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WEAKLY HEREDITARY REGULAR CLOSURE
OPERATORS
by Temple H. FAY

CA HIERS DE TOPOLOGIE ET

GEMETRIE DIFFERENTIELLE C4TEGORIQCES
Volume XXX VII-4 (1996)

R6sum6. On 6tend divers r6sultats de Clementino relatifs a la

cat6gorle des espaces topologiques et aux categories ab6liennes dans
le cas des categories quasi-additives pointees dans lesquelles les pro-
duits fibr6s de conoyaux sont des conoyaux. En particulier on d6ter-
mine quand un op6rateur de fermeture régulier est faiblement h6r6-
ditaire. Ces deux types d’op6rateurs de fermeture sont centraux dans
la th6orle des op6rateurs de fermeture. Ceci s’applique a la cat6gorie
des groupes.

1 Introduction.

In the theory of categorical closure operators, regular closure operators
hold a special place. Indeed, the foundations of the general theory began
with Salbany’s work [23] in which, essentially, the notion of regular clo-
sure operator was defined for the first time. Of course the entire theory,
particularly with the category of topological spaces, TOP, in mind, has
been developed by a number of authors, most notably by Dikranjan and
Giuli [8], [9] and Castellini [3], [4].

Weakly hereditary also hold an important place in the theory. They
arise from factorization structures for morphisms and are extremely well
behaved with regards to categorical compactness (see [20]). Therefore
it is of some interest to know when a regular closure operator is weakly
hereditary.

This question has been answered recently, in part, by Clementino [7],
who showed that for TOP, an extremal-epireflective subcategory 7 is
a disconnectedness (see [1]) if and only if the regular closure operator
induced by 7 is weakly hereditary. Clementino also shows that for an
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epireflective subcategory F of an abelian category (with suitable complete-
ness), F is a torsion-free subcategory if and only if the regular closure op-
erator induced by F is weakly hereditary.

Our interest primarily concerns extending Clementino’s result to point-
ed categories more general than abelian ones. In particular, we are inter-
ested in the situation for the category of all groups, GRP. We extend the
ideas of Clementino to cover pointed quasi-additive categories for which the
pullback of a cokernel is a cokemel, and clarify the relationship between
disconnectedness and the subcategory being closed under formation of
extensions.
We begin with some general observations concerning regular closure op-

erators. In Section 3, we sharpen some results of Castellini [5] concerning
when F-epimorphisms are surjective. The main Section 4 deals with the

generalized torsion theories defined by Cassidy, Hebert, and Kelly [2], and
explore conditions that assure the regular closure operator induced by a
torsion-free class is weakly hereditary.

1 Preliminaries.

Recall that a category C is called regular if it is finitely complete, finitely
cocomplete, enjoys the (strong epi, mono) factorization structure for mor-
phisms, and strong epimorphisms are stable under pullbacks. In a regular
category, the strong epimorphisms and regular epimorphisms coincide. A
pointed category is called quass-additzve when a morphism f is a monomor-
phism whenever ker( f ) = 0. Throughout this paper we shall assume C to
be quasi-additive as well as finitely complete and finitely cocomplete with
the property that all pullbacks of cokemels are cokemels. These categories
enjoy many properties of additive and abelian categories with cokemels in
the place of coequalizers (see [2]). In this case, every morphism f factorizes
as f = me with m monomorphic and e a cokemel; all strong epimorphisms
are cokemels; and composites of cokemels are cokemels. If f : X --+ Y is a
morphism and f = rne is the (cokernel, mono)-factorization of f , then we
denote the codomain of e (domain of m) by f (X ) .

If A is a subob ject of an object G, then we write A  G. A closure

openator on C assigns to each subobject A of G, a subobject c G(A) of G
such that for each pair of subobjects A and B of G and each morphism
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f : G --+ H, the following hold:
(i) A  cG (A);
(ii) A  B implies cG(A):5 cG(B);
(iii) /(cG(A» S cH(f (A)) (continuity condition).
A closure operator c(-) is called idernpotent provided cG(cG(A)) = cG(A)

for each subobject A of G; a weakly hereditary closure operator satisfies
CcG(A) (A) = cG(A). The general theory of closure operators has been devel-
oped by several authors, see [8], [3] for example.

Let E and M be isomorphism closed classes of morphisms. The pair
(E, M) is called a factorixation structure provided:

(i) for every commutative square mf = ge with e E E and m E M,
there exists a unique morphism d so that de = f and md = g (the (E, M)-
diagonalization property);

(ii) every morphism f can be factored as f = me with e E E and m E M
(the (E, M)-factorization property).
This idea encapsulates and generalizes the usual (surjective, injective) fac-
torization for group homomorphisms.

