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ON LIE ALGEBROID ACTIONS AND MORPHISMS
by Tahar MOKRI

C-4/IIERS DE TOPOLOGIE ET
GEOJIETRIE DIFFERENTIELLE CATEGORIQUES 

Volume XXXVII-4 (1996)

Resume: Si AG est l’algebroïde de Lie d’un groupoide de
Lie G, nous d6montrons que toute action infinit6simale de
AG sur une variété M, par des champs complets de vecteurs
fondamentaux, se rel6ve en une unique action du groupoide
de Lie G sur M, si les cx- fibres de G sont connexes et

simplement connexes. Nous appliquons ensuite ce r6sultat
pour int6grer des morphismes d’algebroides de Lie, lorsque
la base commune de ces algebroydes est compacte.

Introduction

It is known [12] that if a finite-dimensional Lie algebra 9 acts on a
manifold M with complete infinitesimal generators, then this action
arises from a unique action of the connected and simply connected Lie
group G whose Lie algebra is Q, on the manifold M.

In the Lie algebroid case, the local integration of infinitesimal actions
was studied by Pourreza in [5], and the local integration of Lie algebroid
morphisms by Almeida and Kumpera in [2], following the earlier work
of Pradines in [14 .

In the local trivial case, the integration of Lie algebroid morphisms
was dealt with in [8], and more recently Mackenzie and Xu have ob-
tained in [9] a general version of the theorem 3.1. For a symplectic
groupoid G on base B with a-connected fibers and with a complete
symplectic realization (M, f ) of the Poisson manifold B, Dazord in [4]
and Xu in [19] have showed that the Lie algebroid action w --+ P( f*w)
integrates to a (global) action of the groupoid G on the manifold M,
here the Lie algebroid AG of G is identified with the cotangent bundle
T*B, and P denotes the bundle isomorphism P : T*M - TM induced
by the symplectic structure on M. We prove here a global integration



316

result of Lie algebroid actions when the actions are by complete
infinitesimal generators. As application, we prove that any Lie algebroid
morphism

F : AG --+ AG’, over the same base B, integrates to a unique base
preserving Lie groupoid morphism f : G - G’, provided that the com-
mon base B is compact and the a-fibres of G are connected and simply
connected, where a is the source map of G. This method of dealing
with Lie algebroid morphisms applies only when the Lie algebroids are
over a common compact base.

For a Lie groupoid G on base B, we denote by aG, !3c: G - B the
source and the target maps of G, respectively. For g E G, we denote by
g-1 or by iGg the inverse of g, and for b C B we denote by 1bG the value
of the identity map 1G : B --+ G at b. We omit then the subscripts
when there is no confusion in doing so.

If M and N are two manifolds, with a surjective submersion 7r : M --+
N, we call M a 7r-(simply) connected manifold if for all b E B the fibres
r-1(b) are (simply) connected subspaces of M. Lastly, C(M) refers
always to the module of smooth real valued maps on a manifold M, and
all manifolds are assumed C°°, real, Hausdorff and second countable.

1 Lie groupoids and Lie algebroids
We begin by recalling the notions of Lie groupoid actions and morph-
isms. Let G be a Lie groupoid on base B, and let p : M - B be a
smooth map, where M is a manifold. A (left) action of G on M is a
smooth map Ol : G * M --&#x3E; M, where G * M = { (g, m) E G x M a(g)= 
p(m)}, such that

where

for all g, h E G and m E M which are suitably compatible. A right
action of G on M is defined similarly.

We recall now the definition of a base preserving Lie groupoid morphism,
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see [6] for the general case. Let G and G’ be two Lie groupoids with
a common base B. A smooth map f : G - G’ is a Lie groupoid
morphism if

for all composable pair (g, h) E G x G, that is aG(g)= BG(h).

