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CAHIERS DE TOPOLOGIE ET Volume XXX111-4 (1996)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

COLIMITS FOR THE PRO-CATEGORY OF TOWERS

OF SIMPLICIAL SETS
by David BLANC

Résumé: Nous construisons une certaine catégorie Net
des Ind-tours dans laquelle la Pro-catégorie des tours des
ensembles simpliciaux se plonge et qui permet la construc-
tion explicite de toutes les limites directes (pas seulement les
limites finies).

1. INTRODUCTION

The Pro category of towers of spaces (and of other categories) has
been studied in several contexts, and used for a variety of applications
in homotopy theory, shape theory, geometric topology, and algebraic
geometry — sce for example [AM, BK, DI, EH, F, G, GV, H, HP, MS].
Our interest in it first arose, in [BT], in the study of v,-periodicity in
unstable homotopy theory (cf. [Bo, D, Md, MT}).

One problem in the usual version of the Pro category of towers is
that, while finite limits and colimits exist, and may be constructed
in a straightforward (levelwise) manner, the same does not hold for
infinite colimits; and these were needed for the application we had in
mind in [BT]. It is the purpose of the present note to improve on the
rather ad hoc solution to this difficulty presented in [BT, §3] (in terms
of of what were there called “virtual towers”), by enlarging the Pro
category of towers spaces in such a way as to allow a straightforward
construction of arbitrary colimits. One object of this is to enable us to
then provide a suitable framework for studying periodicity in unstable
homotopy theory in terms of a Quillen model category structure for our
version of the Pro category of towers (see [Bc]).

The construction we provide embeds (a suitable subcategory of) the
Pro category 7Tow of towers of simplicial sets in a certain category
Net  of strict Ind-towers, in which we have explicit constructions for
all colimits, as well as finite limits. This category MNet can thus be
thought of as a cocompletion of the Pro category of towers of spaces. We
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shall show in [Bc] how this construction can also provide a “homotopy
theory of finite simplicial sets” (compare [Q, II, 4.10, remark 1}); it may
be of use in other contexts, too.

There are other cocomplete categories in which Zow may be em-
bedded - for example, the category Pro-S, of all pro-simplicial sets
(cf. [AM, A.4.3 & A.4.4]), or the full category Ind-Tow of all induc-
tive systems of towers (cf. [J, VI, Thm. 1.6] - this is actually “the”
cocompletion of Zow, in an appropriate sense: see [J, VI, §1] or [TT].
One advantage of the approach described here is that one obtains a
smaller, and more mangeable, cocompletion, in this special case, and
the construction of the colimits may be made quite explicitly.

A side effect of our approach is the elimination of certain “phantom
phenomena” from the Pro category of towers (see §2.10(b) and §4.13
below).

1.1. conventions and notation. Let 7, denote the category of
pointed topological spaces, S the category of simplical sets, and S,
that of pointed simplicial sets (see [My]). We shall refer to the objects
of S, simply as spaces. A finite simplicial set X, is one with only
finitely many non-degenerate simplices (in all dimensions together).
(For technical convenience we prefer to work with simplicial sets,
rather than topological spaces. This makes no difference for our pur-
poses, since 7, and S, have equivalent homotopy theories, in the

sense of Quillen - see [Q, I, §4].)

The category (ordered set) of natural numbers will be denoted by N,
the category of abelian groups by AbGp, and the category of R-modules
(for a commutative ring R) by R-Mod.

For any category C we shall denote by Ind-C the category of Ind-
objects over C — that is, diagrams F :J — C, where J is a small
filtered category (cf. [GV, Defs. 2.7 & 8.2.1]) - with the appropriate
morphisms (see [GV, Def. 8.2.4]). Similarly, Pro-C denotes the cate-
gory of Pro-objects over C (i.e., diagrams F :J — C where J° is
filtered — cf. [GV, Def. 8.10.1]).

For any functor F': I — C we denote the (inverse) limit of F' simply
by limF or lim;F, (rather than lim.), and the colimit (=direct
limit) by colimF. The (co)limit is finite if the category I is such
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(finitely many objects and morphisms between them). All limits and
colimits in this paper are assumed to be small - i.e., Ob(I) is a set.

A category C is called pointed if it has a zero object (i.e., one which
is both initial and terminal). This object will be denoted by *¢ (or
simply *).

