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HOMOTOPY THEORY FOR (BRAIDED) CAT-GROUPS
by Antonio R GARZON and Jesus G. MIRANDA

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XXXVIII-2 (1997)

RESUME. Les categories de Gr-cat6gories (tress6es ou sym6triques)
ou les categories 6quivalentes de modules crois6s (2-modules crois6s
r6duits ou modules stables) repr6sentent des modeles alg6briques pour
les types d’espaces connexes dont les groupes d’homotopie sont nuls
pour les ordres autres que 1,2 (ou 2,3, ou n, n+1 pour n &#x3E; 2).
Dans cet article, on munit ces categories d’une structure de cat6gorie à
modèle ferm6e, et on étudie la th6orie d’homotopie associee. On cons-
truit 1’espace des chemins, le cylindre, 1’espace des lacets et la suspen-
sion. On identifie les relations d’homotopie d6duites de ces structures.
Ceci conduirait à une classification alg6brique des classes d’homotopie
d’applications continues entre espaces topologiques connexes dont les
groupes d’homotopie sont nuls sauf ceux d’ordre n, n+1 pour un n &#x3E; 1.

INTRODUCTION

In his lecture at the International Congress of Mathematicians (1950),
[33], J.H.C. Whitehead outlined the general aims of "algebraic homo-
topy" which, in particular, included the following basic homotopy clas-
sification problems: classify the homotopy types of polyhedra X, Y,...,
by algebraic data; compute the set of homotopy classes of maps [X, Y]
in terms of the classifying data for X, Y. Both problems, including
other types of spaces, have been studied in the last 40 years by many
authors.

Algebraic models of homotopy types have been often obtained by
giving functors which carry the spaces under consideration to algebraic
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objects like chain complexes, crossed complexes, chain Lie algebras,...,
and then showing an equivalence between the respective homotopy cat-
egories.

In this way, recall that groups are algebraic models of 1-types, that
is; there is a classifying space functor

such that for any group G the space BG is connected and satisfies

TT1BG= G and 7rjBG = 0 for j &#x3E; 1, and further any pointed, connected
CW-complex X with Jr; = 0 for j &#x3E; 1 is of the homotopy type of Btt1X.

Crossed modules of groups, introduced by J.H.C. Whitehead, [32]
(see also [3]), are algebraic models of 2-types. There is a classifying
space functor

such that if p : L - M is a crossed module then B(L - M) is con-

nected and it has 7r,B(L -&#x3E; M) = cokerp, 1f2B(M -t L) = kerp and
7rjB(L -+ M) = 0 for j &#x3E; 2. Further, any connected CW-complex X
with 7rX = 0 for j &#x3E; 2 is of the homotopy type of B(L -3 M) for some
crossed module L - M; in fact the crossed module describing the 2-

type of a CW-complex X is 1f2(X,X1) a2 -&#x3E;tt1 (X1) where X1 denotes
the I-skeleta of X (see [26], [25]). Note that the category of crossed
modules of groups is equivalent to the category Cat(Gp) of internal
categories (groupoids) in groups and so this last category also provides
algebraic models for 2-types.

Algebraic models of 3-types were given by Conduch6, [18], by means
of the category of 2-crossed modules. This category is equivalent to
the category of simplicial groups with Moore complex of length 2 and
also it is equivalent to the category of braided regular crossed modules
introduced by Brown and Gilbert in [5]. On the other hand, the category
of cat2_groups, [25], is equivalent to the category of crossed squares, [21],
and they also provide algebraic models of 3-types. In [19], Ellis has used
homotopical methods of crossed squares for computation with homotopy
3-types. Note that a crossed square has associated a non-abelian group
complex which is in fact a 2-crossed module (see [5]).
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All these results have found higher-dimensional versions (see [25],
[15]) which give algebraic models for homotopy n-types, n &#x3E; 1.

The study of connected spaces with only two non-zero consecutive
homotopy groups is particularly interesting. Crossed modules provide
algebraic models for such spaces in the lowest dimensions. The full

subcategory of the category of 2-crossed modules whose objects have
trivial righthand side groups, called reduced 2-crossed modules, is just
the category of braided crossed modules of groups in the sense of Brown-

Gilbert, [5], and it provides algebraic models for spaces X with ttjX = 0
for j # 2, 3. Note that this category is equivalent to the category of
strict braided categorical groups (see [24], [13]). Further, reduced 2-
crossed modules with an extra condition of symmetry (usually called
stable crossed modules, [18]) are the same as strict symmetric categor-
ical groups and both categories provide algebraic models for spaces X
with Jr;X = 0 for j # n, n + 1 and n &#x3E; 3 (see [18], [13]).

With regard to the classification of the set of homotopy classes of
continous maps [X, Y], this problem has found, in several particular
cases, different solutions which involve the use of suitable cohomology
sets. We are interested in the homotopy classification of maps into a
space with two consecutive non-trivial homotopy groups. Note that this
problem is somewhat equivalent to the dual problem studied in [1] which
describes, in terms of cohomology groups and cohomology operations,
the homotopy classification of maps X - Y when X has two non zero
homology groups in exactly two consecutive dimensions.

Eilenberg and Mac Lane gave a homotopy classification for maps
X - Y when X is a CW-complex and Y is a space with a unique
non trivial homotopy group 7r in dimension n &#x3E; 2, in terms of the

cohomology group Hn(X,1f). There have been generalisations of this
result to local coefficients. This classification theorem was generalized
in [10] by showing that, if X is a CW-complex with skeletal filtration X
and C is any crossed complex, there is a natural bijection of homotopy
classes [X, BC] = [7rX, C] where 7rX is the fundamental crossed complex
of X and BC is the image of C under the classifying space functor
B : Crossed complexes -&#x3E; CW-complexes. A similar result for 3-types
is given recently in [19]. The special case when C is a reduced crossed
module and with a different definition of BC was proved in [12]. Also,
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in [12], Eilenberg-MacLane’s classification theorem was generalised to
the case when Y has the homotopy type of a reduced 2-crossed module,
and then in [13] to the case when Y has the homotopy type of a stable
crossed module. These classifications have found generalizations, when
X and Y are spaces with 7ri = 0 for all j # n, n + 1, n = 0, 1, 2, in terms
of isomorphism classes of (braided) monoidal functors for (n = 2) n = 1
(see [16]).

