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COLIMITS FOR THE PRO-CATEGORY OF TOWERS
OF SIMPLICIAL SETS

by David BLANC

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES 

Volume XXXVII-4 (1996)

R6sum6: Nous construisons une certaine cat6gorie Net
des Ind-tours dans laquelle la Pro-cat6gorie des tours des
ensembles simpliciaux se plonge et qui permet la construc-
tion explicite de toutes les limites directes (pas seulement les
limites finies).

1. INTRODUCTION

The Pro category of towers of spaces (and of other categories) has
been studied in several contexts, and used for a variety of applications
in homotopy theory, shape theory, geometric topology, and algebraic
geometry - see for example [AM, BK, DF, EH, F, G, GV, H, HP, MS].
Our interest in it first arose, in [BT], in the study of vn-periodicity in
unstable homotopy theory (cf. [Bo, D, Md, MT]).
One problem in the usual version of the Pro category of towers is

that, while finite limits and colimits exist, and may be constructed
in a straightforward (levelwise) manner, the same does not hold for
infinite colimits; and these were needed for the application we had in
mind in [BT]. It is the purpose of the present note to improve on the
rather ad hoc solution to this difficulty presented in [BT, §3] (in terms
of of what were there called "virtual towers"), by enlarging the Pro
category of towers spaces in such a way as to allow a straightforward
construction of arbitrary colimits. One object of this is to enable us to
then provide a suitable framework for studying periodicity in unstable
homotopy theory in terms of a Quillen model category structure for our
version of the Pro category of towers (see [Bc]).
The construction we provide embeds (a suitable subcategory of) the

Pro category Tow of towers of simplicial sets in a certain category
Net of strict Ind-towers, in which we have explicit constructions for
all colimits, as well as finite limits. This category Afiet can thus be

thought of as a cocompletion of the Pro category of towers of spaces. We
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shall show in [Bc] how this construction can also provide a "homotopy
theory of finite simplicial sets" (compare [Q, II, 4.10, remark 1]); it may
be of use in other contexts, too.

There are other cocomplete categories in which Tow may be em-
bedded - for example, the category Pro-S* of all pro-simplicial sets
(cf. [AM, A.4.3 &#x26; A.4.4]), or the full category Ind-Tow of all induc-
tive systems of towers (cf. [J, VI, Thm. 1.6] - this is actually "the"
cocompletion of Tow, in an appropriate sense: see [J, VI, §1] or [TT].
One advantage of the approach described here is that one obtains a
smaller, and more mangeable, cocompletion, in this special case, and
the construction of the colimits may be made quite explicitly.
A side effect of our approach is the elimination of certain "phantom

phenomena" from the Pro category of towers (see §2.10(b) and §4.13
below).

1.1. conventions and notation. Let 4 denote the category of
pointed topological spaces, S the category of simplical sets, and S*
that of pointed simplicial sets (see [My]). We shall refer to the objects
of S* simply as spaces. A finite simplicial set X. is one with only
finitely many non-degenerate simplices (in all dimensions together).

(For technical convenience we prefer to work with simplicial sets,
rather than topological spaces. This makes no difference for our pur-
poses, since 4 and s* have equivalent homotopy theories, in the
sense of Quillen - see [Q, I, §4].)
The category (ordered set) of natural numbers will be denoted by N,

the category of abelian groups by Abgp, and the category of R-modules
(for a commutative ring R) by R-Mod.

For any category C we shall denote by Ind-C the category of Ind-
objects over C - that is, diagrams F : J -&#x3E; C, where J is a small
filtered category (cf. [GV, Defs. 2.7 &#x26; 8.2.1]) - with the appropriate
morphisms (see [GV, Def. 8.2.4]). Similarly, Pro-C denotes the cate-

gory of Pro-objects over C (i.e., diagrams F : J -&#x3E; C where J°p is
filtered - cf. [GV, Def. 8.10.1]).

For any functor F : I -&#x3E; C we denote the (inverse) limit of F simply
by limF or limlF, (rather than lim-), and the colimit (=direct
limit) by colimF. The (co)limit is finite if the category I is such
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(finitely many objects and morphisms between them). All limits and
colimits in this paper are assumed to be small - i.e., Ob(I) is a set.

A category C is called pointed if it has a zero object (i.e., one which
is both initial and terminal). This object will be denoted by *c (or
simply *).

1.2. organization. In section 2 we give some background on towers
of simplicial sets, their Pro category Tow, and the finite (co)limits
in Tow. In section 3 we define "good" subcategories" - a concept
which merely codifies those properties of Tow which are needed to
construct its cocompletion. In section 4 we show that the category Net,
consisting of certain strict Ind-objects over such a good subcategory of
C, serves as a cocompletion for C, in the sense of having all colimits (and
all finite limits).