For a closure operator c(-), we let Ec be the class of all c-dense morphisms
(the c-closure of the image equals the codomain) and we let Mc be the class
of all c-closed embeddings (monomorphisms with c-closed image). Then
the pair (E,,, Me) determines a factorization structure if and only if c(-) is
weakly hereditary and idempotent, see [8], [9].

Let F be any class of objects containing the zero object 0. We call a
subobject A of an object G an F -regular subobject of G provided there exist
an F E F and apairf,g: G --+ F so that A is the equalizer of f and g. For
categories algebraic over the base category SET in the sense of [19], this
simply meane A = {x E G I f (x) = g(x)}.

For an arbitrary subobject A of an object G, we define cf(A) to be the
intersection of all ,-regular subobjects of G which contain A. Naturally, we
say that cf(-) is the regular closure operator induced by the class F. Salbany
[23] was the first to introduce such a closure operator for the category of
topological spaces; further and more general developments can be found in
[4] and [8]. Since C has coequalizers, if F denotes the quotient-reflective hull
of the class V, then cF(-) = cx(-). Thus there is no loss of generality in
assuming F to be closed under products and subobjects when considering a
regular closure operator. In this case, cf(A) is 7-regular.
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Let be a quotient reflective class and let OG be the normal subobject of
G for which RG = GIOG is the reflection of G into 7. We let rG : G - RG
denote the canonical cokernel reflection map.

Proposition 2.1. If A is an F-regular subobject of G, then OG _ A.
Moreover, if OG  A, then A is F -regular in G if and only if AIOG is F-
regular in G/6G. More generally, for an arbitrary object G and F-regular
B in RG, the inverse image A = rG (B) is F-regular in G.

The following result is adapted from [5], see also [10].
Lemma 2.2. The Fundamental Lemma for Regular Closure Op-
erators. If F is a quotient-reflective subcategory of C and A  G, then
rG(cRGF(rg(A))) = cGF (A) .

Proof. Let Y = cFG(rg (A)) and let X = rG (Y). By the previous propo-
sition, X is f-regular in G and since A  X, we have cGF (A) X . On
the other hand, we have cGF(A) is F-regular, so there exist an H E F and
j, K : G - H with cGF (A) the equalizer of j and k. Since H E F, there are
maps 3, k : RG--+ H with jrG = j and krc = k. Clearly, Y is contained in
the equalizer of j and k, and thus it follows that X  cGF (A).ll

Categorical compactness, first introduced by Manes [21], was developed
with respect to an (E,M)-factorization structure for morphisms by Herrlich,
Salicrup, and Strecker [20]. Monomorphisms belonging to the class M are
called M-closed embeddings and an object G was called M-compact pro-
vided for every object H and every M-closed embedding A --+ G x H, the
surjective image 1r2(A) in H has an M-closed embedding. This definition

clearly mimics the well known Kuratowski-Mrowka Theorem which charac-
terizes compact topological spaces. Fay [11] characterizes M-compact mod-
ules with respect to the standard factorization structure for morphisms aris-
ing from a hereditary torsion theory in terms of relative injectivity. Castellini
[3] developed the notion of categorical compactness relative to a regular clo-
sure operator. Subsequently, Dikranjan and Giuli, building upon their work
on categorical closure operators [8], thoroughly investigated compactness in
the module case in [9].

Accordingly, we call an object G compact with respect to the closure op-
erator c(-), or more simply c-compact, provided for each object H, II2(A)



283

is a c-closed subobject of H whenever A is 8, c-closed subobject of G x H.
If the closure operator c(-) is the regular closure operator induced by the
class F, then we call G F -regular compact instead of cF-compact. There are
two results which significantly ease the testing for F-regular compactness.

Theorem 2.3. [18] Let G be an arbitrary object. Then the following are
equivalent:

(i) G is F -regular compact;
(it) G/0G is F -regular compact;
(iil) G/C is F-regular compact for every F-regular subobject C of G.

Theorem 2.4. [18] An object G belonging to :F is F -regular compact if and
only if for each object H E F, II2 : G x H --+ H maps F -regular subobjects
onto F -regular subobjects.

2 F-Epimorphisms.
In this section, we sharpen and extend to a wider categorical setting some
results of Castellini [5] concerning the class of F-regular compact objects
which belong to the class F, Comp(F)nF, and the question of when F-
epimorphisms are surjective. Let F denote a quotient-reflective subcategory
and let CF(-) and c°°F(-) denote the regular closure operator and its weakly
hereditary core respectively.