A Lie algebroid on base B is a vector bundle q : A --+ B together
with a map a: A --t TB of vector bundles over B, called the anchor
of A, and an R-bilinear, antisymmetric bracket of sections [ , ]: TA x
TA --+ rA, which obey the Jacobi identity, and satisfies the relations

for all X,Y E rA, f E C(B). Here a(X)(f) is the Lie derivative of f
with respect to the vector field a(X).

Let A be a Lie algebroid on B and let f : M - B be a smooth map.
Then an action of A on M is an R-linear map X --+ Xt, FA --+ x(M)
such that

for .

for

for

where X(M) denotes the module of smooth vector fields on M.

The construction of the Lie algebroid of a Lie groupoid follows closely
the construction of a Lie algebra of a Lie group; see [8] for a a full
account. Let G be a Lie groupoid on base B, and let TaG = Ker(Ta)
be the vertical bundle along the fibres of a. Let AG --+ B be the
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vector bundle pullback of the vector bundle TaG accross the identity
map 1 : B --+ G. Notice that a section X E rAG is characterized by
X(b) E T1bGb, V b E B, where Gb - a-1 (b). Now take X E TAG and--+
denote by X the right invariant vector field on G, defined by X ( g)=
1 lLgA (B (g) ); the corresponaence X--+ X Irom TAG to the module or

right invariant vector fields is a bijection; we equip hAG with the Lie
algebra structure obtained by transferring the Lie algebra structure of
the module of right invariant vector fields on G to hAG, via the bijection
X --+ X . Namely, if X, Y E rAG, we define [X, Y]= ( X , Y] o 1, and
a : AG --+ TB, by a(Xb) = TBXb. The vector bundle AG constructed
above is called the Lie algebroid of G; we will denote it by qG: AG --+
B, and its anchor map by aG: AG --+ T B. If there is no confusion we

--+

will omit the subscripts. The pullback of X by the inversion map i of G,
+--

is denoted by X and is a left invariant vector field on G. Lastly, if (xt )
is the one parameter group of local diffeomorphisms which generates a

--+

right invariant vector field X on G, then xt (v) = xt ( 1B(v) )v, d v E G,
and we write xt (v) = Exp tX (B(v) ) v, where ExptX(b) = xt ( 1b) [8].

A left action (D of a Lie groupoid G with base B on p : M --t B
induces an action X --+ xl of the Lie algebroid AG of G on the map
p : M - B, by the formula:

The vector field X t is called the fundamental vector field associated to X
or the infinitesimal generator of the action corresponding to the section
X E rAG.

Lastly, let A and A’ be two Lie algebroids on a common base B, with
anchor maps a and a’, respectively, and let F : A --+ A’ be a vector
bundle map. Then, F is a Lie algebroid morphism if the relations

(xii) F[X , Y] = [F(X) , F(Y)],

(xiii) a’oF=a
hold, for all X, Y E TA.

A base preserving Lie groupoid morphism f : G --+ G’ differentiates
to a Lie algebroid morphism T f : AG --+ AG’ . The tangent linear map
T f , when restricted to AG, is sometimes called the Lie functor of f and
is denoted by A ( f ) .
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2 Integration of Lie Algebroid Actions
We assume here that there are given a Lie groupoid G on base B, a
manifold M and a surjective submersion p : M --+ B. For b E B,
we denote by Gb and by G’ the a-fibre a-1 (b), and the 0-fibre 0-’(b),
respectively. The following theorem is the main result of this section.

Theorem 2.1 Let X - X t be an actions of the Lie algebroids AG on
the manifold M, by complete infinitesimal generators. Assume that the
module of right invariant vector fields on G is composed of complete
vector fields (hence, the module of left invariant vector fields is also

composed of complete vector fields). Then, if the Lie groupoid G is a-
connected and a-,simply connected there exists a unique left action O of
G on p : M - B, with

Since p is a surjective submersion, the subspace
G * M = {(g, m) E G x M, ) a(g) = p(m)} is a submanifold of G x M.
Let A be the subbundle of T(G * M) = TG * TM generated by the
set of pairs of vector fields of the form (x, X t) , with X E rAG.
The subbundle A is an involutive differentiable distribution of rank
dimG - dimB on G * M, therefore A is integrable by the Frobenius
theorem. Let X be the corresponding foliation on G*M, and let S(g,m) be
the leaf through (g, rrz) E G * M. We denote the leaf through (1GP(m), rrz)
simply by S(1,m).