1.3. acknowledgements. I am grateful to the referee for his com-
ments, and in particular for providing references to previous work, and
suggesting Remark 4.12. I would also like to thank Emmanuel Dror-

Farjoun, Bill Dwyer, Haynes Miller, and Brooke Shipley for several use-
ful conversations.

2. THE CATEGORY OF TOWERS

In order to fix notation, we recall the definition of the usual Pro
category of towers of spaces:

2.1. towers of spaces. The objects we shall be studying are towers in
S* - i.e., sequences of pointed spaces and maps

where the space X[n] is called the n-th level of X (n &#x3E; 0), and the

map pn is called the n-th level map (or bonding map) of X. We denote
such towers by Gothic letters: 3C, 3),....

For any n &#x3E; m, the iterated level map pm : X[n] -&#x3E; X[m] is defined
to be the composite of

(so Pn+1n = Pn). We set pn = idX[n].
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Definition 2.2. Such towers are simply objects in the functor category
SN* of diagrams in S* indexed by the ordered set (N, &#x3E;) of natural

numbers. Thus a morphism f : 3C --+ T between two towers

and

is just a sequence (f[k]: X[k] - Y[k])-o of maps such that qk o
f[k+1]=f[k]Opk for k &#x3E; 0.

The category SN* has all limits and colimits, of course. However, we
are interested rather in the Pro category of towers of spaces:

Definition 2.3. Let N C N" denote the set of sequences (ns)oos=0 of
natural numbers, such that ns &#x3E; rnax{ns-1, sl for all s &#x3E; 0. We
shall denote the elements of iV by lower case Greek letters, with the
convention that 03BC = (ms)oos=0, v= (ns)oos=0, and so on. The set N
is partially ordered by the relation 03BC v =&#x3E; ms  ns for all s &#x3E; 0
- in fact, (N, ) is a lattice. N has a least element w = (s)oos=0
(though of course no maximal elements). Moreover, N is a monoid
under composition (where v = A o tc is defined by ns = fms), with w
as the unit and A, p  A o p.
Definition 2.4. Given a tower .X and a sequence v = (nk)ook=0 E N,
we define the v-spaced tower over 3C, denoted X(v), to be:

In particular X(w) = X. Note that (-)(v) is a functor on Sf.
If 03BC  v in N, there is an SN*-map p" : X(v) -&#x3E; X(p) defined

by pnk M,k X[nk] -&#x3E; X[mk] for all k &#x3E; 0. Such a p" 11 will be called a

self-tower map (with respect to X). If p = cv we write simply p" for

pvu, and call p" a basic self-tower map (for X). For p = v we have

pvu = id, and the composite of two self-tower maps (with respect to the
same X), when defined, is a self-tower map.
Definition 2.5. We define now define the category of towers, denoted
Tow, in which the self-tower maps have been inverted: the objects of
Tow are towers of spaces (as in §2.1) and its morphisms, called tower
maps, are defined for any X, 3 by:
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(compare [GV, §8.2.4]). Equivalently, one may define ro maps of towers
(cf. [EH, 2.1]) by: 

(It is not hard to see this is equivalent to the above, since any Pro
map of towers from X to 3) is represented by a sequence of maps f, :
X[ns] -&#x3E; Y[s] (s &#x3E; 0) in S*, which are compatible in the sense that for
each s there is an ms &#x3E; ns, ns+1 such that qs o fs+1 opmsns+1 = f, opmsns:
X[ms] -&#x3E; Y[s]. This defines an SN*-map f: X(K) -&#x3E; D for KEN
defined by k0 = no and k,+, = max{ms, ks}. One readily verifies this
correspondence between the two definitions of tower maps is bijective.)

Proposition 2.7. The category Tow has all finite limits and colimits.

