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RELATIONAL MONOIDS, MULTIRELATIONS,
AND QUANTALIC RECOGNIZERS

by Kimmo L ROSENTHAL 

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXVIII-2 (1997)

RESUME. Dans cet article, on montre 1’equivalence de 3 structures algdbriques à
premi6re vue assez differentes. Ce sont les monoides relationnels (i.e. des mono-
ides dans la catdgorie autonome des ensembles et relations), les "quantales-parties"
(ensembles de parties munis d’une structure de quantale), et les "multipréordres
avec factorisation" (une sorte de multirelation, qui generalise la notion de

relation). Cette equivalence est utilisde pour proposer une nouvelle approche des
langages "context-free", en utilisant les quantales pour reconnaitre ces langages.

The notion of multirelation and the equivalence between relational monoids
and multipreorders with factorizations was established in the work of Ghilardi and
Meloni [2] on n-ary connectives in logic. In [9], it was shown that the work of

Walters [12], [13], [14] on a categorical approach to context-free languages was
equivalent to an approach using multirelations. We shall see that Chomsky normal
form for a context-free grammar is captured by the notion of a multipreorder with
factorizations, which by the equivalence mentioned above leads us to relational
monoids, and from there to power quantales. A power quantale over a set X refers
to having a unital quantale structure on the power set P(X) of a set X. (Quantales
are partially ordered algebraic structures which have received much attention in
recent years. For a detailed treatment of quantales, see Rosenthal [6].) From this
we obtain the notion of a quantalic recognizer of a language and we show that
context-free languages in an alphabet A are precisely the languages recognized by
certain quantales equipped with the structure of a P(A*)-algebra, where P(A*) is
the free quantale on the free monoid A* of A.

In the first section of the paper, we establish the equivalence of the category
of power quantales with the category of relational monoids and homomorphisms,
i.e. the category of monoid objects in the symmetric, monoidal (i.e. autonomous)
category Rel of sets and relations. We then, in the next section, develop the theory
of multirelations and multipreorders (following Ghilardi and Meloni [2]), culminat-
ing with the definition of a multipreorder with factorizations, which turns out to
be equivalent to the notion of relational monoid, and hence power quantale. We
describe how one can associate a multipreorder with factorizations to every multi-
preorder. This construction will turn out to be related to Chomsky normal form for
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context-free grammars on an alphabet A (described as certain kinds of multirela-
tions) allowing us to concentrate on multipreorders with factorization for deriving
context-free languages. This leads to our defining quantalic recognizers for A to be
power quantales equipped with a P(A*)-algebra structure. The main theorem is
that these quantales serve as recognizers for the context-free languages.

§1. Power quantales and relational monoids

Quantales are complete lattices with an associative binary operation o, which
preserves sups in both variables. Examples of these structures abound in algebra
and analysis (various quantales of ideals) and include such fundamental mathemat-
ical structures as relations on a set. They have recently sparked much interest in
theoretical computer science via their connections with linear logic ( [6]), process
semantics [1], and automata theory [7], [8]. For an overview of quantale theory, see
Rosenthal [6] (for a briefer introduction, there is [5]).

Let us now formally give the definition of quantale and power quantale, and
then look at the examples that will be of interest to us.

Definition 1.1 A quantale is a complete lattice Q equipped with an associative
binary operation o such that for all a E Q, {bac} g Q, we have that

a o (supaba) = stip,(a o ba) and (supacbac) o a = supa(ba o a)
Q is called unital if there exists 1 E Q such that 1 o a = a = a o 1 for all a E Q.

Definition 1.2 If Q and S are unital quantales, a function f : Q - S is a homo-
morphism iff it preserves sups, o and 1.

Now, let us turn our attention to power quantales. We begin with a definition.

Definition 1.3. A power quantale on a set X refers to a unital quantale structure
on the power-set P(X).
Examples
1) P(X) viewed as a Boolean algebra is a quantale under the operation of intersec-
tion n.

2) If M is a monoid in Sets, then P(M) is a quantale under concatenation of
subsets, i.e. A o B = {a . bla E A, b E B}. The unit is given by {e}, where e is the
identity element of M.

3) the quantale Rel(X) of relations on X is a power quantale, when viewed as the
set P(X x X) with the usual composition of relations. The unit is the diagonal
relation A.