In a quite different way, Baues, [2], has extended Whitehead’s results
on the algebraic classification of 3-dimensional connected CW-spaces.
He replaces crossed modules and crossed complexes by quadratic mod-
ules and quadratic complexes and he obtains a homotopy classifica-
tion of maps from a 3-dimensional connected CW-complex X to some
other connected CW-space Y and also the homotopy classification of
4-dimensional connected CW-spaces.

In both problems, to find algebraic models for spaces and to classify
homotopy classes of maps, it is to be hoped, as is pointed out in [29],
that the "algebra" reflects the "geometry" in the spaces or, in other
words, that the homotopy structure of the spaces can be described in
an algebraic way. To do that requires to be able to do homotopy theory
in the algebraic setting.

A well known and quite powerful context in which an abstract ho-
motopy theory can be developed is supplied by a category with a closed
model structure in the sense of Quillen, [30]. The object of this pa-
per is to show that each of the categories Cat(Gp) (internal cate-
gories in groups), B Cat(Gp) (strict braided categorical groups) and
SCat(Gp) (strict symmetric categorical groups) ( and so the equiva-
lent categories of crossed modules, XM(Gp), of reduced 2-crossed mod-
ules, 2 - XMred(Gp), and of stable crossed modules, XMst(Gp)) may
be given the structure of a Quillen closed model category. Moreover,
we study the corresponding associated homotopy theories by identifying
cylinder and path constructions in each case; we then characterize the
homotopy relations deduced from these constructions. This then allows
the determination of homotopy classes of maps between spaces X and
Y such that TTjX = 7rjY = 0 for all j # n, n + 1, n&#x3E; 1, in terms of
homotopy classes [6(X), 6(Y)] of morphisms between the corresponding
algebraic models 6(X) and 6(Y).
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In §1 we recall the categories Cat(Gp), BCat(Gp), SCat(Gp)
and their equivalence with XM(Gp), 2 - xMred(Gp) and xMst(Gp)
respectively. Also we recall some general facts about Quillen’s model
categories. In §2 we define (co)-fibrations and weak equivalences in each
one of the categories Cat(Gp), .CiCat(Gp) and SCat(Gp), we charac-
terize the cofibrations in an adequate form and then we prove that, with
respect to these classes of morphisms, each of these categories is a closed
model category. In §3 we identify path and cylinder constructions, loop
and suspension functors and we characterize the homotopy relations de-
duced from these constructions. Finally, in §4, we translate definitions
and results of §2 and §3 to the categories XM(Gp), 2 - XM,ed(GP)
and XMst(Gp).

In this paper we use additive notation for groups.

1 Preliminaries

Let Simp(Gp) be the category of simplicial groups, i.e., Simp(Gp) is
the functor category Gp Aop where Gp is the category of groups and A is
the category whose objects are the ordered sets [0] = {0}, [1] = {0,1},...,
and the arrows are the order preserving functions between them.

An 1-truncated simplicial group is a diagram of groups and group
morphisms

such that do so = dl so = I dG0. A morphism between 1-truncated sim-
plicial groups is a diagram
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where fi and f o are group morphisms such that f0d0 = d0 f1, f o d1 = d 1 f o
and fiso = so fo. We will denote Trl(Simp(Gp)) the category of 1-
truncated simplicial groups.

In what follows Cat(Gp) will denote the category of internal cat-
egories in the category of groups. An object of Cat(Gp), called a
cat-group, will be represented by a diagram of groups and group mor-
phisms 

such that sI = tI = Ido, and the composition of two morphisms
x, y E A with s(x) = t(y) will be denoted by x o y. Note that

the composition of two such morphisms in A is determined by
xoy=x-Is(x)+y=y-It(y)+x.

A cat-group can be given equivalently (see [25]) as a 1-truncated

simplicial group satisfying [Kerd0, Kerdi] = 0. Then

one can consider Cat(Gp) as a subcategory of Tr1(Simp(Gp)) and
the inclusion functor J : Cat(Gp) - Tr1(Simp(Gp)) has a left adjoint
P : Tr1(Simp(Gp)) -&#x3E; Cat(Gp) given by

Recall that limits in Cat(Gp) are calculated by computing them on
objects and arrows. Colimits in Tr1(Simp(Gp)) are computed dimen-
sionwise and then colimits in Cat(Gp) are computed by applying P to
those constructed in Tr1(Simp(Gp)).

Given a cat-group 9 : recall that 1fo(9) = coequ(s, t) ==

O/t(Ker(s)) and 1fl(9) = Ker(s) n Ker(t).
A braiding for a cat-group 9 (see [24], [13]) is a map
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which satisfies

b) Naturality:
Given x, y E A; x : p - p’, y : q - q’, the following square is
commutative

c) hexagon axiom:
For any p, q, n E 0 the following diagrams are commutative

A cat-group together with a braiding is usually called a braided cat-
group.

Given braided cat-groups (g, t), (g, t’ a morphism between them
is a morphism of cat-groups which is compatible with T in the sense
that the following square is commutative
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BCat(Gp) will denote the category of braided cat-groups. There

exists then a forgetful functor U : BCat(Gp) -+ Cat(Gp).
A braided cat-group (9, T) is called a symmetric cat-group if Tg§ =

Tq,p, Vp, q E O. In such a case, T is usually called a symmetry. 
We will denote SCat (Gpl the full subcategory of BCat(Gp,) ¥!hose

objects are the symmetric cat-groups and In : SCat(Gp) -t BCat(Gp)
will denote the inclusion functor.