Lemma 2.2 For all (g’, m’) E S(g,m), the relation B(g’) = 0(g) holds.

Proof: For (g’, m’) E S(g, m), there exist p vector fields (Xl, Xl ), ... , (Xp, X))
+--

tangent to the foliation :F such that if xit and çit are the flows of Xi and
of Xi , respectively, then [17] (see also [16] or [11]).
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It follows that B3 (g’) = B (g) , since the maps xit are right translations,
for i= 1, 2, ... , p. D 

For h e G, let lh be the left translation defined in Ga(h), by lh (g) = hg;
if we extend the map lh to Ga(h) * M, by setting lh (g, m) = (hg, m), then
1 is defined in the whole leaf C by 2.2, provided that a(h) = B (g ) .
In this case we have:

Lemma 2.3 For all (g, m) E G * M with B(g) = a(h), the following
relation

holds.

Proof: The conclusion is clear, since the first factor of the distribution
A is invariant under left translations. D

Lemma 2.4 For all b e B, there exists an open connected neighbour-
hood vb of 1b in the (3 fibre Gb, and for all m E p-l(b) there exists
an open connected neighbourhood Vm of (1, m) in S(1,m), such that zf P
denotes the projection G x M --+ G of G x M onto the first factor G
then

(i) Pm: Vm --+ Vb is a diffeomorphism, where Pm is the restriction of
P to the leaf S(1,m); furthermore, Vm is the connected component
of (1, m) in Pm-1(Vb);

(ii) the union V = UbEBVb is an open neighbourhood of the base B in
G.

Proof: Fix bo E B, and let Xl, X2, ... , XP be p left invariant vec-
tor fields on G, such that for 9 in a connected neighbourhood Ubo of
lbo in G, the vector tangents Xi(g), i = 1, ... , p generate the tangent
space TgGB(g). Furthermore, it is always possible to assume that Ubo is
a-saturated, that is Ubo = a-1 (a(Ubo) [1]. Let yi = (X i)t be the cor-
responding fundamental vector field on M, for i = 1, 2 ... p. We denote
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by xi and by yit, for i = 1, 2,..., p, the (global) flows of X 
i and Yi, re-

spectively. Consider the maps fbo : RP --+ G6° , and f : RP x U6° --+ G
defined, respectively, by

and by

where Ub,, = a ( Ubo ) . 
The map fbo is etale at the origin 0 of RP, (the j1-fibre Gb° is equipped

with the induced topology); so there is an open connected neighbour-
hood Wbo of the origin in RP, and an open connected neighbourhood
Yb° of 1 bo in Gbo, such that fbo: Wbo --+ v6° is a diffeomorphism. It

follows that, for m E M with p(m) = bo, the map

is a diffeomorphism, from Wbo onto an open connected neighbourhood
Ym = Fm (Wbo ) of ( 1, m) in S(l,m) (equipped with its own leaf topology) .
Now if Pm|Vm denotes the restriction of the projection Pm to Ym, then
Pml Vm = f bo o Fm -1: Vm --+ ybo is a diffeomorphism. Ym contains ( 1, m)
and is open in Pm- 1 ( Vb ) , and since Pm: Vm --+ Vb is a diffeomorphism
Vm is closed in P-1m (Vb ) . It follows that Vm is the connected component
of (1, m) in Pm-1(Vb).