Proof. This is well known; for completeness we recapitulate the proof:
To show that Tow has all finite limits, it suffices to show that Tow

has a terminal object and pullbacks (cf. [Bx1, Prop. 2.8.2]). The tower
* (with *[n] consisting of a single point for each n) is clearly a terminal
object in Tow. In order to define the pullback in Tow of two tower

maps:

choose any two SN*-maps X f-&#x3E;3-D representing (2.8); their

pullback 93 (in Sf) is defined levelwise (i.e., P[n] is the pullback of

X[n] f[n])-&#x3E; Z [n] 4,[n] Y[n] in S*), and similarly for the structure maps
i : q3 -&#x3E; X and j : q3 -&#x3E; D such that f o i = g o j. The level maps of

q3 are induced from those of 3C and D by the naturality of the pullback
in S*.
Now given a basic self-tower map p" : X(v) -&#x3E; X, denote by lp the

pullback (in SN) of X(v) fopv-&#x3E;3-aD.
Again by the naturality of the pullback we can fit suitable spacings

of 93 and q3 together as follows:



263

implying that B and 13 are isomorphic; this shows that the pullback
B of (2.8) in Tow is well-defined by taking the pullback q3 in Sf of

any representatives of g.
Next, given tower maps M-&#x3E;X and t : 2!1 -&#x3E;D with g of = jo $

(in Tow), there are SN*-representatives h: 3D -&#x3E; X and t : 3D -&#x3E; D
with got=foh in SN* (for suitable spacings of 3C, fl) and 2U). Thus

by the universal property in S* the SN_maps 4 and t factor through
the unique "universal" Sf-map [: 3D -&#x3E; fl3.

Conversely, given a tower map l E HomTow (M, B) such that

and

one can find SN*-representatives for the maps in question such that
i 0 l = h and j 0 h = t in SN*, so that the SN*-map t:M -&#x3E; B is

the "universal map" as above. Thus it suffices to check that any two
universal S?-maps l : flll -&#x3E; B and I’ : M -&#x3E; fl3(v) represent the
same tower map; but this follows readily from the uniqueness of the
universal maps in SN*.
To show that Tow has all finite colimits, we show analogously that

it has an initial object and pushouts, again defined levelwise. D

Remark 2.10. The category Tow may be embedded in a category with
all colimits (and all filtered limits) - namely, the category Pro-S* of
all pro-simplicial sets (see [AM, A.4.3 &#x26; A.4.4] or [GV, Props. 8.9.1 &#x26;

8.9.5]). The problem is that the limit or colimit of an infinite diagram
of towers will not itself be a tower, and is rather difficult to construct
explicitly.

Note that the naive (levelwise) construction of colimits in Tow can

fail in two different ways:

(a) If f 3C,IIEA is some (infinite) collection of towers, and we define
a tower T by Y [n] = 1111,EA Xa[n], then N is "too small" - in general,
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there will be maps fa : Xa - 3 in Tow such that for any choice of

representatives fa : Xa(va) -&#x3E; 3 in SN*, the set of numbers {na0}aEA
is unbounded. Thus there will be no way to define a SN*-representative
of the putative corresponding map 3 which restricts to f a on
Xa. 

(b) On the other hand, let (Ai)ooi=0 be some sequence of non-
trivial spaces, and define towers (Xi)oo i=0 by letting Xi[n] = Ai, and

(pi)n = IdA,, if n  i, and Xi[n] = * otherwise. If again we set
Y[n] = ll’o Xi [n], we see T is now "too big" :

For a given tower 3, any collection of maps ( f i : Ai -&#x3E; Z[i])ooi=0
yields a unique SN*-map f : -&#x3E; 3 in the obvious way, and two such

choices (fi)ooi=0 and (gi)ooi=0 yield equivalent tower maps ( f = 0 in

Tow) if and only if there is an N such that fi = gi for i &#x3E; N (at
least for suitable 3 - e.g., if 3 is constant) . Thus there are many
such tower maps -&#x3E; 3; but the corresponding maps f i : X; - 3
are all trivial in Tow. (In some sense the maps f so defined may be
thought of as "phantom tower maps" - compare [GM]).

3. GOOD SUBCATEGORIES

We now describe those properties of the category Tow which are
needed to construct the extension. Since this construction is also needed
for [Bc], we describe it in greater generality than required for our im-
mediate purposes.

Definition 3.1. Let C be a pointed category, and  F a small full sub-
category. For each A E C, let FA denote the subcategory of the over
category C/A (cf. [Bxl, §1.2.7]), whose objects are monomorphisms
2 : F--+ A with F E  F and whose morphisms are (necessarily monic)
maps j : F --+ F’ such that i’ o j = i. Similarly, let FA denote
the subcategory of the under category AIC, whose objects are epimor-
phisms q : A--+ F with F E F, and whose morphisms are (epic) maps
p:F--+F’ with poq=q’.
We say that is a good subcategory of C if:

(a) F is closed under taking subobjects and quotient objects.
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(b) F is finite-complete and -cocomplete, and the inclusion I : F --+ C
is Ro- (co) continuous (i.e., any finite diagram (FaJOEA (IAI  oo) over
F has a limit L and a colimit C in C, with L, C E F).