A detailed list of examples of symmetric cat-groups is given in [13].
Recall now that the category Cat(Gp) is equivalent to the category

XM(Gp) of crossed modules of groups (see for example [18]). Given a
crossed module ,C : (L -&#x3E;p M) , the equivalence is given by the functor
W : xM(Gp) - Cat(Gp) where (D (L) is the following cat-group

with s(l,m) = m, t(l, m) = p(L) + m, I(m) = (0, m). It is easy to

see that the composition of two morphisms is (1’, m’) o (1, m)
(l’, p(l) + m) o (l, rn) = (l’ + l, m).

The quasi inverse D-1 associates to any cat-group ; 0 ’
t

the crossed module Ker s -&#x3E; 0 where the action is given by ’l =

I(x) + I - I (x), x E O, 1 E Ker s.

A crossed module G : (L -&#x3E;p M) together with a map

{-, -} : M x M -&#x3E;L satisfying the following identities is called a re-
duced 2-crossed module (see [18]):
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A morphism between reduced 2-crossed modules is a morphism of
crossed modules §: L --&#x3E; L’ which satisfies D1{m, m’}= {D0(m), D0 (m’)}
for all m, m’ E M. We will write 2 - XMred(Gp) for the category
of reduced 2-crossed modules. Obviously there is a forgetful functor
U : 2 - XMred(Gp) --+ XM (Gp).

The category 2 - XMred(Gp) is just the category of braided crossed
modules of groups in the sense of [5] and it is equivalent to the full
subcategory of Simp(Gp) whose objects have trivial Moore complex
at dimensions other than one and two and, also, it is equivalent to
the full subcategory of the category of 2-crossed modules, [18], with
trivial righthand side groups. Moreover, 2 - XMred (Gp) is equivalent
to the category Bcat(Gp) and the equivalence is given by the func-
tor D: 2 - XMred(Gp) --+ BCat (Gp), which associates to any reduced
2-crossed module (jC : (L p - M) , {-, -}) the braided cat-group

I I 

D(L): ( L x M -&#x3E;-&#x3E;s M, T) where L x M M is the cat-group as-
t t

sociated to the crossed module L -&#x3E; M, and T : M x M - L x M
is given by Tm,m’ = ({m’,m}, m+m’).

The quasi inverse functor associates to any braided cat-group
I

g: A s=&#x3E;t O 0 the crossed module associated to the cat-group 9 to-
t

gether with the map

Note that there is a full and faithful functor from 2 - xMred(Gp)
to the category of crossed squares (see [18]); it is given by associating
to any (L: (L -&#x3E; p M) , {-, -}) the following crossed square

with function
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In [19], Ellis defined a functor

b: 3 - dimensional reduced CW - spaces -&#x3E; Crossed squares

whose image lies in 2 - xMred (Gp) when the CW-space is, for example,
the 2-sphere S2 or a wedge V1ik S2 of k 2-spheres. In fact, in the first
case, 

where Coo is the infinite cyclic group generated by the 2-cell t of ,S’2
and h : Coo x Coo -t Coo is given by h(ti, tj) = tij, that is, Ó(82) is

the reduced 2-crossed module ( Coo-&#x3E;0 Coo {-,-} = h) . In the case
X = V1ik S 2

where P is the free group of rank k, jP 0 P is the non-abelian tensor
product of groups defined in [11], the homomorphism [ , ] sends a gen-
erator p 0 p’ to [p, p’] = pp’p-lp’-l, with h(p, p’) = p (9 p’ for p, p’ E P
and with P acting on itself by conjugation. Thus, 6(X) is the reduced
2-crossed module (P 0 P / P, {-,-}= h).

We will write xMst(Gp) for the full subcategory of
2 - xMred(Gp) whose objects (called stable crossed modules)
are those reduced 2-crossed modules (L: (L-&#x3E;p M) , I-, - 1)
such that (m,m’) + (m’,m) = 0 (see [18]). Then the equiva-
lence 4b : 2 2013 XMred(Gp)-&#x3E; BCat(Gp) restricts to an equivalence
XMst(GP) = SCat(Gp).

Next we will recall some facts about Quillen’s model categories (see
[30]).

A closed model category is a category C endowed with three distin-
guished families of morphisms called fibrations, cofibrations and weak
equivalences satisfying the axioms CM1-CM5 as stated in [31].
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Given a model category C, the category obtained by formal inversion
of the weak equivalences is denoted Ho(C).

If X is an object of C, a cylinder for X is a factorization of the
codiagonal morphism

where io + il is a cofibration and u is a weak equivalence.
A path object for an object Y of C is a factorization of the diagonal

morphism

where (80,81) is a fibration and Q is a weak equivalence.
If f, g E Homc(X, Y), a left (resp. right) homotopy from f to g

is defined to be a morphism k : X 0 I - Y (resp. h : X -3 YI)
such that kio = f and kil = g (resp. 80h = g and 81h = f). The

morphism f is said to be left (resp. right) homotopic to g if such a
left (right) homotopy exists. When X is cofibrant (resp. Y is fibrant)
"is left homotopic to" (resp. "is right homotopic to" ) is an equivalence
relation in Homc(X, Y). Moreover, if X is cofibrant and Y is fibrant,
then the left and right homotopy relations on Homc (X, Y) coincide.

Finally, it is illustrative for the development of this paper, to recall
the known Quillen’s model structures in some categories which provide
algebraic models of homotopy types in low dimensions.

The category of groupoids is a closed model category where the
fibrations are the fibrations of groupoids, [4], the weak equivalences are
the equivalences of categories and the cofibrations are the morphisms
which are injective on objects. In this model category every object is
fibrant and cofibrant. If I denotes the groupoid with two objects 0 and
1, their identities and two morphisms i : 0 - 1 and i-1 : 1 -&#x3E; 0, then I
has properties analogous to the unit interval in the homotopy theory of
spaces. Homotopy of groupoids can be described by a cylinder object
9 0 I(= 9 x I) or by a path object 11,1 (which is just the category
(groupoid) of functors from I to H).