We shall usually denote all quantale operations by o, unless the context requires
otherwise.

. Let PowerQuant denote the category of powerquantales and homomorphisms.
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Since a homomorphism is a sup-preserving map F : P(X ) -+ P(Y), it comes
from a relation U : X -+ Y, where (x, y) E U iff y E F({x}). Thus, for A C X,
F(A) = {y there exists a E A with (a, y) E U)}.

We shall now see that the notion of power quantale is equivalent to that of
a monoid in the autonomous category Rel of sets and relations. We shall refer to
these as relational monoids.

Definition 1.4 A relational monoid consists of a set X together with a relation
p : X x X -+ X and a subset SZ C X satisfying 
1) (associativity) for all y, w, u E X there exists z E X such that ((z, y) ~03BC x and

(w, u) "’p. z iff there exists v E X such that ((w, v) -, x and (u, y) -, v
2) (identify) (a) for all x E X there exists e E 11 such that (x, e) "’-Jp. x and for all
x E X there exists f E Q such that ( f, x) ~u x
(b) for all x, y E X, e E S2, if (x, e) ~03BC y, then x = y and if (e, x) -, y, then x = y.

We shall sometimes write ((x, y), z) E J-l or suppress mention of p, simply
writing (x, y) ~ z.

The notion of homomorphism is the usual one, expressed internally in Rel using
relational composition. In the following definition, we write this out explicitly for
the benefit of the reader..

Definition 1.5. Let X and Y be relational monoids. A relational monoid homo-

morphism is a relation LT : X -+ Y such that
(1) Qy = f y E YI3e E SZX ’with (e, y) E U}
(2) For all x1, x2 E X, y E Y, there exists a E X such that ((x1, x2), a) E px
and (a, y) E U i,ff there exists Yl, Y2 E Y such that (xi, Yl) E U, (X2, Y2) E U and
((y1, y2), y) E pi- -

We thus obtain the category RelMon of relational monoids.

Theorem 1.1. The categories PowerQuant and RelMon are equivalent.
Proof: If X is a relational monoid with multiplication p and identity S2, define a
power quantale structure on P(X) by A o B = {x E X| there exists a E A, b E B
with (a, b) ~03BC x}. S2 becomes the unit element for o. On the level of morphisms,
we have indicated that relations U : X -+ Y correspond to sup-preserving maps
P(X) -+ P(Y). It is not hard to see that U : X - Y is a monoid homomorphism
in Rel precisely when the corresponding P(X) -+ P(Y) is a homomorphism of
unital quantales. This process is evidently functorial, and to see that it defines an
equivalence, we observe that the relational monoid structure on X can be recovered
from P( X) by stipulating that ((x, y), z) E it iff z E {x} o {y}. .

If X is a relational monoid with operation 03BC and identity S2X, and Y is a rela-
tional monoid with operation 1J and identity S2y, then there is a relational monoid
structure on X x Y, defined as follows.
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(x1, y1), (x2, y2) ~ (x, y) iff (x1, x2) ~03BC x and (y1, y2) ~n y. It is not hard to
check that S2X x Qy serves as the identity for this new operation.

Using the equivalence of Theorem 1.1., we can define a tensor product of power
quantales P(X) 0 P(Y), by P(X) 0 P(Y) = P(X x Y), where if A, B C X x Y,
then A o B = {(x, y)| there exists (al, a2) E A, (bl, b2) E B with (a1, b1) ~ x and
(a2, b2) - y}.

§2. Multirelations and multipreorders with factorization

In this section, we consider the notion of a multirelation on a set, and various
refinements of it. Much of this section comes from the work of Ghilardi and Meloni

[2]. The idea of a multirelation and the operation of substitution owe, of course, a
debt to the work of Lambek [4] on multicategories. Multirelations can be elegantly
described as the multigraph morphisms from a rather simple multigraph to the
multigraph Rel of sets and relations (see [2] or [9], [10], [11]), however we eschew
that approach in order to avoid having to introduce the notion of multigraph, which
we shall not need in what follows.

We shall use xn to denote the n-fold cartesian product X x X x .... x X of
a set X with itself and shall use Greek letters to stand for elements of X n , e.g.
a = (.Ci,.C2,...,.Cn) .
Definition 2.1. Let X be a set. A multirelation M on X consists of the union
U Mn of sets Mn, where Mn g Xn x X for n &#x3E; 0.