We prove now the second assertion of the lemma. The left invari-
ant vector fields X l, X 2, ... XP are nowhere tangent to the base 1B; it
follows then easily that the map f defined by the relation (6) is etale
at (0, bo) E JRP x Ubo . Hence, we can select an open neighbourhood
W6° of the origin in JRP, and an open neighbourhood U’bo of bo in Ubo,
such that f : wto x Ub° --+ A(bo) = f (W’bo x Ub°) is a diffeomorphism.
By shrinking, if necessary, W’bo we can assume that wto c Wbo ; hence,
A(bo) is an open neighbourhood of lb° in G, contained in V. Since this
construction is valid for all bo E B, the subset V is open in G. D.

Lemma 2.5 Under the notations of 2.4, the projection Pm : S(1,m) --+ GP(m)
is a covering map, and since the fibres of G are Q simply connected, Pm
is a diffeomorphism.
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Proof: We start by proving that the map Pm is 6tale. If (g, x) E S(1,m),
then S(g,x) - S(l,m), and hence

It is clear now that the projection on the first factor

is surjective. By a dimension counting argument T(g,x)Pm is a bijective
map.

The map Pm is surjective: since the distribution D generated by the
family of left invariant vector fields on G is completely integrable, with
the B-fibres as the leaves of the corresponding foliation, for g E GP(m)
there exist p left invariant vector fields X1, X2, ... , XP on G, such that
9 == xi! OX2t2 0 ... o xptp (1p(m)), where x’ is the flow of Xi, for i = 1, 2 ... p.
If Yi = X’t, then (g, yl ti o Y;2 o ... o yptp (1p(m)) E Sm, where y’ is the flow
of Yi, i = 1, 2, ... , p.

It is enough now to prove that any g E Gp(m) has an open neigh-
bourhood Ug in GP(m), such that if C denotes a connected component
of Pm1(U9 ) in S(1,m), then Pm: C --+Ug is a diffeomorphism. In 2.4 we
have constructed, for all m E M, an open connected neighbourhood Vm
of (1, m) in S(1,m), and an open neighbourhood vp(m) of lp(,) in GP(m),
such that Pm : Vm --+ Vp(m) is a diffeomorphism, and V = UbE B V b is

open in G. By using the smoothness of the map (h, g) --+ h-1g, defined
for 13 (h) == j3 (g), we establish easily the existence of an open connected
neighbourhood U of lb in G, such that U-1 U C V, for all b E B.

For g G GP(m), let U. be the connected open neighbourhood gU of g
in GP(m), where U is the open neighbourhood of 1p(m), with U-1 U C V.
Let C be a connected component of P-1m (Ug ) , and fix ( h, x ) E C. In

particular h = gl for some l E U; therefore 0(h) - j3(g) = p(m). It
follows from (h, x) E G * M, that a(h) = p(x). Now we have (h, x) E
S(l,m) - S(h,x) - lhS(1,x), by 2.3, and the map lh : S(l,x) - s(l,m) is

a diffeomorphism. We have h-1 g U = 1-’U c U-1 U n Gp(x) = Vp(x);
in particular, h-1gU is a connected neighbourhood of (lp(x)) in Vp(x),
and lh : Px-l(h-1gU) --+ Pm 1 (gU) is a diffeomorphism. It follows that
C = lh(K), where K is the component of (1, x) in Px-l(h-1gU). Since,
from 2.4 (i) , Px: K --+ h-1 gU is a diffeomorphism, and since Pm | C =
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lh o Px 0 lhl, the result follows. D.