Algebraic models for non-necessarily connected 2-types are provided
by any of the following equivalents categories: that of crossed modules
over groupoids [9], the category of 2-groupoids, [28], and the category of
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simplicial groupoids with trivial Moore complex in dimensions greater
than 1, [20]. These categories come supplied with monoidal closed struc-
tures and a unit interval object from which the homotopy theory derives
(for example, in the category of 2-groupoids, the unit interval object
is the interval groupoid I as above). Also, these categories support
a Quillen’s model structure (see [28], [20]) where, for example, in the
category of crossed modules over groupoids, a morphism f : £ - £’
represented by the diagram

is a fibration if (fl, fo) is a fibration of groupoids and for any p E O,

is a fibration of crossed modules of groups, i.e., f2 : L(p) --+ L’(fo(p)) is
surjective (see §4); the morphism f is a weak equivalence if

and, for any p E 0, f induces group isomorphisms

and

(see §4).
Recall also that the category of crossed complexes ([9],[10]) was

shown in [6] to carry the structure of a closed model category by using
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the notion of fibration introduced by Howie, [22], and of weak equiva-
lence defined in [8]. Crossed modules over groupoids are crossed com-
plexes of dimensions less than or equal to 2, and for these, fibrations
and weak equivalences are just the same classes of morphisms we have
given explicitly above for crossed modules.

2 Cat(Gp) (BCat(Gp) or SCat(Gp)) as a
closed model category

Let

be a morphism of cat-groups.

Definition 2.1. i) f is said to be a fibration if it is a fibration of
groupoids (i. e., if the canonical morphism G1 -&#x3E; Hls x foGo is sur-
jective). 

ii) f is said to be a weak equivalence if it is an equivalence of categories.

iii) f is said to be a cofibration if it has the LLP with respect to the
trivial fibrations.

Note that the category Cat(Gp) is equivalent to the category of
1-hypergroupoids of groups and that the above structure coincides,
through the equivalence, with the model structure in this last category
shown in [14]. In §4 we will compare this model structure with that on
crossed complexes, [6].

Considering the functors SCat (Gp )-&#x3E;In BCat (Gp )-&#x3E;U cat (Gp) we also
give the following:
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Definition 2.2. A morphism f : 9 -t H in BCat(Gp) (resp. in

SCat(Gp)) is a fibration or weak equivalence if U(f) (resp. UIn(f))
is a fibration or weak equivalence in Cat(Gp). The morphism f is a
cofibration in BCat(Gp) (resp. in SCat(Gp)) if it has the LLP with
respect to the trivial fibrations in BCat (Gp) (resp. in SCat (Gp)).

In the following, C will denote any of the categories Cat(Gp),
,CiCat(Gp) or SCat(Gp).

Note that every object in C is fibrant.
The weak equivalences can be characterized easily as follows:

Proposition 2.3. A morphism f : 9 -+ 11, in C is a weak equivalence
if and only if rr0 (f) and rr1(f) are isomorphisms.

Definition 2.4. Given two morphism in C, f, g : G --&#x3E; 11" a homotopy
from f to g is a natural transformation a : f =&#x3E; g which is a group
morphism.

This homotopy relation is an equivalence relation on the set of mor-
phisms in C from G to 1i and the set of equivalence classes will be de-
noted by [g, H]. Note that if f and g are homotopic then Jro ( f) =rr0(g)
and rr1(f) = rr1 (g).

Given H E C let us consider the object of C, HI, which is the cat-
group whose objects are H, and whose morphisms are the commutative
squares of elements of Hl with multiplication defined pointwise, i.e.,

where

and, if T is the braiding (symmetry) in 11" the braiding (symmetry) in
11,1 is given as follows:
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For any x, y E (HI)0= HI we define Tx’,y: x + y -&#x3E; y + x as the
commutative square 

In this way T’ is a braiding (symmetry) in 1iI and so 1iI E C. We
will verify only the naturality of T’ . This means that, given f : z - z’
and 9 : y -+ y’, the following diagram must be commutative

Now, f : z - x’ and g : y - y’ are commutative squares

and so, we have to prove that the two rhombuses in the following dia-
gram are commutative
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that is, Tsx’,sy’(f0 + go) ’ (go + f0)Tsx,sy and Ttx’,ty’(f1 + gl =
(g, + f1)Ttx,ty. But sx =sf0, sx’ = tf0, sy = sg0, sy’ = tg0, tx = sf1,
tx’ = tfl, ty = Sgl, ty’ = tg1 and then it is easy to see that the required
identities are just the naturality conditions of T with respect to the
morphisms f0,g0 and f1, g1.

Note that this construction determines a functor (-)I:C-&#x3E;C
which clearly preserves fibrations and weak equivalences.

Proposition 2.5. Given 1i E C, there is a factorization of the diagonal
morphism 

where a is a weak equivalence and (ao, 81) is a fibration.

Proof. Consider a and (80,81) defined by:
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Then it is straightforward to see that (80,81) is a morphism in C which
is a fibration.

On the other hand, it is also clear that u is a morphism in C which
is a weak equivalence since 90o = Idh and IdHI is homotopic to u80
where the homotopy -y is defined, for any object x : p - q in HI, by the
commutative diagram

Proposition 2.6. Let f, 9 : 9 -t H two morphisms in C. To give a
homotopy from f to g is equivalent to give a morphism h : 9 -t 1£1 such
thatc 90h=g and i9lh = f.

Proof. Let us suppose that h : 9 -t 1£1 is a morphism in C such that
8oh = g and alh = f . Let p E Go and define ap = ho(p). It is clear that

a is a group morphism and ap is an arrow in 1£ such that

The naturality of a follows that for any x E Hl, x : p - q, hl (x) is
a commutative square and
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Conversely, if a is a natural transformation from f to g which is a
group morphism, we define ho (p) = ap and for any x : p - q

It is clear that h : 9 -t ’HI is a morphism in Cat(Gp). If f and g are
morphisms in BCat (Gp) (resp. SCat (Gp)), then, for any p, q E Go

and

and SO T’h0p,h0q = h1(Tp,q); thus, h is a morphism in Bcat(Gp) (resp.
SCat(Gp)).

Finally, it is clear that 80h = g and 8lh = f . D

Corollary 2.7. Given Q,1£ E C and h : G-&#x3E; HI a morphism in
Cat(Gp), then h is a morphism in C if and only if 80h and 81h are
morphisms in C.