1.2. organization. In section 2 we give some background on towers
of simplicial sets, their Pro category 7Tow, and the finite (co)limits
in Zow. In section 3 we define “good” subcategories” - a concept
which merely codifies those properties of Zow which are needed to
construct its cocompletion. In section 4 we show that the category Net,
consisting of certain strict Ind-objects over such a good subcategory of
C, serves as a cocompletion for C, in the sense of having all colimits (and
all finite limits).

1.3. acknowledgements. I am grateful to the referee for his com-
ments, and in particular for providing references to previous work, and
suggesting Remark 4.12. I would also like to thank Emmanuel Dror-
Farjoun, Bill Dwyer, Haynes Miller, and Brooke Shipley for several use-
ful conversations.

2. THE CATEGORY OF TOWERS

In order to fix notation, we recall the definition of the usual Pro
category of towers of spaces:

2.1. towers of spaces. The objects we shall be studying are towers in
S, - 1.e., sequences of pointed spaces and maps

X ={...Xn+1]2Xn] 25 Xn-1] - ... 2 X[0] },

where the space X|[n| is called the n-th level of X (n > 0), and the
map p, is called the n-th level map (or bonding map) of X. We denote
such towers by Gothic letters: X,9),....

For any n > m, the iterated level map p? : X[n] — X[m] is defined
to be the composite of

X[n] 25 X[n—1] = ... = X[m + 1] 2% X[m]

n+1

(so pitt = p,). Weset pr = idxp,.
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Definition 2.2. Such towers are simply objects in the functor category
SN of diagrams in S, indexed by the ordered set (N,>) of natural
numbers. Thus a morphism f:X — ) between two towers

E={.XnBXn-1]...}andY={..Y[n] B Y[n-1]—...}

is just a sequence (f[k] : X[k] — Y[k])2, of maps such that g¢xo
flk+1] = flk]opr for k>0.

The category SN has all limits and colimits, of course. However, we
are interested rather in the Pro category of towers of spaces:

Definition 2.3. Let /' C N¥ denote the set of sequences (n,)2, of
natural numbers, such that n, > max{n,_,s} for all s > 0. We
shall denote the elements of A by lower case Greek letters, with the
convention that p = (m,)%q, v = (ns)2y, and so on. The set N
is partially ordered by the relation y <v & my; < n, foralls >0
- in fact, (M,=X) is a lattice. A has a least element w = (s)2,
(though of course no maximal elements). Moreover, N is a monoid
under composition (where v = Aoy is defined by ns; =4,,), withw
as the unit and A, u < Ao p.

Definition 2.4. Given a tower X and a sequence v = (ny)2, € N,
we define the v-spaced tower over X, denoted X(v), to be:
"k+1 ny
e X[rg1] 2 X[ne] = ... = X[na] 22 Xno)-
In particular ¥(w) = X. Note that (—){v) is a functor on SN.

If p Xv inN, there is an SN-map p% : X(v) — X(u) defined
by pp : X[ng] — X[my] for all £>0. Sucha p will be called a
self-tower map (with respect to X). If u=w we write simply p” for
py, and call p” a basic self-tower map (for X). For p =v we have
p,, = id, and the composite of two self-tower maps (with respect to the
same X), when defined, is a self-tower map.

Definition 2.5. We define now define the category of towers, denoted
Tow, in which the self-tower maps have been inverted: the objects of
Tow are towers of spaces (as in §2.1) and its morphisms, called tower
maps, are defined for any X, 3 by:

(2.6) Homz,(%,9) = colimen Homgn(X(v),2)
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(compare [GV, §8.2.4]). Equivalently, one may define ro maps of towers
(cf. [EH, 2.1]) by:

HomTow(xa @) = herg COIim'nEN Homs*(X[n]’ Y['S])

(It is not hard to see this is equivalent to the above, since any Pro
map of towers from X to ) is represented by a sequence of maps f; :
X[ns] — Y[s] (s >0) in S,, which are compatible in the sense that for
each s there is an m, > ng,n,yy such that g¢;o0 fo4q opf:+1 = fs ope :
X[m,] — Y[s]. This defines an SN-map f: X(k) =9 for Kk € N
defined by ko = no and k41 = max{ms,, ks}. One readily verifies this
correspondence between the two definitions of tower maps is bijective.)

Proposition 2.7. The category Tow has all finite limits and colimits.