Remark 3.1. The classes of c°°F-dense maps and cF-dense maps coincide.

The following is a sharpening of Theorem 3. 2 of [5].

Theorem 3.2. The following are equival ent:
(i) The F -epimorphisms are cokernels;
(it) CooF( -) acts discretely on F;
These conditions hold when every object G belonging to F is F -regular

compact.

Proof. If the F-epimorphisms are cokernels, then for G E F and
A  G, the map A --+ cooF(A) is an F-epimorphism, hence an isomor-
phism. Conversely, if e : A --+ G is an F-epimorphism, then so is the
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map e(A) --+ G. Since e(A) and G belong to X, cf(e(A)) = e(A) by hy-
pothesis. But e(A) --+ c-(e(A)) is an F-epimorphism, so cF(e(A)) = G and
thus cF(e(A)) = G. Hence e(A) = G and e is a cokernel.

If every G E F is 7-regaar compact and e : A --+ B is an F-epimorphism
with A and B belonging to F, then e(A) -.. B is an F-epimorphism, hence
is cF-dense. Since A is in F, it is 7-regaar compact, and hence so is

e(A). Since B belongs to 7, e(A) is 7-regdar and thus equals B; i.e., F-
epimorphisms are cokemels.

Example 3.3. (1) In the category of all groups, GRP, let F = {G I G is
torsion-free}. Then cF(-) is weakly hereditary and acts discretely on F.

(2) In the category of abelian groups, AB, let ,F = {G l G is torsion-
free}. Then cF( -) is weakly hereditary but fails to act discretely on F (c.f.
[5]).

The difference between these two examples is explained by the following
partial converse to the above theorem.

Proposition 3.4. If cF(-) acts discretely on :F, then every object G is
:F -regular compact.

Proof. It suffices to assume G belongs to .x’ and to test for compactness
on an arbitrary H also from F. Let A be an F-regular subobject of G x H
and observe that x2 (A) = cHF(II2(A)).||
The following proposition is an immediate extension of Proposition 3.5 of
[5] .

Proposition 3.5. If C is additive and F is quotient-reflective, then the
epimorphisms in Comp(F)nF are cokernels.

3 When cF(-) is Weakly Hereditary.
In this section we explore the relationship between weakly hereditary regular
closure operators and properties of the class 7. In doing so, we extend and
amplify some recent results of Clementino [7]. To set the stage for this work,
we first establish some notational conventions which will be used throughout
the sequel.
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Again, we let 7 denote a quotient-reflective subcategory C with reflection
rG : G - RG = G/OG, where OG is the smallest normal subobject of G for
which the quotient G/0G belongs to F. To simplify the notation, for each
object G, we set TFG = cGF(0).

Proposition 4.1. TF(-) is a radical with -rrG = 0G for each object G. In
particular, TFG is fully invariant in G.

Proof. The continuity condition for cv(-) shows that T,(-) is a prerad-
ical and is fully invariant. Since TFG = cGF(0), it is 7-regular, and thus there
exist an F E )I’ and pair of maps f, 9 : G --+ F with TFG the equalizer of f
and g. There are induced maps f , g : RG - F so that frG = f and §rG = g.
Since rG(0G) = 0, it follows that frG(OG) = grG(G) = 0, so 0G  TFG. But
8G contains 0 and is 7-regular. Thus TFG  0G and equality is obtained.
This also shows that TF(-) is a radical.||
Since a regular closure operator is always idempotent, we have the following
characterization [8].

Proposition 4.2. The following are equivalent:
(i) cF(-) is weakly hereditary;
(ii) McF is closed under composition;
(iii) (EcF, McF) is a factorization structure for C.

The next definition is adapted from Clementino [7]. We say the F-

refiections are hereditary (with respect to the class 10 -+ G | G E C})
provided for each C-object G, the map P --+ 0 in the pullback diagram:

is the 7-reflection of P. It is clear that in the above pullback diagram,
P = 6G X 0. Thus P is canonically isomorphic to 8G = TJG. To have P --+ 0
be the F-reflection is the same as saying 0P = P; i. e., TFP = P. This is the
same as saying 7j,G = TFG.