Proof of the theorem 2.1: Let (g, m) E G * M, then ig E Gp(m).
Let Og (m) be the unique element in M such that (ig, 4)g (m)) E S(1,m).
We start by proving that 4D is a smooth map from G * M to M. The
distribution D on G generated by the family of left invariant vector
fields on G is completely integrable with the 0 fibres as leaves. Let

p = dimG - dimB be its rank.
For go c G, there exists an open neighbourhood U of go in G, and p

left invariant vector fields X1, X 2, ... , XP in G, such that X1, X 2, ... , X p
generate the distribution D in U, and the brackets [X. , XJ], i, j E
{1, 2,... ,p}, vanish identically in U [11]. Let Yi = (X i)t, and let gt be
the (global) flow of Yi, for z = l, 2, ... , p. The open set U can always be
taken in such a way that U = (3-1 ((3 (U)) [1]. Let xit be the flow of Xi,
for i = 1, 2, ... , p. Since U n Gb = G’ for all b E (3(U), and since G is
/3-connected, the distribution D induces a distribution DU on U, whose
leaves of the corresponding foliation are the (B-fibres G , with b E (3(U).
It follows that, for bo = B(go ) ,

for some real numbers S1, s2, ... , sp. Let now F : RP x V --+ G, be the
map defined by

where V is an open neighbourhood of bo in B, contained in j3(U). A dir-
ect computation of the tangent linear map TF of F, using the relations
[Xi , Xj] = 0 for i, j = 1, 2, ... p, shows that

where cl , c2, ... , Cp are p real numbers. Hence, if

then X1b = 0, by applying T(3 to the left and the right hand side of
( 8), and then cl = c2 = ... cp = 0. Now, by a dimensional counting
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argument, the map F is et ale at the point ( s 1, s2, ... sp, bo ) , and its image
contains go. So, there exists an open neighbourhood I of (sl, s2, ... sp)
in in RP, and and an open neighbourhood V’ of bo in B, contained
in V, such that that F is a diffeomorphism from I x V’ to an open
neighbourhood U’ of go, contained in U.

For (go, mo) E G * M, let

then W is an open neighbourhood of (go, mo) in G * M. For (g, m) E W,
we have 

with (tl, t2, ... , tP) = pl (F-1 (g)), where PI is the projection of RP x B
onto the first factor RP. Since the smoothness is a local property,
V : G * M--+ M is a smooth map.

We prove now that 4l satisfies the relations (i), (ii) and (iii) in the
definition of a Lie groupoid action, see §1.

(i) From (ig, Og(m)) e G * M, we obtain

(ii) Let (h, g) be a composable pair in G x G and take m E M such
that a(g) = p(rrz), then Ohg(m) is the unique element in M with

If y = Og (m), then (ig, y) E s(l,m) so S(1,m) = S(ig,y) = ligS(1,y), by (4).
Since (igih, Ohg (m) ) E S(1,m) = ligS(1,y), we deduce that (ih, Ohg (m)) E
S(l,y), then we have necessarily

(iii) It follows from (1p(m), m) E S(1,m), that O1p(m) (m) = m, V m E
M.

We have now proved that the map 4D is a left action of G on M. The
curve (iExptX (p(m)), OExptX(p(m)) (m)) lies in S(i,m), for all X E rAG,
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and all m E M. By differentiating this curve with respect to t at t = 0,
we get

and that proves that XtO = X t, V X E rAG.

The uniqueness: assume the existence of a left action w of G on M
such that:

For any (h, m) C G * M, let

Since G is a-connected, d(h,m) is a connected submanifold of G * M
of dimension dimG - dimB. For any X E rAG, the integral curve
(hiExptX (p(m) ), WExptX(p(m))(m)) lies in d(h,m). It follows, by a dif-
ferentiation process that

and then, by a dimensional argument, A(h,m) = T(h,m)d(h,m); that is,
d(h,m) is an integral manifold for the distribution A. Therefore, (hig, Wg (m) ) e
S(h,m). By the lemma 2.3, we have (ig, Wg(m)) E S(1,m). Since Og (m)
is the unique element of M such that (ig,Og(m)) E S(1,m), we have
(D = W .

Remark 2.6 The module of left (or right) invariant vector fields on G
is composed of complete vector fields if B is compact [7](see also [1]).