(c) For any F E F the category FF is co-artinian - that is, given
a sequence of quotient maps

there is an N such that qn is an isomorphism for n &#x3E; N (compare
[GV, §8.12.6]).
(d) Any morphism f : F--+ C, with F e X and C E C, has an

epimorphic image Ivn( f) (see [Bxl, Def. 4.4.4]) - which is necessarily
in Fc.

The inclusions iG : G --+ C thus induce a natural bijection:

Definition 3.3. Let Towst denote the category of (essentially) strict
towers of simplicial sets (cf. [GV, §8.12.1]) - that is, the full subcategory
of Tow whose objects are towers X for which there is an N such that
all level maps pn : X[n + 1] --+ X[n] are epimorphisms for n &#x3E; N.
(We think of these as being "good" towers, because they avoid the
pathologies mentioned in 2.10(b)). Note that Towst has all finite
colimits and products, but not all pullbacks.

Lest 0 = pow denote the full subcategory of Towst whose objects
are towers X such that each X[n] is a finite simplicial set (§1.1),
and there is an N such that pn is an isomorphism for n &#x3E; N. We

denote by Sp(X) the finite simplicial set limk X[k] (which is naturally
isomorphic to X[n] for n &#x3E; N).

Proposition 3.4. F = pow is a good subcategory of Towst.

Proof. (1) Given n E F, let f : X --&#x3E; n be a monomorphism in
Towst, with a representative f : X(v) --+ n. For simplicity of notation
let X = X(v). Now let 3 = {... Z[n] sn--+ Z[n - 1] --+ ...} be the

(levelwise) pullback (in S*N) of
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with h1 , h2 : 3 --+ X the two projections.
Since f o h1 = f o f)2 and f is a monomorphism in Tow, there is a

v E N such that h1 o sv = h2 o sv in S*N.
Now let (xo, x1) E Z[k]t C X[k]t X X[k]t be a pair of k-th level

t-simplices of X. Since the level maps pn : X[n + 1] --+ X[n] of
X are epimorphisms, there are t-simplices xo, x1 E X[nk]t such that

pnk(xi) = Xi (z = 0,1).
Thus qnkk(f(xo)) = f(pnkk(xo)) = f(xo) = f(x1) = f(pnkk(x1)) =

qnkk ( f (x1)), and since 2) E F, each level map qn of 3) is monic, and so
(f(xo)) = (f(x1)), - i.e., (xo,x1) E Z[nk]t, with Snkk(xo,x1) E Z[nk]t =
(xo, x1). But then xo = x1, since ath frakv1 0 s1l = ath frakv2 0 sv.
Thus f is levelwise monic.

But this implies that each qn o f[n + 1] = f[n] o Pn is monic, so pn

is, too, and since 3) E F we see X E F, too.

(2) If f : X --&#x3E;  n is any epimorphism in Towst, we shall show

more generally that f may be represented by a levelwise epimorphism:
without loss of generality, f has an SN*-representative f : X --+n; by
factoring f via its (levelwise) image, Im(f), we may assume that f is
levelwise monic. Now set 3 = n/X to be the (levelwise) pushout (in
SN*) of

with two SN*-maps: g : !p )) 3C the quotient map, and * = h : !p ---)+ 3C
the trivial map. Clearly go f = * = hoh (in SN*), so there is a v E N
such that g o qv = h o q" : n(v) --+ 3, since f is an epimorphism in Tow.
But then g o q" = *, so q" factors as f o q" (for qv : n(v)--+ X),
with q" o j(v) = p", so that f, q" are inverese to each other in Tow,
and thus f is an isomorphism. As before we conclude that if X C :F
then also n E X.

(3) Given a finite diagram over F, its limit and colimit in Tow may
be defined levelwise by Proposition 2.7, so are in F.

(4) Since epimorphisms in Towst are actually levelwise surjections,
the category Fn is equivalent to a finite category for any e X -
so in particular it is co-artinian.

(5) Given f : 3E --+ n in Towst, with 3E E F, one can define

Im(f) = 3 to be the levelwise image tower for some SN*-representative
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f : X(v--+n of f. This is independent of the representative f chosen,
since given another representative f’ : X(u)--&#x3E; 3), there is a A &#x3E; u, v
such that f’ o s Au = f o sAv, and thus both maps have the same (levelwise)
image, because 3 is in F by (2), and thus the level maps sn of 3 are
epimorphic. We write i : 3--&#x3E;n for the inclusion, with f : X- 3
such that f = i o f.
Now if j : m --+ n is another monomorphism in Towst, equipped with

a tower map g : x--+ 0 such that j o g = f in Tow, we may assume
without loss of generality that g is represented by g : X(v) :--+ 2U with
jog = f = i 0 f, and moreover by factoring g itself through its image
we may assume g is levelwise epimorphic, so m E F by (2), being a
quotient of X.