We refer to Mn as the n - level of M. We write (a, x) E M, whenever we wish
to discuss a typical element of the multirelation M, without specifically referring to
its level. Sometimes we may write ac ~ x, when M is clear from the context. Given
an n-tuple a, we shall use ai to refer to its ith component and if B is an m-tuple,
we shall use ac|iB to denote the (m + n - I)-tuple obtained by replacing as by ,Q.
We shall also use concatenation ac . B to denote the juxtaposition of an n-tuple a
and an m-tuple /3 to produce a new (n + m)-tuple. 

If a is an n-tuple of elements of X , we use [ac] to refer to the corresponding
word ala2....an in the free monoid X* generated by X.

We shall use Multi(X) to denote the set of multirelations on X.We can define
an ordering  on Multi(X) by specifying that M  K iff Mn C Kn for all n &#x3E; 0.
Note that Multi(X) is in fact a complete lattice under this ordering, as it is clearly
closed under both arbitrary suprema and infima, by taking unions and intersections
at each level.

Definition 2.2 If M is a multirelation on X and Ii is a multirelation on Y, a
relational map of multirelations is a relation U : X -+ Y such that for all
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xl, ....xn E X (n &#x3E; 0) and for all y E Y, there exists x E X with (xl, ...xn) -M x
and (x, y) E U iff there exists yi, ....yn E Y with (xi, yi) E U for all n &#x3E; 0, and
(Yl ...Yn) ~K y. 

Note that if n = 0, we have that y E K0 iff there exists x E Mo with (x, y) E U.
We denote the resulting category of multirelations by Multirel. 

We now wish to describe the operation of substitution (composition) for mul-
tirelations. Let M and N be multirelations on X. We define a new multir.elation
M[N] as follows.

(a, X) E M[N] iff there exists 3 and y such that (B, x) E M, (y, Bi) E N and
of = B|iy.

Definition 2.3. If M and N are multirelations on a set X, we refer to M[N] as
the substitution of .N into M (or as the composition of M with N).

Note that if M and N are ordinary binary relations on X, then M[N] is just
the usual composition of relations M o N = {(z, x) 13y with (y, x) E M, (z, y) E N}.

Also, note that the identity for substitution is given by the multirelation 4Y,
where D1 is the diagonal (x, x) on the set X x X. An is empty for all n # 1 and
so 0 only lives at level 1.

In analogy with the theory of binary relations, we can talk about a multirelation
being reflexive and transitive, leading to the notion of a multipreorder.

Definition 2.4. A multirelation M on a set X is called a multipreorder if and only
if M satisfies that D  M and M[M]  M.

For a detailed look at the role of multipreorders in studying logic with n-ary
connectives, see the work of Ghilardi and Meloni [2].

There are several natural examples of multipreorders.

1) Let ,S’ be a monoid with binary operation .. Define a multirelation Ms by
((m1, m2 ,....mk), m) E (MS)k iff Ml - m2 . .... . mk = m. More generally, if S is a
partially ordered monoid, we could change the multirelation to mi .m2. .....mk  m.

2) Generalizing (1), we could consider a small and locally small category C, let
X be the set of morphisms of C and define Mc by ((f1, f2, .... fk), f) E (Mc) k iff
fl o f2 o .... o fk = f , where o denotes the composition in the category. If C is a

locally partially ordered bicategory, that is to say the hom-sets are partially ordered
with composition respecting the ordering, then we can replace = by .
Denote the n-fold substitution of M into itself, M[M[M...M]..] by Mn . It is not
hard to see that if M is a multirelation on X, then the multipreorders generated by M
is given by M* = U Mn, where n &#x3E; 0 and Mo is understood to be the multirelation
4l.
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The notion of multipreorder can be refined further by discussing multipreorders
with factorization. Let us begin with the definition.

Definition 2.5. A multipreorder M on a set X is called a multipreorder with
factorizations if and only if
1) (x,y) E M =&#x3E; x = y forallx,yEX.
2) (ac . -,8, x) E M =&#x3E; 3y, z E X such that (a, y) E M, (B, z) E M and (y . z, x) E M
for all ac, B with [a], [B] E X*.