Proposition 2.8. Any morphism f : G-&#x3E;H in C can be factored
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where q is a weak equivalence and K is a fibration.

Proof. It is clear that 90of = f and so there exists an unique morphism
,q making the following diagram commutative

The morphism is the composition S1y.
Note that the objects of 9 xHHI are pairs (p, x) E Go x H, such

that t(x) = fo(p), and a morphism from (p, x) to (q, y) is given by a
morphism z : p - q or, equivalently, by a commutative diagram

The group of morphisms of 9 xHHI is then the group of triplets
(x, z, y) where x, y E Hl, z E Ho and t(x) = sfl(z), t(y) = tfl(z).

The functors 77 and y are defined as follows: ?7o (p) = (p, I fop) and,
for any z E G1, n1(z) is given by the morphism z; with regard to y we
have

It is clear that Hom9(p,q) = Hom9XHHI(n0(p), n0(q)) and for any
object (p, x) in 9 xHHI, the identity in p determines an (iso)morphism
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from 1Jo (p) to (p, x) . Consequently, the functor 1J is full, faithful and
dense and so, it is a weak equivalence.

On the other hand, given (p, x) E (9xHHI)0 and x’ E H,
such that s(x’) = K0(p, x), the morphism (x, Ip, x(x’)-1) satisfies

K1(x, Ip, x(x’)-1) = r’ and s(x, Ip, x(x’)-1) = (p, x), and so, K is a fi-

bration.
D

Let us consider now the following objects in Cat(Gp):

and where is the 1-

truncated simplicial group in which the morphisms s, t, I are determined
by the following relations:

where ui : Z -+ Z * Z, i = 0, 1 and vj : Z -4 Z * Z * Z, j = 0, 1, 2
are the canonical injections. We also denote vj, j = 0,1, 2 the induced
morphisms Z -+ z*z*z

[Ker s,Ker t] 
.

Note that these cat-groups are objects in C; the only non trivial
case is Z and now we define a symmetry on it.

To do that, we put Tuo(1),u1(1) = v1(1) + v0(1) - v1(1) + v2(1) and
Tuo(-1),u1(1) = v2(1) - VO(l) + v1(1) - v2(1) - v1(1) + v2(1). In the gen-
eral case, we use these definitions and the fact that T must

satisfy the hexagon axiom. For example, Tuo(-1),i1(1)+u0(1)+u1(1) =

(Iu1(1)+Iu0(1)+Tu0(-1),u1(1)) o (Iu1(1) + Iu1(1) o (Tu0(-1),u1(1) + Iu0(1) +
Iu1(1)). It is straightforward to check that T is, certainly, a symmetry in
I.

I

Let 9 : G1 F G be an object in C . Then it is easy to see1 -+ 
t 

0

that giving a morphism from 10 to 9 is equivalent to giving an element
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x E GI such that s(x) = t(x) = 0 and giving a morphism from 11 to
9 is equivalent to giving an element p E Go. Next we analyze in more
detail what it means to give a morphism from I to 9.

Lemma 2.9. Let 9 E C. Then, to give a morphism I -+ 9 is equiva-
lent to giving a morph2sm in 9.

Proof. First we note that, for any 1-truncated simplicial group Q, the
simplicial identities imply that giving a morphism in Tr1(Simp(Gp))

I

from Z * Z * s -+-+ Z * Z * Z to G is equivalent to choosing an element
t

x E G1. Then, if 9 E Cat(Gp), using the adjunction P l- J, to give
a morphism from I to 9 is just to give an arrow in g.

Now, the only thing that remains to prove is that the associated

morphism in Cat(Gp) to any arrow in 9 is, in fact, a morphism in C.
For any x : p - q, x E Gl, the associated morphism f : I -+ 9 is

determined by f0(u0(1)) = p, f0(u1(1)) = q, f1(v0(1)) = Ip, f1(v1(1)) =
x and f1(v2(1)) = Iq. Then, we have to prove that fi(Ta,b) = Tf0(a),f0(b)
for any a, b E Z * Z. In the case a = u0(1) and b = u1(1), Tp,q =

f1(v1(1) +v0(1) - v1(1) +v2(1)) = x+Ip-x+Iq and this last relation
is true because of the naturality of T applied to the morphisms x and
Iq. Other cases are shown in a similar way. D

Next we will consider the morphisms io, il : I1 - I determined by
uo(l) and u1(1) respectively.

Proposition 2.10. Let f : Q -t 1i be a morphisms in C. Then:

i) f is a fibration if and only if f has the RLP with respect to the
morphism io : y -+ I

ti) f is a trivial fibration if and only if f has the RLP with respect to
the morphisms 0 -4 -El, Io -+ 0 and io + il : II 11 II -+ I.

Proof.
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i) It is clear since giving a commutative diagram in C

is equivalent to giving an element p E Go and an element x E H, such
that fo(p) = s(x) and to find a lifting in the diagram is equivalent to
give an element y E Gl such that f1(y) = x and s (y) = p.
ii) It is straightforward to see that f has the RLP with respect to 0 -+ I,
(resp. io + il ; I1 II I1 -+ I, resp. I0 -+ 0) if and only if fo is surjective
(resp. rr1(f) is surjective and rr0(f) is injective, resp. rr1(f) is injective).

Now if f satisfies the RLP with respect to the above morphisms, we
have that f is a weak equivalence (see proposition 2.3). To see that f
is a fibration, take (y, p) E Hls x foGo; since fo is surjective there exists
q E Go such that fo(q) = t(y) and using that f is an equivalence of
categories, there exists x E Gl, x : p - q such that f1(x) = y.

Conversely, if f is a trivial fibration, the only thing that remains to
prove is that fo is surjective, but this is clear because given q E Ho and
using that 7To(/) is surjective, there exists y E Hl such that t(y) = q
and s(y) = fo(p) for some p E Go, and so, since f is a fibration, there
is x E Gl such that fl(x) = y. Then, fo(t(x)) = q. 0

Proposition 2.11. Any morphism f : 9 -t 1l in C can be factored as
a cofibration followed by a trivial fibration.