Proof. This is well known; for completeness we recapitulate the proof:

To show that Tow has all finite limits, it suffices to show that Tow
has a terminal object and pullbacks (cf. [Bx1, Prop. 2.8.2]). The tower
* (with *[n] consisting of a single point for each n) is clearly a terminal
object in Zow. In order to define the pullback in Tow of two tower
maps:

(2.8) xh3d g,

choose any two SN-maps X L3 & %) representing (2.8); their

pullback B (in SY) is defined levelwise (i.e., P[n] is the pullback of
X|n] fted, Z[n] L Y([n] in S,), and similarly for the structure maps
i:PB—>X and j: P — P such that foi=goj. The level maps of
B are induced from those of X and ) by the naturality of the pullback
in S,.

Now given a basic self-tower map p” : X(v) — X, denote by P the
pullback (in SY) of X(v) LIRS SUN )

Again by the naturality of the pullback we can fit suitable spacings
of B and P together as follows:
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oo
... Plni] — P[ni]— P[k] — PIk]

~Nk
Py

implying that P and B are isomorphic; this shows that the pullback
B of (2.8) in Tow is well-defined by taking the pullback B in SN of
any representatives of §, d.

Next, given tower maps h:20 — X and €:20 — 9 with ok = foh
(in Tow), there are SN-representatives h:20 — X and €:20 — 9
with got=foh in SN (for suitable spacings of X, 2) and 20). Thus
by the universal property in S, the SN-maps § and € factor through
the unique “universal” SN-map [:20 — .

Conversely, given a tower map le H 0m 15, (20,P) such that
(2.9) iol=h and jol=¢ in Tow ,

one can find SN-representatives for the maps in question such that

iol=h and jol=¢ in SN, so that the SN-map [:20 — P is
the “universal map” as above. Thus it suffices to check that any two
universal SN-maps [: 20 — P and I': W — P(v) represent the
same tower map; but this follows readily from the uniqueness of the
universal maps in SN.

To show that Zow has all finite colimits, we show analogously that
it has an initial object and pushouts, again defined levelwise. O

Remark 2.10. The category 7ow may be embedded in a category with
all colimits (and all filtered limits) — namely, the category Pro-S, of
all pro-simplicial sets (see [AM, A.4.3 & A.4.4] or [GV, Props. 8.9.1 &
8.9.5]). The problem is that the limit or colimit of an infinite diagram
of towers will not itself be a tower, and is rather difficult to construct
explicitly.

Note that the naive (levelwise) construction of colimitsin Tow can
fail in two different ways:

(a) If {Xa}aca is some (infinite) collection of towers, and we define
atower 9 by Y[n] = [],c4 Xa[n], then Q) is “too small” - in general,
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there will be maps f. : Xo — 3 in Tow such that for any choice of
representatives f, : X,(v®) — 3 in SN, the set of numbers {ng}aea
is unbounded. Thus there will be no way to define a SN- representatlve
of the putative corresponding map f ) — 3 which restricts to fa on
Xa.

(b)  On the other hand, let (A;)2, be some sequence of non-
trivial spaces, and define towers (%;)2, by letting X;[n] = A;, and
(pi)n = Ida,, if n <, and X;[n] = * otherwise. If again we set
Y(n] = [[i2, Xi[n], we see 9 is now “too big”:

For a given tower 3, any collection of maps (f; : Ai — Z[:])2,
yields a unique SN-map f:9) — 3 in the obvious way, and two such
choices (fi)2, and (¢:)2, vield equivalent tower maps (f =g in
Tow) if and only if there is an N such that f; =¢; for 1 > N (at
least for suitable 3 - e.g., if 3 is constant) . Thus there are many
such tower maps f 2 — 3; but the corresponding maps fi:Xi—>3
are all trivial in Zow. (In some sense the maps f so defined may be
thought of as “phantom tower maps” - compare [GM]).

3. GOOD SUBCATEGORIES

We now describe those properties of the category Zow which are
needed to construct the extension. Since this construction is also needed
for [Bc], we describe it in greater generality than required for our im-
mediate purposes.

Definition 3.1. Let C be a pointed category, and F a small full sub-
category. For each A € C, let F4 denote the subcategory of the over
category C/A (cf. [Bx1, §1.2.7]), whose objects are monomorphisms
i:F < A with F € F and whose morphisms are (necessarily monic)
maps j : F — F' such that 7o = 4. Similarly, let F4 denote
the subcategory of the under category A/C, whose objects are epimor-
phisms ¢: A—-F with F € F, and whose morphisms are (epic) maps
p:F — F' with pog=¢.
We say that F is a good subcategory of C if:
(a) F is closed under taking subobjects and quotient objects.
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(b) F is finite-complete and -cocomplete, and the inclusion [: F — C
is Ro-(co)continuous (i.e., any finite diagram (Fy)aea (JA| < o0) over
F has a limit L and a colimit C in C, with L,C € F).