Following the notation and concepts of [2], we denote by F+-- the class
{G E C | Hom (G, F) = 0 for all F E F}. Since this class is always a class
of torsion objects for a generalized torsion theory, we denote F+-- by T. We
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observe that the class T--+ = {G E C | Homc (T, G) = 0 for all T E Ti
contains the class F, is closed under formation of products, subobjects, and
extensions, and that the pair (T,T-) is a generalized torsion theory. See [2]
for more details. Note that it is easy to identify the class T, as it is clear
that T = {G E C | TFG = G}. The class ?’r is closed under formation of

coproducts, images, and extensions.
Following [1], in TOP, a class of spaces A is a disconnectedness if there

is a class of topological spaces D so that a space X belongs to A exactly
when any continuous function from a space in D to X is constant. Thus T--+
could be called the disconnectedness determined by the class T. Clementino
[7] showed that for TOP, a class A is a disconnectedness exactly when A
induces a weakly hereditary closure operator.

Since TooF (G) E T, G E T- implies T? (G) = 0. On the other hand, if
T E T and f : T --+ G, then f (T ) C TooF (G) . Thus TooF (G) = 0 implies
G E T-*. This shows that T--+ = {G I TooF (G) = 0}, and consequently we
have F = T--+ if and only if T§ = T,.

If A  G is F-regular, then by the Fundamental Lemma, we have a
pullback diagram:

From B E F, there is a uni que map pA : RA --+ B with pArA = r : A --+
cRGF(rG(A)). Note that this map pA is necessarily a cokemel since r is a

cokemel. It follows that pA is monic if and only if TFA = TFG. If T2F = Tjr
and A is F-regular in G, then TFG  A. From T,F being a preradical, we have
T2GF  TFA  T:FG. Thus the hypothesis implies that pA is a monomorphism.
On the other hand, if each pA is monic, then PTFG is monic, which forces
T2FG = TFG.

Finally note that if CF( -) is weakly hereditary, then

Thus we have proved the following theorem.

Theorem 4.3. The following are equivalent and imply that J= is closed
under extensions:
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(i) T2F = TF; i
(ii) F -reflections are hereditary; 
(iii) F = T-4;
(iv) PA is monic for every F-regular A  G.
Moreover, if CF( -) is weakly hereditary, then these conditions hold.

We intend to show that for the category of groups, the converse of this
last statement holds. But first, more generally, let A be F-regular in B and
let B be.,F-regular in G. Then we have the commutative diagram:

It follows that rG (A) is F-regular in RB and rc (B) is F-regular in RG. In
particular, by the Fundamental Lemma, square 1 is a pullback square. Since
B is F-regular in G, TFB  TFG  B . Thus TFG/TFB  B/TFB. If F =
T--+, then -ryGl-rrB E Tn F = 0 and thus TFG = TFB. In this case then,
RB = rG(B) = B/TFG = B/TFB. Hence it follows that RA = rG(A) =
A/7-j,A = A/TFB = A/TFG. This means that square 2 is a pullback square.
Thus the outer rectangle is a pullback square. Hence, by the Fundamental
Lemma, A is 7-regaar in G if and only if RA is 7-regular in RG. This
argument yields a sharpening of Clementino’s Proposition 4.2 as follows:

Theorem 4.4. CF(-) is weakly hereditary. on C if and only if CF( -) is

weakly hereditary on 7 and 7 = T-.

We wish to relate the requirement that = T--+ to 7 being closed under
formation of extensions. In particular, Clementino’s Theorem gives us that
when C is an abelian category, cF(-) is weakly hereditary precisely when
7 is closed under extensions. A similar result hold for the category of all
groups, GRP, but the verification is somewhat more involved than for the
abelian situation.
We say that a monomorphism A --+ B and a cokernel a : A --+ F have a

semiextension provided there exist an H, with F  H, and a map B : B -+ H
so that the following diagram commutes:
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Note that a(A) = F  B(B), so that without loss of generality, we may as-
sume B to be a cokernel. We call the above semiextension an F-semiextension
provided F E 7 implies H can be chosen to belong to F. We call a monomor-
phism A --+ B F-semiextendible provided for every cokernel a : A --+ F, with
F E F, has an F-semiextension.

Proposition 4.5. If TFG --+ G is 7-semieztendible for every G, then
F=T--+.

Proof. The hypothesis implies TFG/T2FG = 0.||
We say that the category C enjoys the (cokernel, kernel)-Pushout Property
or more simply the Pushout Property, if in the following pushout square

e a cokernel and m a normal monomorphism imply that n is a monomor-
phism.

Theorem 4.6. If C enjoys the Pushout Property, then F closed under
extensions implies for every G, TFG --+ G is F-semiextendible.

Proof. Consider the following diagram with indicated pushout square:

The image of a normal subobject is normal, and it is easy to see that the
quotient Q is isomorphic to G /TFG. If F is closed under extensions, then P
belongs to F. 11
The next proposition also shows that closure under extensions implies F =
T--+ under common circumstances.