Finally, factoring our chosen SN*-representative j : m --&#x3E; n through
Im(j) (which is in F, by (2)), we find that the SN*-map 2U-++lm(j)
is an isomorphism, as in (a); but since Im(j) --+ Q is a levelwise

monomorphism, by the universal property of Im in S* (and thus in
S*N) there is a (levelwise) monomorphism t : 3--&#x3E; 29 through which g
and i factor, showing that f = i o f is indeed initial in Towst among
the factorizations f = Jog of f with j monic. D

3.5. good generating subcategories. We shall in fact be interested
in good subcategories F C C which generate C (cf. [Bxl, Def. 4.5.1]
or [Me, V, §7]) - that is, such that for any object C E C, {f: F--+ 
C} f:F--+C,FEF is an epimorphic family ([GV, §10.3]).
Note that because of 3.1(d) and (3.2), this is equivalent to requiring

that, for all C, D E C, there be a canonical natural inclusion of sets:

induced by the restrictions flF for any f : C --+ D and the corre-

spondences OF-1,D of (3.2).

Example 3.7. (i) The category of pointed sets is generated by the good
subcategory of finite pointed sets.

(ii) The category S* of pointed simplicial sets is generated by the
good subcategory S*f of finite pointed simplicial sets (§1.1).

(iii) The category of torsion groups is generated by the good sub-
category of finite groups.
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(iv) The category Abgp is generated by the good subcategory
of finitely generated abelian groups,. and more generally R-Mod is

generated by the good subcategory of f.g. R-modules for any noetherian
ring R.

In these cases the natural inclusion JC,D of (3.6) is actually bijective.

Proposition 3.8. The category Towst is generated by the subcategory
FTow .

Proof. Let f i- g : X--&#x3E; Q be two different tower maps, with
X E Tow-"; without loss of generality we may assume they have Sf-
representatives f , g : X(v) --+Q respectively. By definition 2.5, there
is a k &#x3E; 0 such that for all n &#x3E; k we have f [n] o Pk i- g[n] o pn
so in particular for each n &#x3E; k there is a t-simplex xn E X(n]t (t
independent of n) such that f [n] (Xn) =/ g[n](xn). Since 3C E Towst,
the level maps Pn of X are surjective, and we may evidently assume
pn (xn+1 ) = xn for all n &#x3E; N.

To each zn C X[n]t t there corresponds a map Pxn : A[t] --+ X[n]t,
and let Z[n] E s* denote the simplicial set Im(c.pxn). Then 3 =
{... Z[n] sn--+ Z[n - 1] - ... } is in fact a sub-tower of X, with Sn =

pn l Z[n+1], and because each Z[n] is a quotient of both A[t] and

Z[n + 1], for sufficiently large n the maps sn must be isomorphisms
(since A[t] has only finitely many non-isomorphic quotients), so that
3 E Fx.

Clearly fl3 i- g13, and both have images in F by Definition 3.1(d)
and Proposition 3.4 - which proves Jx,f.D is indeed one-to-one. D

It may be useful to think of the finite subtowers 3 - X (3 E F) as

the analogue of the stable cells of a CW-spectrum - compare [A, III,
§3].

Remark 3.9. Note that in general our category C will not be locally
generated by the subcategory F, in the sense of [GU, §§7,9], because
C need not be cocomplete - and we are interested precisely in such
cases, because only then will the cocompletion of C be of interest. C
need not even be No-accessible in the sense of [Bx2, Def. 5.3.1], because
we do not assume that Fc has all colimits for arbitrary C E C.
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4. NETS AND COCOMPLETION

When C is generated by a good subcategory F, it embeds in the

category Indst-F of strict Ind-objects over 0; by constructing all
colimits for Indst-F, (or rather, for an equivalent subcategory Net),
we show that this can serve as a cocompletion for C.

In analogy with the completion of a metric space, the objects of Met
are themselves directed systems of suitable towers; one should think of
these as representing their colimit (which may not exist in Tow).
Definition 4.1. A strict Ind object over a category !g is a diagram
X : I--+ g indexed by a small filtered partially ordered category I,
such that all bonding maps X ( f ) : Xa--+ XB (for f : a - (3 in A)
are monomorphisms (cf. [GV, Def. 8.12.1]). The full subcategory of
Ind - 9 whose objects are strict will be denoted by Indst-g.