Note that we are allowing [ac], [3] to be the empty word in X* Of course, (2)
extends in a natural way to (-yi yn, x ) E M =&#x3E; 3x1, ... x" E X with (,i, xi) E M
and (x 1 ..,. ’ x,,, x) E M.

Exampl es

1) Clearly, the multipreorder associated to any monoid S (described earlier), is a
multipreorder with factorizations.

2) Consider the following multipreorder on X x X, where X is a set.
((Xl, Yl), ...(Xn, yn)) ~ (x, y) iff Yl = X2, Y2 = Xs, ....yn-1 = Xn and x, = x, yn = y
for n &#x3E; 1 and at the 0-level of -, we pick out the subset of all pairs (x, x). This is
clearly a multipreorder with factorizations.

We have the following lemma, whose proof follows directly from the above defi-
nition, which says that a multipreorder with factorizations is completely determined
by what happens at levels Pf2 and Mo, of the multirelation.

Lemma 2.1 Suppose a multipreorder M on X satisfies that (x, y) E M =&#x3E; x = y
for all x, y E X. Then, M is a multipreorder with factorizations iff M = (M2UMo)*

Thus, example (2) above can be described by ((x, y), (y, z)) ~ (x, z). We
shall refer to this as the relational multipreorder with factorizations on X, although
technically speaking it is on X x X.

We shall denote by Mpf the category of multipreorders with factorization with
multirelation morphisms as maps.

Theorem 2.1. There is an equivalence of categories Mpf = RelMon.

Proof: Given a multipreorder with factorizations M on X, we consider the relation
M2 : X x X - X together with the subset Mo ç X. Suppose 3z E X such
that ((z, y) ~03BC x and (w, u) ~03BC z. Since M is a multipreorder, it follows that

(w . u . y, x) E M. Now apply factorization to the factors w and u - y to obtain that
3v E X such that (((w, v) ~03BC x and (u, y) ~03BC v. The other part of associativity
follows similarly.
For the identity laws, (a) follows directly from the definition of multipreorder with
factorization (Def.2.1. (2)) where a or B are allowed to represent the empty word.



167

For (b) of the identity laws, if (e, x) ~M y, since multipreorders are closed under
composition and e E Mo , we can replace e by the empty word yielding x -M y,
which forces x = y. Similarly, for the other part.

The notion of relational rnap of multirelations, when restricted to level 2, cap-
tures precisely the definition of monoid homomorphism. For n = 0, y E Ko iff
3x E Mo with (x, y) E U is the desired property for identities. To see that this
functor is an equivalence, if p : X x X -+ X and SZ C X define a relational monoid
structure on X, consider (p U f2)* and apply Lemma 2.1. to obtain a multipreorder
with factorizations. A relational monoid homomorphism becomes a map in Mpf.
Associativity for X yields factorizations at level 2, which easily extend to other lev-
els and condition (1) for factorization follows from the identity laws. This functor
is clearly inverse to the functor Mpf -+ RelMon described above. *

It follows by combining Theorems 1.1. and 2.1., that there is an equivalence of
categories between the category Power Quant of power quantales and the category
Mpf. For example, the relational multipreorder with factorizations on X described
in Example 2 corresponds to the power quantale Rel(X) of relations on X.

We now wish to present a construction of how we can obtain a multipreorder
with factorizations from a given multipreorder in a very natural way. This con-
struction will prove to be very important in the next section when we consider
context-free grammars and languages.

Suppose that M is a multipreorder on a set X. Then, it is closed under com-
position. It follows that if (x, y) E Ml , then x can be substituted in for any y that
appears at some n-level of M. In other words if (B, z) E M with Bi = y, then
(B|ix, z) E M.

Thus, since we are already starting with a preorder, we can freely remove
level 1 from M without losing any information, since the fact that M is closed
under composition gua.rantees us that we still have all the relationships arising from
( x, y) E M . In addition to removing level 1, let us replace the base set X by X * ,
the free monoid on X . Recall that if B = (x1, x2, ....xn) is an n-tuple of elements of
X , we use [B] to denote the corresponding word in the free monoid X*. Given such
a ,Q, define a sequence as follows.