(c) For any F € F the category F' is co-artinian - that is, given
a sequence of quotient maps

F 25 Go—2» G125 ...Gno1 -2 G, 25 ...,
there is an N such that ¢, is an isomorphism for n > N (compare
[GV, §8.12.6]).
(d) Any morphism f: F — C, with F€F and C €C, has an
epimorphic image Im(f) (see [Bx1, Def. 4.4.4]) - which is necessarily
in Fo.

The inclusions ig : G — C thus induce a natural bijection:

(3.2) q)F,C : COlimGe}'C Hom_r(F, G) i Homc(F, C)

Definition 3.3. Let 7ow® denote the category of (essentially) strict
towers of simplicial sets (cf. [GV, §8.12.1]) - that is, the full subcategory
of Tow whose objects are towers X for which there is an N such that
all level maps p, : X[n + 1] — X[n| are epimorphisms for n > N.
(We think of these as being “good” towers, because they avoid the
pathologies mentioned in 2.10(b)). Note that 7Tow® has all finite
colimits and products, but not all pullbacks.

Let F = F7¥ denote the full subcategory of Tow** whose objects
are towers X such that each X[n] is a finite simplicial set (§1.1),
and there is an N such that p, is an isomorphism for n > N. We
denote by Sp(X) the finite simplicial set limy X[k] (which is naturally
isomorphic to X[n] for n > N).

Proposition 3.4. F = F7% is a good subcategory of Tow®.

Proof. (1) Given 2 € F, let f : X — % be a monomorphism in
Tow®, with a representative f: X(v) — ). For simplicity of notation
let X = X(v). Nowlet 3 ={...Z[n] 2 Z[n—1] — ...} be the
(levelwise) pullback (in SY) of
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with by,bh2 : 3 = X the two projections.

Since folh; =fobh, and fis a monomorphism in Tow, there is a
v € N such that h;os” =hy08”:3(v) - X in SN

Now let (zo,z1) € Z[k]; C X[k]; x X[k]: be a pair of k-th level
t-simplices of X. Since the level maps p, : X[n+1] — X[n] of
X are epimorphisms, there are ¢-simplices Zo,Z; € X[ni]: such that
pE(z) =z (1=0,1).

Thus qp*(f(30) = f(o*(50) = f(wo) = fer) = f(*(a1)) =
¢:*(f(z1)), and since 9 € F, each level map ¢, of 9 is monic, and so
(f(Z0)) = (f(21)), - i.e., (Z0,21) € Z[nss, with sp*(Zo,21) € Z[ni]e =
(zo,21). But then zo = z;, since athfrakv, os* = athfrakv,os”.
Thus § is levelwise monic.

But this implies that each ¢, o f[n + 1] = f[r] o p, is monic, so p,
is, too, and since PP € F we see X € F, too.

(2) If f:% > 9 is any epimorphism in Tow®, we shall show
more generally that f may be represented by a levelwise epimorphism:
without loss of generality, f has an SN-representative §:X — 9); by
factoring f via its (levelwise) image, Im(f), we may assume that f is
levelwise monic. Now set 3 =) /X to be the (levelwise) pushout (in
SN) of

«— %Ly
with two SN-maps: g:2)-—»X% the quotient map, and * =h: P—»%
the trivial map. Clearly gof = * = holh (in SY), sothereisa v € N
such that gog” =hog”: Y(v) — 3, since f is an epimorphism in Tow.
But then gog” =%, so ¢” factors as fog” (for g :QY(v) — X),
with §” o f(v) = p¥, so that f,g” are inverese to each other in Tow,
and thus f is an isomorphism. As before we conclude that if X € F

then also 9 € F.

(3) Given a finite diagram over F, its limit and colimit in Tow may
be defined levelwise by Proposition 2.7, so are in F.

(4) Since epimorphisms in Zow® are actually levelwise surjections,
the category F? is equivalent to a finite category for any ) € F -
so in particular it is co-artinian.