In order to simplify our constuctions, it is convenient to consider
the subcategory Net C Indst-g defined as follows (this is actually
equivalent to Ind"-9, under suitable assumptions - see Fact 4.4

below) :
Definition 4.2. If § is a pointed category, a net over 9 to be a strict
Ind-object (Xa)aEA indexed by a lattice (A, , V, A) with least ele-
ment 0, such Xo = *, and for each a, (3 E A, the square:

FIGURE 1

is both cartesian and cocartesian. (Since we required the bonding maps
of the net to be monic, this simply means that Xa^B is the intersection

Xa n Xp of Xa and XB and Xv,3 is their union Xa U Xp (cf.
[Bxl, Def. 4.2.1 &#x26; Prop. 4.2.3])
Definition 4.3. If (Xa )aEA and (Y(B)(BEB are two nets over Q, a
proper net map between them is a pair (0, (fa )aEA), where 0 : A --+ B
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is a order-preserving map with §(0) = 0, and for each a E A, /cy :
Xa - Yo(a) is a morphism in g. We require that for all a B in A,
the diagram:

commutes. If Yø(a) = lm(f,) for all a E A - in other words, each
fa is epic - we say (0, (f,)IEA) is a minimal proper net map.
Two proper net maps (0, (fa)aeA&#x3E; , (V, (gB)BeB&#x3E; : (Xa)aeA--+ (YB)BEB

are equivalent - written O,(fa)aEA&#x3E; = vl, (gB)BEB&#x3E; - if for each
a E A there is an p(a) such that 0(a) V vl(a) p(a) (in the lattice
B) and the diagram

commutes. Note that if g is a category with images, then each equiva-
lence class of proper net maps will have a unique minimal representative.
The category of nets over g, with equivalence classes of proper net

maps as morphisms, will be denoted Netg. We shall sometimes use
the notation f : (Xa)aEA --+ (YB)BEB to denote a morphism of nets (i.e.,
an equivalence class of proper maps) - cf. [GV, §8.2.4-5].

Fact 4.4. If 9 has finite unions and intersections, every object in Indst-
9 is isomorphic to one in Netg.

Proof. By the dual of [MS, I, §1, Thm. 4] every (strict) Ind-object over
g is Ind-isomorphic to a (strict) Ind-object (XA)AEA indexed by a
directed ordered set (A, ) which is closure finite - i.e., the set of
predecessors of every A E A is finite. Now let A be the free lattice

generated by A, and set Xa^B = UAa,B XA, with XavØ defined by
Figure 1. Since A is cofinal in A, we actually have an Ind-isomorphism
(XA)AEA --&#x3E; (Xa )aEA. a
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This shows that we could assume, if we wish, that our nets are always
indexed by closure finite lattices (and this will in fact be the case for
, of course, because in this case FF will be a finite category for
each F C F), but this is not needed for our constructions.

Proposition 4.5. If Fee is good (so in particular has all finite
colimits), then NetF has all colimits.

Proof. It suffices to show NetF has coproducts and pushouts (cf. [P,
§2.6, Prop. 1 &#x26; 2]):

I. Given any collection { (Xia )aEAi} iEI= of nets over (indexed by
an arbitrary set I), let B = UiEI Ai denote the coproduct lattice - so
that the elements of B are of the form (3 = ail V ... V ain for ai .7 E Ai)
(and i j =l ik for j # k).
The coproduct net is then defined to be

and the universal property for the coproduct evidently holds.
II. Given two net maps with minimal proper representatives:

FIGURE 2

For each (3 E Band, E C, let A(B,A)= {(a E A l O(a)  B &#x26; vl(a) 
71 (a sublattice of A), and for each a E A(B,A), let W" = WaBvA denote
the pushout in: 
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Now for each Bo V -/o in the coproduct lattice B II C let

For any (a, B, y) E LBo vY0, the bonding maps iBo,B and iBo,B induce

a map

We let U(a,B,y) = UBovYo(a,B,Y) denote Im(qBovYo(a,B,Y) ) C WaBvY.
Note that, for fixed /30 V qo e B II C, the objects U(a,/3,’Y) form a

diagram in JF indexed by the (possibly infinite) filtered set LBovYo, and
set

This limit exists in F - in fact, in F’ = F YBoUZYo, by [Bxl, Prop.
2.16.3] - since F’ is co-artinian by Def. 3.1 (c), and thus, being finite
cocomplete, has all filtered colimits. The natural map

(induced by the fact that each qBovYo(a,B,Y) factors through qB1vY1(a,B,Y)) is always
a monomorphism. Thus we have defined as net (WBvY)BvYEBUC) over