Remark 2.7 The conclusion on the uniqueness subsistes if we assume
that is only defined in an open neighbourhood W of M in G * M, the
manifold M is then identified with the submanifold {(1p(m), m) ) | m E M}
of G * M. The properties (i), (ii) and (iii) defining a Lie groupoid action
being satisfied locally by W, that is W is a local action of G on M.
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+--

Remark 2.8 Replacing the left invariant vector field X by the right
--+

invariant X in the expression of the distribution A, yields the existence
of a unique right action of G on p : M --+ B such that the induced Lie
algebroid action is the given Lie algebroid action.

3 Inte g ration of morphisms
We assume here that there are given two Lie groupoids G and G’

on a common compact base B, such that G is a-simply connected and
a-connected. We denote by by G * G’ the submanifold
{ (g, g’) E G x G’ I aG (g) = BG’ ( g’) } of G x G’ . The following theorem is
the main result of this section. It was pointed out to me by K. Mackenzie
that he has obtained with P. Xu a general version in [9].

Theorem 3.1 If F : AG --+ AG’, be a base preserving Lie algebroid
morphism, there exists then a unique Lie groupoid morphism f : G --+
G’, over the base B, such that A f = F.

--+

For X E FAG, let X t be the right invariant vector field F(X ) on G’.
We check easily that the map --+ Xt is an action of AG on 0 : G’ --+ B,
by complete infinitesimal generators, since B is compact. Now since G
is a-connected and a-simply connected, there exists a unique left action
W of G on 0: G’ --+ B, such that xlO= X t , by the theorem. 2.1.

Proposition 3.2 For all (g, g’) E G * G’ the relation

holds.. 

Lemma 3.3 1. The relation aOg(g’) = a(g’) holds, for all (g, g’) E G * G

2. if and

for all with
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for all g’ such that

Proof: 1) For any X E TAG, we have

Since the fibre G/3(g’) is connected, the map g --+ Og (g’ ) is constant on
GB(g’). It follows that

where

2) We prove simultaneously the assertions (a) and (b) by induction
on the number of elements gi involved in the decomposition of .g. Assume
that

and

then we get the relation (a) by applying Og1 to the left and the right
hand side of (i); we get the relation (b) by applying Og1 to (ii), and by
using the relation (a). 0

Proof of the propositon 3.2: Let (g, g’) E G * G’; since the a
fibres of G are connected, there exist, [1], p sections X1, X2, ... , XP of
the Lie algebroid AG such that

--+

where xl denotes the (global) flow of the right invariant vector field Xi.
As the maps xi t are left translations, one can write

where each ai is in B and depends on the numbers tl, t2, ... tp. The

vector fields Xit, i = 1, 2, ... , p are right invariant, by construction;
hence [6]
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for i = 1, 2 ... , p and for all h E G’. The conclusion now follows by
applying the lemma 3.3, with gi = xiti (1Gai ) . 0

Proof of the theorem 3.1: Let f : G - G’ be the map defined by

then

by 3.3;

since (D is a left action.

. !(g1g2) = f(gi)f(ga), by a straightforward calculation, using the
proposition 3.2.

It follows from the above relations that, the map f is a Lie groupoid
morphism. On the other hand, for any X E FAG, we have

that is, .
Assume the existence of another Lie groupoid morphism h : G - G’,
such that Ah = A f = F. Let T be the map

defined for all (g, g’) E G * G’. One can check then easily that the map
W, defined by the relation (10), is a left action of G on 0 : G’ --+ B,
such that

By the theorem 2.1, W = O&#x3E;, hence f = h. D

Corollary 3.4 Let f : G --&#x3E; G’ a Lie groupoid rraorphism. If

(1) Af : G --t G’ is an injection then f is an immersion.

(2) If A f is a Lie algebroid isomorphism, and if the a’- fibres of G’
are connected and simply connected, then f : G --t G’ is a Lie

groupoide isomorphism.



