridding ourselves of the operation L( 4» of arity GX x 2 in favour
of the operations Li (4)) of arities GX i, we have also ridded ourselves of
the need for an equation of arity GX x 2 to express the naturality of
the counit a of the adjunction: for it suffices for this naturality that
u be natural only with respect to the special 0 with at most one non-
identity component, and this is expressed by one equation of arity GX 

2

for each i . 
It remains to ensure the equation L(Yo) = L(Y)L(o), which as it

stands has arity GX x 3. Certainly we must have for each 1 the special
case L’(00) = L’(O)L’(0) of this, where oj and Oj are identities for
j =/ i; and this is an equation of arity GX ii, where X ii is the following
graph. Its vertices are those of X other than i, along with three new
vertices i’, 1", and i"’; to each edge u : j -&#x3E; k of X with j =1= i and k =/ I
there is a corresponding edge u : j -&#x3E; k of X ii; to each edge v : j -&#x3E; i of
X there is a corresponding edge v : j -+ i’ of X"; to each edge w : i -&#x3E; k
of X there is a corresponding edge w : i"’ -&#x3E; k of X ii; and finally, besides
the above, X"" has an edge i’ - i" and an edge i" -&#x3E; i"’. (If we think of
the passage from X to X 

i 
as a general process sending a graph X and

one of its vertices i to new graph with i replaced by a pair 1’, i", then
we may see X" as (X’))" .) 

To see what further equations between the Li are needed, consider
in the functor-category AGX a morphism o : d -&#x3E; e where ok is an

identity for k =/ i, and a morphism Y : e -&#x3E; f where Yk is an identity for
k =/ j, and suppose that i  j. Observe that to give d, e, f : GX -&#x3E; A
along with such morphisms 0 and 0 is equally to give a graph-morphism
h : X ij -&#x3E; A, where X’j is the graph described as follows. Its vertices
are the vertices of X other than 1 and j, along with vertices i’, i", j’,
and j". To each edge u: k-&#x3E; m of X where k is neither i nor j and m
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is neither i nor j, there is a corresponding edge u : k -&#x3E; m of Xij ; to
each edge v : k --+ i of X there is a corresponding edge v : k -&#x3E; i’ of xij;
to each edge w : k -&#x3E; j of X with k =1= i, there is a corresponding edge
w : k -&#x3E; j’ of Xij ; to each edge x : I -&#x3E; k of X with k =1= j, there is a
corresponding edge x : i" -&#x3E; k of X’3; to each edge y : j - k of X, there
is a corresponding edge y : j" - k of Xij; to each edge z : i - j of X,
there is a corresponding edge z : i" - j’ of X’3; and finally, besides the
above, X’j has edges * : i’ -&#x3E; 1" and t : j’ -&#x3E; j". (In the language of the
final sentence of the last paragraph, X’j is (Xi)j . ) The reader will find
it easy to express d, e, f , 0 and 0 explicitly in terms of h : Xij -&#x3E; A.

We now observe that there is in AGX a unique commutative square

wherein oi = oi, "pi = "pi, and all the other components of o and of Y are
identities; for we are forced to define the graph-morphism g : X -&#x3E; A as
follows, and then the reader will easily verify that the given o and Y are
indeed natural transformations. On the vertices, g(k) = e(k) if k =1= i

and k =1= j, while g(l) = d(i) and g(j) = f(j). On an edge u : k -&#x3E; m,
we have g(u) = e(u) if k is neither i nor j and m is neither i nor j; while
g(u) = d(u) if m = i, or if k = i and m =1= j; and similarly g(u) = f (u)
if k = j, or if m = j and k fl i; and finally g(u) is the common value
"pjd(u) = f (u) oi when k = i and m = j.

If we are to have L(Yo) = L(Y)L(o), we must certainly in the cir-
cumstances of (2) have the equation

which is an equation of arity GXij. Moreover the equations (3), along
with our earlier equations L’(00) = Li(Y)Li(o), suffice to give L(Yo) =
L( ’ljJ )L( 4» in general. For suppose that 0 has the canonical factor-
ization o = BnBn-1 ... B1 as in (1), while 0 has a similar factoriza-
tion 0 = 6n6n-I ... E1. Then repeated use of (2) allows us to rewrite
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where all the components of Ei and 8i except the i-th are identities. It
follows from our definition of L as a derived operation that L(Yo) = 

The equations L’(9§) = L’(9)L’(§) translate
this into and now the equa-
tions (3) allow us to retrace our steps from En03BCEn-i ... E1BnBn-1 ...Ol to

, this time with the appropriate L’ inserted, to

which is the desired
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