Let 81 = B, B2 = (x2, ....xn), B3 = (x3, .... x,,), etc. with finally /3n = (xn)
Let us define a new multipreorder p(M)) on X* (with B in the following as

above) .
1) If (Xl, x2, ....xn, x) E 1BIf, then ([Xl] . [x2] . ... . [xn], [x]) E p(M)
2) define new elements of p(M) as follows :
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Notice that we have only added relations at level 2 in the multipreorder p(M) on
X. To see that we now have a multipreorder with factorizations, observe that if we
have a relation in p(M), which does not live at level 2, such as ([x1].[x2]. .... .[xn], [x]),
then this can be viewed as a composite of a sequence of level 2 elements of p(M),
namely
([x1] . [B2], M) composed with ([x2] . [B3], [B2]) yields ([x1] . [X 21 - [B3], [x]).
This in turn when composed with ([X3].[B4], [,83]) gives rise to ([x1].[x2].[x3].[B4], [x]).

Continuing in this vein, we arrive at the original element ([x1]. [X2]’’’’’’ [X,,], [x])
of p(M), showing that the elements of level 2 (together with those of level 0) generate
the multipreorder p(M), thus making it a multipreorder with factorizations.

It is not hard to see that given x E X, there are no new relations added relative
to x; by this we mean that the only relations in p(M) of the form ([y], x) are the
ones required to be by the definition, namely the relations ([x1]. [x2J ...... [xn], [x])
where (x1, x2, .... xn, x) E M . The use of the [Bi] above will not impact on these.

We summarize the above in a proposition.

Proposition 2.1 If M is a multipreorder, then p(M) is a multipreorder with fac-
torizations.

§3 Context-free grammars and languages and quantalic recognizers
We wish to describe an algebraic way of presenting the notions of context-free

grammar and language using multirelations, ultimately using the equivalence of the
categories Mpf and PowerQuant to arrive at the notion of a quantalic recognizer
for context-free languages. This approach is inspired by the work of Walters on a
categorical approach to context-free grammars and languages using multigraphs and
the free category with products on a multigraph [12],[13]. In [9], it was observed that
this approach was equivalent to using the notion of a multirelation with constants.

We shall begin with this definition. 

Definition 3.1. Let X and A be sets. A context-free grammar with alphabet A, (or
a multirelation with constants A), is a multirelation M E Multi(X) together with
a function p : A -+ P(X) assigning to every a E A a subset 03BC(a) of X.

Let M*, as before, denote the multipreorder generated from M. A typical el-
ement (B, x) c M* arises from M via a finite sequence of substitutions, utilizing
Definition 2.3.

To see the connection with the traditional approach ([3]), the elements of M,
(a, x), correspond to productions x +- a and we have x E p(a) iff there is a pro-
duction X f- a.

Elements (B, x) E M* are referred to as derivations of x from B.
We can now present a definition of context-free language very simply in terms

of the above definition.
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Definition 3.2. Let (M, p) be a context-free grammar on a set X with alphabet A.
Let x E X . The context-free language associated to x is the subset Lx of the free
monoid A* defined by alaz...an E Lx iff there exists B E Xn with (fl, x) E M* and
Bi E 03BC(ai).

A moment’s reflection shows that this coincides with the usual definition.
Recall from §2, that to every multipreorder M, we can associate a multipreorder

with factorizations, which we denoted p(M) . p(M) has as its underlying set X*,
the free monoid on the set X. Define p(p) : A - P(X*) by p(p)(a) = 03BC(a); that is
p(p) picks out subsets of X* consisting only of words of length one, i.e. p(p) (a) has
no elements of length &#x3E; 2 and if a: E X, then x E J-l(a) iff [x] E p(p(a))

We shall refer to (p(M), p(03BC)) as the Chorrasky normal form of (M, 03BC). It is
not hard to see that the usual prescription of Chomsky normal form for context-
free grammars (e.g. see [3]) coincides with our construction of multipreorders with
factorization from a given multipreorder and the ensuing (p(M), p(p)). As the

following lemma indicates, the end result with regard to context-free languages is
the same.

Lemma 3.1. Let (M, p) be a context-free grammar on a set X with alphabet A. The
context-free language associated to x for this grammar is the same as the context-free
language of x calculated according to the grammar (p(M), P) -
To understand what is going on in the above lemma, note that if [B] and [a] are
words in X with [B] = B1B2.....Bn and [a] = ac1ac2.....acm, then we have

([B].[ac], x) E p(M) iff (B.ac, x) E M iff [B1][B2].....[Bn][ac1][ac2].....[acm], x) E p(M)
iff (B1B2.....Bnac1ac2.....acm, x) E M -
The above definition of Lx shows that we will obtain the same language whether

we do our calculations with (M, p) or with ( p(M), (p(p)).