329

Proof: (1) Let Xg be a vector tangent to G such that T f (Xg) = 0.
It follows that TaXg = 0, and

which implies Xg = 0.
(2) Since the inverse (Af )-1: AG’ - AG of the Lie algebroid

isomorphism A f is a Lie algebroid isomorphism, there exists a unique
Lie groupoid morphism f’ : G’ --+ G such that Af’ == (A f )-1. From
the relation A( f o f’) = A( f ) o Af’ = idAG, , and from 3.1 we deduce
that f o f’ = idG’ , and similarly f’ o f = idG D.



330

Acknowledgements
I owe my education in Lie groupoids to K. Mackenzie, and I am grateful

to him for conversations related to this paper. I would like also to thank Y.

Kosmann-Schwarzbach for her comments which improved the original version
of this paper which was a part of my PhD thesis, and J. Pradines for pointing
out to me the reference [5]. Lastly, I wish to thank the School of Mathematics
and Statistics of the University of Sheffield for support in writing this paper.

References

[1] C. Albert and P. Dazord, Théorie genérale des groupoïdes de Lie, Pub-
lication du département de mathématiques de l’université de Lyon 1,
53-105, 1989.

[2] R. Almeida and A. Kumpera, Structure produit dans la catégorie des
algébroïdes de Lie, An. Acad. brasil. Ciênc., 53 (2), 247-250, 1981.

[3] R. Brown and O. Mucuk, The monodromy groupoid of a Lie groupoid,
Cah. Top. Géom. Diff. Cat., Vol XXXVI-4, 345-369, 1995.

[4] P. Dazord, Groupoïdes symplectiques et troisiéme théoréme de Lie "non
linéaire ". Lecture Notes in Mathematics, vol. 1416. Berlin, Heidelberg,
New York: Springer, pp. 39-44, 1990.

[5] E. Pourreza, thése 3em Cycle, Toulouse, 1972.

[6] P. J. Higgins and K. Mackenzie, Algebraic constructions in the category
of Lie algebroids, Journal of Algebra 129, 194-230, 1990.

[7] A. Kumpera and D. C. Spencer, Lie equations, volume 1: General theory,
Princeton University Press, 1972.

[8] K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry,
London Mathematical Society Lecture Note Series, Vol 124, Cambridge
Univ Press, Cambridge.

[9] K. Mackenzie and P. Xu, Integration of Lie bialgebroids, preprint.

[10] T. Mokri, PhD thesis, University of Sheffield, 1995.

[11] P. Molino, Riemannian foliations, Birkhauser, Boston, 1988.



331

[12] R. Palais, Global formulation of the Lie theory of transformation groups,
Memoirs Amer. Math. Soc., 23, 1-123, 1957.

[13] J. Pradines, Théorie de Lie pour les groupoïdes différentiables. Relations
entre les propriétés locales et globales, C. R. Acad. Sci. Paris Sér. A 263,
907-910, 1966.

[14] J. Pradines, Théorie de Lie pour les groupoïdes différentiables. Calcul

différentiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad.
Sci. Paris Sér. A 264, 245-248, 1967.

[15] J. Pradines, Géométrie différentielle au dessus d’un groupoïde, C. R.

Acad. Sci. Paris Sér. A 266, 1194-1196, 1967.

[16] P. Stefan, Accessible sets, orbits, and foliations with singularities, Bul-
letin Amer. Math. Soc., 80, (6), 1142-1145, 1974.

[17] H. J. Sussmann, Orbits of families of vector fields and integrability of
distributions, Transactions of the Amer. math. Soc., vol 180, 171-188,
1973.

[18] V. S Varadarajan, Lie groups, Lie algebras, and their representations,
Springer-Verlag, 1984.

[19] P. Xu, Morita equivalence of symplectic groupoids, Commun. Math. Phys.
142, 493-509, 1991.

Tahar Mokri, School of Mathematics and Statistics, University of Sheffield,
Sheffield, S3 7RH, England
email: t.mokri@sheffield.ac.uk