Proposition 4.7. If fully invariant implies normal, then F closed under
extensions implies F = T--+.
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Proof. Under this hypothesis, T§G is normal in G, and thus we have the
short exact sequence

and closed under extensions implies G/T§G belongs to F. This in turn
implies T = T2F.|| Corollary 4.8. In the category of groups, GRP, the

following are equivalent:

(ii) cF(-) is weakly hereditary on F and X is closed under extensions.

We improve this result next by showing that the regular closure operator
induced by the class F closed under subgroups, products, and extensions
must act discretely on the class F and hence the closure under extensions
suffices to obtain cF(- ) weakly hereditary in the category of groups.

Theorem 4.9. In the category of groups, GRP, C.1="( -) is weakly hereditary
if and only if F is closed under extensions.

Proof. If c ,( -) is weakly hereditary, then F = T-’ and 7 is closed under
extensions by Theorem 4.3. Conversely, we first argue that if 7 is non-zero,
then it contains all free groups. Note that if Y contains a torsion group,
then it contains a cyclic group of prime order, Z(p). Since is closed under
extensions, it follows that Z(p2) belongs to F and , by induction, Z(pn)
for all n belong to F. Since F is closed under products and subgroups, X
contains the mixed group II°°n=1 Z(pn) . If F contains either a mixed group or a
torsion-free group, then it contains the infinite cyclic group of integers. Thus
all free-abelian groups belong to r. If F is a free group, let F (n) denote the
nth term of the derived series for F. Then we have the short exact sequence

First observe that F/F(1) is free-abelian and since subgroups of free are free,
we have F(n) / F(n+1) is free-abelian for each n. Since F is closed under exten-
sions, by induction, F/F(n+1) belongs to F for each n. Since the intersection
of all the F(n),s is the trivial group, we have F embedded in the product of
all the F/F(n)’s and thus F belongs to X.
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Let G be an arbitrary group belonging to F, and let A be any subgroup
of G. We let G IIA G denote the free product of G with itself amalgamating
the subgroup A. There are two canonical injections u1, JJ2 : G --+ G IIA G
with A = Ix E G | itl(x) = u2(x)}. The images u1 (G), and JJ2(G) are
called the constituents of G II A G. There is also a canonical homomorphism
A : G IIA G --+ G enjoying the property that Atti = 1G for i = 1, 2. Each
element w E GUA G has a normal form w = x1y1 ...xnyn where the xi’s belong
to one constituent and the yi’s belong to the other constituent. It follows
that A(w) = x, o yl. ... . zn o yn where o denotes the multiplication in the
group G. Let K denote the kernel of A and let w- lgw E w-1Gw n K where
G denotes either one of the constituents. Then A(w-1gw) = w-1 · g · w = 1,
which implies g = 1. By Kurosh’s Subgroup Theorem [22, Corollary 4.9.2],
this implies K is free. Thus G UA G is an extension of an F-group by a free
group and therefore belongs to F. This means that A is F-regular and hence
cGF(A) = A. So 7 being closed under extensions implies cF(-) is discrete on
.r, and hence weakly hereditary on F. The result now follows directly from
the above Corollary 4.8. 11

Example 4.10. In the category of groups, GRP, if F is the class of all
torsion-free groups, then CF( -) acts discretely on F [18], hence is weakly
hereditary on GRP.

If F is the class of all torsion-free abelian groups, then cF(-) is not

discrete but is weakly hereditary on F, and thus in the category of all abelian
groups, AB, c.r( -) is weakly hereditary. However, in GRP, F is not closed
under extensions and CF( -) is not weakly hereditary.

If F is the class of all R-groups (groups for which xn = yn implies x = y),
cF(-) coinczde8 with the isolator [181 on F, and thus is weakly hereditary on
F (the isolator is a weakly hereditary closure operator in GRP, see [12]),
but CF( -) is not weakly hereditary on GRP as F fails to be closed ttnder
extension.

The next observation follows from Proposition 3.3.

Corollary 4.11. In GRP, if F is closed under extensions, then every
group is F -regular compact.

Finally, we close with:
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Proposition 4.12. If F is closed under extensions, then T°°F = TnF if and
only if TooF = TF.

Proof. Consider the exact sequence .

and note that being closed under extensions implies that Tn-2FG/TnFG
belongs to F. Thus from the exact sequence

we see that Tn-3FG/TnFG belongs to F. Proceeding in this manner a finite
number of times, we obtain TFG/TnFG belongs to J’. This and the exact

sequence

show that G/TnFG belongs to F, and hence TFG  TnFG.||
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