Proof. To get the required factorization of f use the above character-
ization of the trivial fibrations and the "small object argument" (see
[30]). D

Proposition 2.12. A morphism f : 9 --+ H in C is a cofibration if
and only if it is a retract of a morphism in C which is of the form



121

where FV is the free group on the set V.

Proof. Since the cofibrations are closed under retracts, we will do the
proof only for the morphisms as above.

Given a commutative diagram in C

where f is a trivial fibration

the lifting y : 7- --+ X is defined as follows:
Since fo : Xo - Yo is surjective, one can define a morphism

FV - Xo, and this one together with ao determine yo : To -+ Xo satis-
fying fo’Yo = B0.

On the other hand, given z E T1, z : p - q, there exists an unique
x E Xl,x : yo(p) -+ y0(q), such that f, (x) = 01 (z) because f is an
equivalence of categories. Thus, we define ’rl(Z) = x, and it is straight-
forward to see that 7 is a morphism in Cat(Gp).

Moreover, 7 is a morphism in C because for any p, q E To the mor-
phisms -y1(rp,q) and Ty0p,y0q have the same source and target, and also,
f1(y1(Tp,q)) = f1(ry0p, y0q). Thus, using that f is an equivalence of cate-
gories one has that y1(rp,q) =ry0p,y0q.

Conversely, if f is a cofibration, we factor f = pi as in proposition
2.11 and we obtain a commutative diagram
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in which there exists a lifting because f has the LLP with respect to the
trivial fibrations. Then, it is clear that f is a retract of i. Also, one can
see that i has the required form according to the construction of T. D

I

Corollary 2.13. An object Gl -++- G0 E C is cofibrant if and only
t

if Go is a free group.

Proposition 2.14. The trivial cofibrations in C have the LLP with
respect to the fibrations.

Proof. Using proposition 2.12 we only will prove the required LLP when
the cofibration is of the form

Now, given a commutative diagram in C

where f is a fibration

the lifting y : T - JY is defined as follows:
Since rr0(h) is an isomorphism, given v E V there exists gv E Go and

kv E Tl such that s(kv) = gv and t(kv) = v. Now, because f is a fibration
and B1(ku) is an element in Yl such that S((3l (kv)) = B0(9v) = f0a0gv,
there is xv E Xl such that f1(xv) = /3l(kv) and s (xv) = ao(9v). Thus,
we have maps yo : V - Xo given by 70 (v) = t(xv) and k : V - Tl
given by k(v) = kv which induce group morphisms qo : FV -+ Xo and
k : FV -+ Ti. The morphism qo together with ao determine a morphism
qo : Go * FV - Xo and it is clear that fo7o = 00. On the other hand,
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the morphisms k and I : Go - Tl induce a morphism k : Go * FV -+ Tl
which satisfies tlc = Id and Image(sk) = Go.

Now, for any v E V we define Il(kv) = Xv, and for any g E Go we
put 71(kg) = Ia0(9). Then, we have defined 71 for any element which is
in the image of k : Go * FV -+ Ti.

Finally, we have y = kt(y) o ((kt(y))-1 y ks(y)) o (ks(y))-1
for any y E Tl. Using that h is an equivalence of cate-

gories, we can identify Gl with hl(Gl) and then we define

y1(y)= y1(kt(y)) o al ((kt(y))-1 y ks(y)) o -y1((ks(y))-1).
It is straightforward to see that 7 = (y1, y0) is a morphism in

Cat(Gp) which satisfies fy = (3 and yh = a.
Next we will see that -y is a morphism in C, i.e., II CTp,q) = Tyop,yoq
Using the naturality of T we obtain that (kq+p)-1 Tp,q kp+q = T9p,9q

(where gp = s(kp)), and according to the definition of ’)’1 we have that
’)’1(Tp,q) is the arrow making the following diagram commutative

which is exactly Ty0p,y0q. D

Theorem 2.15. The category C with the classes of morphisms given
in Definition 2.1 or Definition 2.2 is a closed model category.

Proof. CM1 is known, and CM2 and CM3 are clear. The only non
trivial part of CM4 is given in proposition 2.14. The factorization of
any morphism as a cofibration followed by a trivial fibration is given in
proposition 2.11. Finally, to get the other factorization required in CM5
use proposition 2.8 to factor f = kn and then factor n as in proposition
2.11. D
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3 Homotopy theory in Cat(Gp) (BCat(Gp)
or SCat(Gp))

In this section we study the homotopy theory in C associated to the
closed model structure defined in R2.

Propositions 2.5 and 2.6 give directly the following:

Proposition 3.1. Given N Ei C, HI is a path object for ?i in C and
for any morphisms f, g : 9 --+ 71 in C, to give a right homotopy from f
to g is equivalent to give a homotopy from f to g.

The path construction determines the loop functor 0 : C - C de-
fined as Q(7i) - Ker(8o, S1). Then Q(7i) can be identified with the ob-

Id

ject of C associated to the abelian group 7r,(W), i.e., rr1(H) Id -++- rr1(H).
Id

In the following we will give a cylinder construction in C.
Let

an object of C and consider the following 1-truncated simplicial group

where s,t and I are determined as follows: suppose ui : G0 -+ Go * Go
the i-th canonical injection, i = 0,1, and vj : G1 -+ G1 * G, * Gl the
corresponding j-th injection, j = 0,1, 2; then s, t and I are determined
by the relations 

8VO = u0s; 8Vl == UoS; gV2 = U18; tvo = uot; tVl = Ult; iV2 = Ult

Now, if N is the congruence in G, * G, * G, generated by the relations
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we have a cat-group

We also will denote by vj, j = 0, 1, 2, the induced morphism

Proposition 3.2. Given 9 E C then 9 O I E C.