F. (Had we not required that our nets be strict Ind-objects, we could
have defined WBovYo more simply as the colimit of the objects WaBovYo 
for a E A(Bo,Yo ).
We claim that this net is the pushout for the diagram in Figure 2:

given a commutative diagram in NetF 
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(where we may assume the proper representatives indicated make it
commute on the nose), we define a net map

as follows: set 7((3 V "I) := V p(B’) V o(-y’). We then have

eBvY : YB II Zy --+ VT(BvY) induced by the appropriate bonding maps,
and if Ol&#x3E;( a) ::S (3 and Vl(a)  y, the diagram

commutes, so lBvy induces a map laBvY: Wa BvY --+ VT(Bvy), and thus

f(3vry : Wbvy --+ VT((3vry). One may also verify that T, (lBvry)BvyEBUC&#x3E;
has the appropriate universal property. D

Proposition 4.7. If :F c C is good (so in particular has all finite
limits), then NetF has all finite limits, too.

Proo, f. It suffices to show that NefF has pullbacks (it clearly has a
terminal object - namely, the zero net indexed by the zero lattice).
thus, given two net maps:
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where we assume the indicated representatives are minimal, for each
(B,y) E B x C, set W(B,Y) to be the pullback of

It is readily verified that this defines a pullback net with the required
universal property. D

Proposition 4.8. If G is generated by a good subcategory F C C, then
there is an embedding of categories I : C - Net;:, defined I(C)
Fe = (F)FEFC.

(Note that 0c is both the lattice indexing the net I(C) E Net;:, and
the net itself)

Proof. For any f : C --+ D in C and F E Xc a subobject of C which is
in F, the image Im( f lF) is in F D by Def. 3.1(e). Thus we may define a

proper net map (Of, (fF)FEFc&#x3E; : Fe - FD by Of (F) = "rn(f IF) E FD
and fF = flF : F - Im(fIF) C D, for any F E Fc. This defines I
on morphisms. Definition 3.1(e) also implies that I : Homc (C, D) --+
HomNetF(Fc, FD) is monic, since if f,g : C --&#x3E; D satisfy flF = 91F
for all F E 1Flc, then f = g. 0

We may summarize our results for the Pro category of towers of spaces
in the following

Theorem 4.9. The functor I : Tow --&#x3E; Net;:, defined by I(X) = Fx
restricts to an embedding of Towst in the cocomplete and finite complete
category of nets over pow. I preserves all finite limits, and the functor
IlTowst preserves all colimits.

Proof. If 2U is the pullback in Tow of

(which may not be in Towst, even if (4.10) is), then (as in the proof of
Proposition 2.7) 2U may be constructed as the levelwise pullback of any
SN*-representatives of (4.10), so W[n] is a subobject of Y[n] x Z[n]
(by the usual construction in S*). Thus any finite subtower of 2U is

just a finite subobject of 2) x 3, satisfying the appropriate (levelwise)
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compatibility condition -- so that Fm is isomorphic to the pullback
net for

constructed in the proof of Proposition 4.7.
Similarly, if 2U is the pushout in Towst of

then 2D may be may be constructed as the levelwise pushout of any
representatives of (4.11) and W[n] is thus a quotient of Y[n] II Z[n].
Note that the structure maps of the pushout induce an epimorphism
h:QII--+m.
Now if U is a finite subobject of 211, then it is in fact a quotient of

some finite subobject Q’IIQ" --+ QII3, with 2)’ E:F’1J and Q" E T3,
as in the proof of Proposition 3.8. But since W [n] =~ (Y [n] II Z [n]) / rv,
where the equivalence relation - is generated by f [n] (x) ~ g [n] (x),
we see that any finite subspace U[n] C W[n] (and thus U C m) is
obtained form a finite subspace V’ II V" C Y[n] II Z[n] by a finite
colimit as in the proof of Proposition 4.5. This shows that J’qn is

isomorphic to the pushout net for X3 f-- 7x --+ T3. 0

Remark 4.12. The fact that NetF serves as a cocompletion of C, when
.F is a good subcategory generating C, follows directly from more gen-
eral results:

By [J, VI, Thms. 1.6 &#x26; 1.8] we know that Ind-C is the cocompletion
of C (assuming C itself is finite-cocomplete), and it is easy to see that C
embeds in Ind-F (as in the proof of Proposition 4.8), so that Ind-C
embeds cocontinuously in Ind-(Ind-J’), which is equivalent to Ind-F
(see [GV, Cor. 8.9.8]). Because F is co-artinian (Def. 3.1(c)), Ind-J’
is equivalent to Ind"-.F (see [GV, §8.12.6]), which is equivalent in
turn to NetF by Fact 4.4 and Def. 3.1(b).