(5) Given §: %X — 2 in Tow®, with X € F, one can define

Im(f) = 3 to be the levelwise image tower for some SN-representative
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f:X(v) > of f. This is independent of the representative § chosen,
since given another representative f : X(u) — %), thereisa A > p,v
such that f'os) = fos}, and thus both maps have the same (levelwise)
image, because 3 is in F by (2), and thus the level maps s, of 3 are
epimorphic. We write i:3 — ) for the inclusion, with f: ¥—3
such that f= iof.

Now if ] 0 — ) is another rnonomorphlsrn in Tow*®, equipped with
a tower map @:X — 20 such that jog = f in Tow, we may assume
without loss of generality that g is represented by g : %( ) :— 20 with
jog=f=1iof, and moreover by factoring g itself through its image
we may assume g is levelwise epimorphic, so 20 € F by (2), being a
quotient of X.

Finally, factoring our chosen SN-representativej:20 — %) through
Im(j) (which is in F, by (2)), we find that the SN-map 20— Im(j)
is an isomorphism, as in (a); but since Im(j) — 2 1is a levelwise
monomorphism, by the universal property of Im in S, (and thus in
SN) there is a (levelwise) monomorphism €:3 — 20 through which g
and i factor, showing that f=iof is indeed initial in Zow** among
the factorizations § =jo§ of f with j monic. O

3.5. good generating subcategories. We shall in fact be interested
in good subcategories JF C C which generate C (cf. [Bx1, Def. 4.5.1]
or [Me, V, §7]) - that is, such that for any object C € C, {f: F —
C}s.r—c,rer is an epimorphic family ([GV, §10.3]).

Note that because of 3.1(d) and (3.2), this is equivalent to requiring
that, for all C,D € C, there be a canonical natural inclusion of sets:

(3.6) Jo,p : Home(C, D) — F!él}l colimger, Homz(F,Q),
C

induced by the restrictions f|r for any f:C — D and the corre-
spondences @z, of (3.2).

Ezample 3.7. (i) The category of pointed sets is generated by the good
subcategory of finite pointed sets.

(i1) The category S, of pointed simplicial sets is generated by the
good subcategory S of finite pointed simplicial sets (§1.1).

(iii) The category of torsion groups is generated by the good sub-
category of finite groups.
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(iv) The category .AbGp is generated by the good subcategory
of finitely generated abelian groups, and more generally R-Mod is
generated by the good subcategory of f.g. R-modules for any noetherian
ring R.

In these cases the natural inclusion Jep of (3.6) is actnally bijective.

Proposition 3.8. The category Tow*™ is generated by the subcategory
]."Tow'

Proof. Let §# § : X —> 2 be two different tower maps, with
X € Tow®t; without loss of generality we may assume they have SN-
representatives f,g: X(v) — 2) respectively. By definition 2.5, there
isa k >0 such that for all n > k we have f[n]op} # g[n]o pf,
so in particular for each n > k there is a t-simplex z, € X[n]; (¢
independent of n) such that f[n](z,) # g[r](z,). Since X € Tow®,
the level maps p, of X are surjective, and we may evidently assume
Pn(Tnt1) =z, forall n> N.

To each x, € X[n]; there corresponds a map ¢, : Aft] = X[n];,
and let Z[n] € S, denote the simplicial set Im(¢;,). Then 3 =
{...Z[n) = Z[n — 1] — ...} is in fact a sub-tower of X, with s, =
Pnlznt1), and because each Z[n] is a quotient of both Alt] and
Z[n + 1], for sufficiently large n the maps s, must be isomorphisms
(since Al[t] has only finitely many non-isomorphic quotients), so that
3 € Fx.

Clearly f|3 # g|3, and both have images in F by Definition 3.1(d)
and Proposition 3.4 — which proves Jxg is indeed one-to-one. O

It may be useful to think of the finite subtowers 3 — X (3 € F) as
the analogue of the stable cells of a CW-spectrum - compare [A, III,

§3].

Remark 3.9. Note that in general our category C will not be locally
generated by the subcategory F, in the sense of [GU, §§7,9], because
C need not be cocomplete - and we are interested precisely in such
cases, because only then will the cocompletion of C be of interest. C
need not even be Ro-accessible in the sense of [Bx2, Def. 5.3.1], because
we do not assume that F¢ has all colimits for arbitrary C € C.
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4. NETS AND COCOMPLETION

When C is generated by a good subcategory F, it embeds in the
category Ind®®-F of strict Ind-objects over F; by constructing all
colimits for Ind®*-F, (or rather, for an equivalent subcategory MNet),
we show that this can serve as a cocompletion for C.