Proof. We first prove that for any x : p -&#x3E; q E Gl the following squares
are commutative:

The commutativity of the first one means that V2X 0 vlIp = VlX, i.e.,
v2x - Isv2x + vlIp = v1x but, Isv2x = v2Ip, and so, we need to prove
that v2(x - Ip) = v1(x - Ip) which is true because x - Ip E Ker s. The
commutativity of the others diagrams is proved in a similar way.

Now, given a E {0, 1, 21 we consider /3 and ’Y as follows: if a = 0

then B3 = y = 1; if a = 1 then B = 1 and y = 2 and if a = 2, B = y = 2.
Then we have that the following squares are commutative
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which allows us to show that for any xi : pi -+ q2, 1  i  n, xi E G1,
the following square is commutative

n m

Now, let p, q E Go * Go . Then, p = E udipi and q = E ud’jqj where
i=l j=1

di, d’j = 0, 1 and we define T’p,q as the following composition

It is straightforward to see that r’p,q is well defined and that T’ satisfies
the same properties than r.

0

Note that the object I considered in §2 is just I1 O I.

Lemma 3.3. Given 9 E C there is a factorization of the codiagonal
morphism

Proof. Let io = (vo, uo) and il = (V2, Ul)’ It is clear, according to the
definition of the braiding in g 0 I (see proposition 3.2), that il is a
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morphism in C. Also, io is a morphism in C since the following square
is commutative

Both morphisms io and il induce the morphism in C,
i0 + i1 : 9 II 9 -+ 9 O I.

On the other hand, the identities o-0ui = IdG0, I = 0,1 and o-1vj =
IdG1, j = 0,1, 2, determine a morphism a : 9 0 I -t 9 which is given

n n n

explicitly by o-0 ( E udipj) = Epi, for any Eudipi E Go * Go, and
BZ=1 / Z=l i=1

; for any ej =0,1,2.

It is clear finally that aio = ail = I dg. D

Lemma 3.4. Given 9, H, E C and k : 9 Q9 I -+ 1i a morphism in
Cat(Gp), then k is a morphism in C if and only if kio and kil are

morphisms in C.

Proof. The only non trivial thing is to prove that, if kio and ki1 are
morphisms in C then k is also a morphism in C.

Let us denote f = kio and g = kil; thus fo = kouo, 90 = koui,
f1 = k1v0 and g1 = k1v2.

We want to prove that, for any p, q E Go * Go, ki(r’p,q) = rk0p,k0q.
Now, it is straightforward to check that, if p, q E Go, then k1(r’u1p,u1q) =
rgop,goq, kiT’u0p,u1q) = rf0p,g0q, k1(r’u1p,u0q) = r90p,f0q and k1(r’u0p,u0q) = 
rf0p,f0q.

For example, the above second relation is equivalent to the commu-
tativity of the diagram
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which is true because this diagram is just r’k1v1 Ip,Id (see the definition of
r’ in HI).

n m

For general p = E udipi and q = E ud’jqj in Go * Go, we use induction
i=1 j=1 

on n and m as the following example suggests. Suppose p = u0p0 + u1p1
and q = 2GpQ’p; then one has r’p,q = (r’u0p0,u0q0 + Idu1p1) o (Idu0p0 +r’u1p1,n0q0)
from where 

Proposition 3.5. The functor - 0 1 : C -+ C is left adjoint to the
functor (-)I : C -+ C.

Proof. Consider cp : HomCat(Gp)(9, HI) -+ HomCat(Gp)(9 O I, H) the
map given by cp(h) = k where, if f = 81h and g = 8oh, (kl, ko) is

given as follows: Let ko be determined by kouo = fo and k0u1 = go and
consider the morphism in Tr1(Simp(Gp))

determined by k1v0 = f1, k1v2 = gi and k1v1 given, for any x : p - q,
by
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where

This morphism (k1, ko) determines, using the adjunction P l- J, a mor-
/ - ,

phism in Cat(Gp), (k1, ko) :

and this morphism induces another one (ki, ko) : 9 0 I -t 1-l because,
if x E Ker(t), k1(v1x - vox) = 0, and, if x E Ker(s), kl(v2x - vlx) = 0
as can be easily checked out.

On the other hand, given a morphism in Cat(Gp), k : g0I --+ W, let
0 : HomCat(Gp)(9 O I, 1£) -t HomCat(Gp)(9, HI) be given by 0 (k) = h
defined by

where f = kio and g = kil.
Note that the last square is commutative because in 9OI one has, for

any x : p -+ q E G1, the relation VlI, o vox = v2x o VlIp (see proposition
3.2)

It is clear that alh = kio and 90h = kil and then cp and o give a
bijection

HomC(9 O I, H) =- HomC(9, HI)
because, by corollary 2.7 and lemma 3.4, one has that

k E HomC(9 O I, H) if and only if kio, kil E HomC(9, H) if and

only if alh, aoh E HomC(9, H) if and only if h E HomC(9, 1-£1).
D
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Proposition 3.6. If 9 is a cofibrant object in C then!90I is a cylinder
object for 9 in C.

Proof. We have according to lemma 3.3, a factorization of the codiago-
nal morphism

and it is clear that, if 9 is cofibrant, io + i1 is a cofibration according to
the characterization of the cofibrations given in proposition 2.12

On the other hand, o, is a weak equivalence because

ail = Idg and Id9OI is homotopic to i1o-, the homotopy
n

a : Idg =&#x3E; i1 o- being given, for any p ubipi E Go * Go , by
i=1

ap = vbi+lhl + ... + vdn+1Ipn : p - ul(pl + ... + pn). The natural-

ity is deduced from the relations proved for 9 ® I in proposition
3.2.

D

Note that the functor - 0 I : C -+ C preserves cofibrations and
weak equivalences.

Corollary 3.7. If 9 is a cofibrant object in C and f, g : 9 --+ 1l are
two morphisms in C, then f and g are right homotopic if and only if
they are left homotopic if and only if they are homotopic.

Corollary 3.8. If C is a cofibrant object in C and 1l is any object of
C then .