Thus, for the purposes of language recognition, it suffices to restrict our atten-
tion to context-free grammars, which are mpf’s. So, let us suppose that we have
a context-free grammar (M, p) on a set X with alphabet A, where M is a multi-
preorder with factorizations. Hence, from Theorem 2.1., it follows that there is the
structure of a power quantale on P(X).

This power quantale structure is given by A o B = {x E X|3a E A, b E B with
(ab, x) E M} where A, B are subsets of X.

Since A* is the free monoid on the set A, and in turn, P(A*) is the free quantale
on the monoid A* , we have that the information of having a map p : A -+ P(X)
is equivalent to having a monoid homomorphism p : A* - P(X ), which in turn is
equivalent to a quantale homomorphism 03BC : P(A*) -+ P(X).

We can think of this quantale homomorphism p : P(A*) -+ P(X) as endowing
the quantale P(X) with the structure of a P(A*)-algebra, in the sense that p leads
to a definition of an action of P(A*) on P(X) analogous to the usual notion of an
algebra from commutative algebra.
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For our current purposes, it suffices to deal with the map p : P(A*) -+ P(X).
This leads to the following definition.

Definition 3.3. A quantalic recognizer for the alphabet A is a pair (P(X), 03BC), where
P(X) is a power quantale and p : P(A*) - P(X) is a quantale homomorphism.

Let (P(X), 03BC) be a quantalic recognizer for the alphabet A. Given x E X, then
Qx = 10- E A*|x E 03BC(o-)} is called the language recognized by (P(X), P).
Definition 3.4. A languages L in the alphabet A is called quantally recognizqble if
and only if there exists a quantalic recognizer for A, which recognizes L.

Note that in the above definition, if a = a 1 a2 .... a", then the statement x E 03BC(o-)
is equivalent to saying that x E where o denotes the quantale
operation of the power quantale P(X). The following theorem is the main result
we have been leading up to.

Theorem 3.1. Let A be a set. Then, the set of context-free languages in the
alphabet A coincides with the set of quantally recognizable languages in the alphabet
A.

Proof: Let L be the context-free langua.ge associated to x, where x E X and (M, 03BC)
is a context-free grammar on X. Thus, a word o- is in L precisely if a = a1 a2 · · · ·an
and there is (B, x) E M* with 3i E 03BC(ai) for all i = 1, 2....n. By Lemma 3.1.,
it suffices to assume that M is a multipreorder with factorizations on X. In the

corresponding power quantale structure on P(X), x E {B1} o ... o {Bn} and since
Bi E It (ai), it follows that o- E L precisely if x E 03BC(a1)o....o03BC(an), in other words L is
recognized by the quantalic recognizer (P(X), 03BC) and thus is quantally recognizable.

Conversely, suppose L is quantally recogniza.ble by the quantalic recognizer
(P(X), p), with L = Qx for some x E X . To the power quantale P(X) we can asso-
ciate a multipreorder with factorizations M on X and the quantale homomorphism
p : P(A" ) -+ P(X) restricts to a map p : A -* P(X). Thus we have a context-free
grarnmar with alphabet A. A word a = ala2....an is in L if and only if x E 03BC(o-) if
and only if x E {B1} 0...0 {Bn} where 8i E 03BC(ai). If 13 is the n-tuple in X with 8i
as its ith component, then x E {B1} o ... o {Bn} if and only if (B, x) E M and thus
L is the context-free language of x relative to the context-free grammar (M, 03BC). .

We should note that by the equivalence of power quantales and multipreorders
with factorization, via relational monoids, it follows that if P(X) denotes the power
quantale obtained from a context-free grammar (M, jJ), with M a multipreorder
with factorizations on a set X , then P(X) recognizes precisely the context-free
languages Lx generated by the grammar (M, 03BC). Thus, there is an underlying
equivalence of categories between context-free grammars and their recognizers. To
someone with a good grasp of the relational calculus, the use of multirelations
and their substitution operation provides an effective and efficient way to describe
context-free grammars and languages. It is hopeful that this approach will lead to
some interesting observations about recognizers.
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