In analogy with the completion of a metric space, the objects of Net
are themselves directed systems of suitable towers; one should think of
these as representing their colimit (which may not exist in Zow).

Definition 4.1. A strict Ind object over a category G is a diagram
X : I — G indexed by a small filtered partially ordered category I,
such that all bonding maps X(f): Xo — Xg (for f:a — f in A)
are monomorphisms (cf. [GV, Def. 8.12.1]). The full subcategory of
Ind — G whose objects are strict will be denoted by Ind*-G.

In order to simplify our constuctions, it is convenient to consider
the subcategory MNet C Ind®-G defined as follows (this is actually
equivalent to Ind®*-G, under suitable assumptions - see Fact 4.4
below):

Definition 4.2. If G is a pointed category, a net over G to be a strict
Ind-object (X4)aeca indexed by a lattice (A,=,V,A) with least ele-
ment 0, such Xy = %, and for each «,8 € A, the square:

Lang,o

Xa/\ﬁ Xa

ia/\ﬁ,ﬁ' 'ia,av,@

16,0V
X5 Xous

FIGURE 1

is both cartesian and cocartesian. (Since we required the bonding maps
of the net to be monic, this simply means that X,ag is the intersection
XoNXg of Xy and Xp and X,vg is their union X, U Xg (cf.
[Bx1, Def. 4.2.1 & Prop. 4.2.3))

Definition 4.3. If (X,)aeca and (Yz)sep are two nets over G, a
proper net map between them is a pair (¢, (fs)aca), where ¢: A — B
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is a order-preserving map with ¢(0) = 0, and for each o € A, f,:
Xo — Yy4(a) is a morphism in G. We require that for all a < 3 in A,
the diagram:

fo
on Y:b(a)

ia,ﬁl Jiqs(aww)

X == Yy(0)
commutes. If Yy = Im(f,) for all a« € A — in other words, each
fo isepic — wesay (¢,(fa)aca) is a minimal proper net map.

Two proper net maps <¢7 (fa)a€A>, (1/)7 (gﬂ)ﬁ€B> : (Xa)aEA - (Yb)5€B
are equivalent — written (@, (fa)aca) =~ (¥,(98)seB) — if for each
o € A thereis an p(a) such that ¢(a)V(a) X p(a) (in the lattice
B) and the diagram

fo
Xo " Yo(a)

gal liqs(a),p(a)
by(a),p(a) ..

¥(e) p(e)
commutes. Note that if G is a category with images, then each equiva-
lence class of proper net maps will have a unique minimal representative.

The category of nets over G, with equivalence classes of proper net
maps as morphisms, will be denoted Netg. We shall sometimes use
the notation f:(Xu)aca — (Ys)sep to denote a morphism of nets (i.e.,
an equivalence class of proper maps) - cf. [GV, §8.2.4-5].

Fact 4.4. If G has finite unions and intersections, every object in Ind®-
G is isomorphic to one in Netg.

Proof. By the dual of [MS, I, §1, Thm. 4] every (strict) Ind-object over
G is Ind-isomorphic to a (strict) Ind-object (X))rea indexed by a
directed ordered set (A,=) which is closure finite - i.e., the set of
predecessors of every A € A is finite. Now let A be the free lattice
generated by A, and set Xang = |, <, 35Xy, Wwith Xovp defined by
Figure 1. Since A is cofinal in A, we actually have an Ind-isomorphism

(X)\))\EA — (Xa)aEA- o
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This shows that we could assume, if we wish, that our nets are always
indexed by closure finite lattices (and this will in fact be the case for
F7Tow  of course, because in this case Fr will be a finite category for
each F € F), but this is not needed for our constructions.

Proposition 4.5. If F C C s good (so in particular has all finite
colimits), then Netr has all colimits.

Proof. Tt suffices to show MNetr has coproducts and pushouts (cf. [P,
§2.6, Prop. 1 & 2]):

I. Given any collection {(X!),ea,}ier of nets over F (indexed by
an arbitrary set ), let B = [];.; A; denote the coproduct lattice — so
that the elements of B are of the form 8= o, V...Va;, for a;, € A;

(and i; # 1, for j #k).
The coproduct net is then defined to be

n

(\/ X;,Jij )a.'l V...Voz,neB )

i=1

and the universal property for the coproduct evidently holds.
II. Given two net maps with minimal proper representatives:

(Xa)aeA <¢’, (fa)aeA) (Yﬁ)ﬁeB

(¥, (9o)aca)