The cylinder construction determines a suspension functor
E : C -+ C defined by E(9)=Coker(io + ii); this can be described using
the following:

Proposition 3.9. Given 9 E C, Coker (io + i1 : 9 II 9 -+ 9 O I) can
be identified with the object of C
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Proof. Let us consider the 1-truncated simplicial group

where N’ is the congruence generated by the relations v1x = vox,
x E Ker t; viz = v2x, x E Ker s and also consider the following mor-
phism f in Tr1(Simp(Gp))

Note that, if G E Cat(Gp) then P( f ) = io + il and therefore

P(Coker(f)) = E(g).

Now, Coker(f) is the 1-truncated simplicial group

where H = Coker(vo + V2) is the quotient group of G, * G, * Gl under
the congruence generated by the relations vox = v2x = 0, VX E Gi;
viz = 0, x E Ker(s) or x E Ker(t). Since [Ker s, Ker t] = 0 we
have that H = G1 Ker s + Ker t = 7ro(g). Then, by applying P we have that
(£(C))1 = (rr0(9))ab. 

For any object 9 E C it is easy to see that

E(U(9)) = Coker(io + ii).
0

Note that E(li) = Io.

Corollary 3.10. The functors E : C - C is left adjoint to the functor
Q.
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4 Model structure and homotopy theory
in the categories xM(Gp), 2 - xMred(Gp)
and XMrt(Gp). 

In this section we use the commutative diagram of categories and func-
tors 

to define model structures in the categories XM(Gp), 2 - xMrea(GP)
and XMst(Gp), and to study the associated homotopy theories.

The equivalence 4): xM(Gp) - Cat(Gp) and the model struc-
ture in Cat(Gp) (see definition 2.1) together with propositions
2.3 and 2.12 allow us to consider the following model struc-

ture in XM(Gp) (cf. [14]): the fibrations are those morphisms

f = (fl, fo) : (L : (L p-+ M)) -+ (L’ : (L’ p’ -+ M’)) such that f1 is

surjective, the weak equivalences are those f = ( fl, fo) such that the
induced morphisms Coker(p) -&#x3E; Coker(p’) and Ker(p) - Ker(p’) are
isomorphisms and the cofibrations are the retracts of those morphisms
f = (fl, fo) where M’ = M * FV. Note that the inclusion functor from
XM(Gp) to the category of crossed modules over groupoids clearly pre-
serves weak equivalences but it does not preserve fibrations because, in
this last category, fibrations ( fl, fo) between crossed modules of groups
also require that fo be surjective (see §1).

In the same way as above, the following equivalences of categories
(see §1)

allow us to consider model structures in 2 - XMred(GP) and XMst(Gp).
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In these closed model categories fibrations, cofibrations or weak equiv-
alences are just those morphisms f such that U( f ) (resp. UIn(f)) is a
fibration, a cofibration or a weak equivalence in xM(Gp).

We will denote by D any of the categories xM(Gp), 2 - xMrea(GP)
or xMst(Gp).

Next we will make explicit some homotopy constructions in D which
are the ones corresponding to those given in C in §3.

Definition 4.1. Given two morphisms in D, f, g : £ --+ ,C’, a homotopy
from f to g is a fo-derivation n : M -+ L’ such that np = 91 - fl and
p’n = 90 - f0.

This homotopy relation is an equivalence relation on the set of mor-
phisms in D from G to C’ and the set of equivalence classes will be
denoted by [G, L’]. It is clear that [.c, .c’] = [4)(L), 4)(L’)].

It should be noted that if one eliminates the freeness assumption,
Whitehead’s homotopy systems of dimension 2, [32], are just crossed
modules of groups and the homotopy relation defined by Whitehead for
morphisms between two such objects is that considered in the above
definition. More in general, without the assumption of only one vertex,
homotopies for crossed complexes have been extensively studied (see
[11], [6], [9]) and, for reduced crossed complexes of dimension 2, one
has again the definition of homotopy given in 4.1. Homotopies between
morphisms of crossed complexes have been used for example by Hueb-
schmann, [23], to interpret the cohomology Hn(G, A) of a group G with
coefficients in a G-module A.

Proposition 4.2. Given G E D there is a factorization of the diagonal
morphism

where a is a weak equivalence and (80,81) is a fibration.

Proof. Given L E D and considering (D(L) E C, there exists (see propo-
sition 2.5) a factorization in C of the diagonal morphism
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and then applying (D-1

is the required factorization.
Next we make explicit the object of D, (D-1((D(L)I), and also the

morphisms a and (ao, o9l).
Considering L : (L p -+ M)) the underlying crossed module of

G E D, it is straightforward to see that the underlying crossed mod-
ule of LI = ol-1(ol(L)I) is

where L x L is the semidirect product with action of L on itself by
conjugation and the action of L x M on L x L is given by

The factorization of the diagonal morphism is

where

The braiding (symmetry) r’ in io(L)I determines a map

{-, -} : (L x M) x (L x M) - L x L which is defined by
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and it is straightforward to check that

Proposition 4.3. Let f, g : L -+ L’ two morphisms in D. To give a
homotopy from f to g is equivalent to give a morphism h : L --&#x3E; G’I
such that 80h = g and 81 h = f, i.e., a right homotopy from f to g.

Proof. Let 77 : M -+ L’ be a fo-derivation

such that qp = gl - fi and p’n = go - f0. Then we define

h0 : M -+ L’ x M’ and hi : L -+ L’ x L’ as follows:

and it is straightforward to see that h = (hl, ho) is a morphism in D
satisfying (80, a1)h = (g, f ).

Conversely, if h is a homotopy from f to g, we have a commutative
diagram
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Then, if we denote ho (m) = (ho,o(m), ho,l(m)), it is straightforward
to see that the map 77 : M -3 L’ defined by 77(m) - ho,o(m) is a

fo-derivation satisfying np(l) = gl(l) - fl(l), Vl E L, and p’n(m) =
go (m) - f0(m), Vm E M. 0

Corollary 4.4. Given L, L’ E D and morphisms f, g : £ -3 C’, then f
and g are right homotopic if and only if they are homotopic.

Corollary 4.5. If G is a cofibrant object in D and L’ is any object in
D, then
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