(Z'v)veC

FIGURE 2

Foreach B € B and vy € C, let Agy={(a € A|d(a) 2 & p(a) =2
7} (asublattice of A), and for each o € A(g,), let W =Wg, denote
the pushout in:
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fa Lg(c).8
on Y;S(a) Yb
gal .
Zz/z(a)
2"/J(a) "Yl '
Z’Y .......................... - gv’y

Now for each 3V o in the coproduct lattice BII C let
Lonvw = |J J{(@B7) e AxBxClae Agy}
BoXB voXv

For any (a,B,7) € Lgyvy,, the bonding maps ¢s,5 and ig,s induce
a map

foVo Yﬁo o Z‘Yo - Wﬂ\/'y

Ui *
We let Uta,pq) = U, 0273 denote Im(q(a"\gy:)) C W4,

Note that, for fixed ﬂo VY € BIC, the objects Ugpy) form a
diagram in F indexed by the (possibly inﬁnite) filtered set Lg,v~,, and
set

(46) I/Vgo\/,y0 = COlim(a,ﬁry)GCﬁow,o U(;\gj,(;)

This limit exists in F - in fact, in F' = F'&1%0 by [Bxl, Prop.
2.16.3] — since F’ is co-artinian by Def. 3.1(c), and thus, being finite
cocomplete, has all filtered colimits. The natural map

LBov0,B1Vm ¢ Wﬂovﬁo - Wﬁlv’h

(induced by the fact that each q? a"’\gfy) factors through q(ﬁ;\/’:;)) is always
a monomorphism. Thus we have defined as net (Wpy,)svyeBuc) over
F. (Had we not required that our nets be strict Ind-objects, we could
have defined Wj,v,, more simply as the colimit of the objects Wg .

for o€ A(ﬁoﬁo))‘

We claim that this net is the pushout for the diagram in Figure 2:
given a commutative diagram in MNetr
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<¢7 (fa)a€A>

(Xa)aeA (Yﬁ)ﬁEB
<"/)’ (ga)a€A> (pa (hﬁ)ﬂ€B>
(Z)vec {0, (ky)reo) (Vo)ec

(where we may assume the proper representatives indicated make it
commute on the nose), we define a net map

<Ta (Eﬁv'v)ﬂv'veBH(z') : (Wﬁvv)ﬁvveBUC — (V;)EEE

as follows: set 7(8V<«y):= v p(B") V(). We then have
_ (a,1ﬁ’171)e[:ﬁV'1

lovy : Y I Z, — V,(5v,) induced by the appropriate bonding maps,
and if ¢(a) X B and ¥(a) =y, the diagram

o L4(a),8
Xa Yo(a) Y
=
7 _—DWQ 10 hﬂ
¥(a) BV ... gv
; Y
Zil/(a),’yj
'i (o] k‘,y ..“A
Zy Vﬂ'(ﬁvv)

commutes, so £gy, induces a map vyt WE, — Vi(svs), and thus
Lovy : Wavy — Vi(gvy). One may also verify that (7, (¢gv)sv+eBiic)
has the appropriate universal property. O

Proposition 4.7. If F C C is good (so in particular has all finite
limits), then Netz has all finite limits, too.

Proof. 1t suffices to show that MNetr has pullbacks (it clearly has a
terminal object — namely, the zero net indexed by the zero lattice).
Thus, given two net maps:

(Yﬂ)ﬁeB

<¢7 (fﬁ)ﬁGB)
(¥, (g4)vec)

(Zy)vec = (Xa)aea
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where we assume the indicated representatives are minimal, for each

B,v) € BxC, set W3,v) to be the pullback of
(

g fs
Zy = Xyyve(e) < Yp.

It is readily verified that this defines a pullback net with the required
universal property. O

Proposition 4.8. IfC is generated by a good subcategory F C C, then
there is an embedding of categories I : C — Netr, defined I(C) =
Fec = (F)Fefc'

(Note that F¢ is both the lattice indexing the net I(C) € Netr, and
the net itself)

Proof. Forany f:C — D inCand F € F¢ asubobject of C which is
in F, the image Im(f|r) isin Fp by Def. 3.1(e). Thus we may define a
proper net map (#;, (fr)rerc) : Fo — Fp by ¢;(F) = Im(f|r) € Fp
and fr= flp: F — Im(f|r) C D, for any F € Fc. This defines I
on morphisms. Definition 3.1(e) also implies that I : Hom¢(C, D) —
Hom et (Fe,Fp) is monic, since if f,g:C — D satisfy f|lr = g|F
for all F' € F¢, then f=g. a

We may summarize our results for the Pro category of towers of spaces
in the following

Theorem 4.9. The functor I:Tow — Netr, defined by I(X) = Fx
restricts to an embedding of Tow** in the cocomplete and finite complete
category of nets over F°¥. I preserves all finite limits, and the functor
I|1owst preserves all colimits.

Proof. If 20 is the pullback in Zow of

(4.10) 3L x & 3,

(which may not be in Tow®, even if (4.10) is), then (as in the proof of
Proposition 2.7) 20 may be constructed as the levelwise pullback of any
SN-representatives of (4.10), so W/[n] is a subobject of Y|[n] x Z[n]
(by the usual construction in S,). Thus any finite subtower of 20 is
just a finite subobject of 9) x 3, satisfying the appropriate (levelwise)
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compatibility condition - so that Fgy is isomorphic to the pullback
net for

F F:
Fy —5 Fx & Fs

constructed in the proof of Proposition 4.7.
Similarly, if 20 is the pushout in Zow*®* of

(4.11) 3% &3

then 20 may be may be constructed as the levelwise pushout of any
representatives of (4.11) and W/n] is thus a quotient of Y([n] Il Z[n].
Note that the structure maps of the pushout induce an epimorphism
h:PUO3—»20.

Now if 4l is a finite subobject of 20, then it is in fact a quotient of
some finite subobject W' IY"” — PII3, with V' € Fy and V" € F3,
as in the proof of Proposition 3.8. But since W[n] = (Y[n|IZ[n])/ ~,
where the equivalence relation ~ is generated by f[n|(z) ~ g[n](z),
we see that any finite subspace U[n] C W(n] (and thus {4 C 20) is
obtained form a finite subspace V'II V” C Y[n] Il Z[n] by a finite

colimit as in the proof of Proposition 4.5. This shows that Fyy is

F; Fa
isomorphic to the pushout net for F3 «— Fx —% Fj. d

Remark 4.12. The fact that Netr serves as a cocompletion of C, when
F is a good subcategory generating C, follows directly from more gen-
eral results:

By [J, VI, Thms. 1.6 & 1.8] we know that Ind-C is the cocompletion
of C (assuming C itself is finite-cocomplete), and it is easy to see that C
embeds in Ind-F (as in the proof of Proposition 4.8), so that Ind-C
embeds cocontinuously in Ind-(Ind-F), which is equivalent to Ind-F
(see [GV, Cor. 8.9.8]). Because F is co-artinian (Def. 3.1(c)), Ind-F
is equivalent to Ind®-F (see [GV, §8.12.6]), which is equivalent in
turn to Netr by Fact 4.4 and Def. 3.1(b).

However, we believe that the explicit description fo the colimits in
Netr given above may be more useful than that obtained form un-
winding the above chain of equivalences.

The results relating specifically to towers of simplicial sets — Propo-
sitions 3.4 & 3.8 — may also be extended to other Pro categories of
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towers over categories C generated by a good subcategory F, such as
towers of sets (cf. §3.7).

Remark 4.13. The examplein 2.10(b) shows that the functor I : Tow —
Netx of the Theorem fails to be an embedding, since the tower %) de-
fined there has no non-trivial finite subobjects, and thus 1(Q) = Fyp =
*, even though there are non-trivial maps %) — 3 in Zow.

This is not a serious flaw, since one often chooses to work with the
“good” towers of Tow® in applications. In fact, there is a certain
advantage to this fact, from our point of view, since it yields a version of
the Pro category of towers from which we have eliminated the phantom
phenomena (as in the case of Tow®), but still have finite limits (and
have actually added infinite colimits).

Question 4.14. Although only colimits were needed for our application
in [BT], one can obviously ask the same question regarding the com-
pletion of Tow - that is, embedding the Pro category of spaces in
one where arbitrary limits (ideally: both limits and colimits) may be
constructed. While the categorical part of our construction could pre-
sumably be dualized, it is not clear that the category Zow, or any other
version of the Pro category of towers, will indeed satisfy the required
assumptions, since specific properties of Tow and S, were used in the
proof of Proposition 3.8 and Theorem 4.9.

Note however that for any finite-complete category C, the category
Ind-C has all limits, and the inclusion C «— Ind-C preserves all limits
which exist in C, by [J, VI, Prop. 1.7].
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