However, we believe that the explicit description fo the colimits in
Met, given above may be more useful than that obtained form un-
winding the above chain of equivalences.
The results relating specifically to towers of simplicial sets - Propo-

sitions 3.4 &#x26; 3.8 - may also be extended to other Pro categories of
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towers over categories C generated by a good subcategory F, such as
towers of sets (cf. §3.7).
Remark 4.13. The example in 2.1o(b) shows that the functor I : Tow -

NetF of the Theorem fails to be an embedding, since the tower Q de-
fined there has no non-trivial finite subobjects, and thus I(Q) = Fm =
*, even though there are non-trivial maps Q--+ in Tow.

This is not a serious flaw, since one often chooses to work with the
"good" towers of Towst in applications. In fact, there is a certain
advantage to this fact, from our point of view, since it yields a version of
the Pro category of towers from which we have eliminated the phantom
phenomena (as in the case of Towst ), but still have finite limits (and
have actually added infinite colimits).

Question 4.14. Although only colimits were needed for our application
in [BT], one can obviously ask the same question regarding the com-
pletion of Tow - that is, embedding the Pro category of spaces in
one where arbitrary limits (ideally: both limits and colimits) may be
constructed. While the categorical part of our construction could pre-
sumably be dualized, it is not clear that the category Tow, or any other
version of the Pro category of towers, will indeed satisfy the required
assumptions, since specific properties of Tow and S* were used in the
proof of Proposition 3.8 and Theorem 4.9.

Note however that for any finite-complete category C, the category
I nd-C has all limits, and the inclusion C --+ I nd-C preserves all limits
which exist in C, by [J, VI, Prop. 1.7].

REFERENCES

[A] J.F. Adams, Stable Homotopy and Generalised Homology, Chicago Lec.
Math., U. of Chicago Press, Chicago-London, 1974.

[AM] M. Artin &#x26; B. Mazur, Etale Homotopy, Springer-Verlag Lec. Notes Math.
100, Berlin-New York 1969.

[Bc] D. Blanc, "A model category for periodic homotopy", (in preparation).
[BT] D. Blanc &#x26; R.D. Thompson, "A suspension spectral sequence for vn-

periodic homotopy", Math. Zeit. 220 (1995) No. 1, pp. 11-35.
[Bx1] F. Borceux, Handbook of Categorical Algebra, 1: Basic Category Theory,

Encyc. Math. &#x26; its Appl. 50, Cambridge U. Press, Cambridge, 1994.
[Bx2] F. Borceux, Handbook of Categorical Algebra, 2: Categories and Struc-

tures, Encyc. Math. &#x26; its Appl. 51, Cambridge U. Press, Cambridge,
1994.



277

[Bo] A.K. Bousfield, "Localization and periodicity in unstable homotopy the-
ory", Jour. AMS 7 (1994) No. 4, pp. 831-873.

[BK] A.K. Bousfield &#x26; D.M. Kan, Homotopy limits, Completions, and Local-
izations, Springer-Verlag Lec. Notes Math. 304, Berlin-New York 1972.

[D] E. Dror Farjoun, "Homotopy Localization and v1-Periodic Spaces", in

Algebraic Topology - Homotopy and Group Cohomology, ed. J. Aguadé,
M. Castellet &#x26; F.R. Cohen, Springer-Verlag Lec. Notes Math. 304, Berlin-
New York 1992, pp. 104-114.

[DF] W.G. Dwyer &#x26; E.M. Friedlander, "Algebraic and étale K-theory", Trans.

AMS 292 (1985), pp. 247-280.
[EH] D.A. Edwards &#x26; H.M. Hastings, 010Cech and Steenrod Homotopy Theories,

Springer-Verlag Lec. Notes Math. 542, Berlin-New York 1976.
[F] E.M. Friedlander, Etale Homotopy Theory of Simplicial Schemes, Prince-

ton U. Press AnnMath. Studies 104, Princeton, 1982.
[GU] P. Gabriel &#x26; F. Ulmer, Lokal präsentierbare Kategorien, Springer-Verlag

Lec. Notes Math. 221, Berlin-New York 1971.

[GM] B. Gray &#x26; C.A. McGibbon, "Universal phantom maps", Topology, 32
(1993) No. 2, pp. 371-394.

[GV] A. Grothendieck &#x26; J.L. Verdier, "Prefaisceaux", in M. Artin, A.
Grothendieck &#x26; J.L. Verdier, eds., Théorie des Topos et Cohomologie
Etale des Schémas, Springer-Verlag Lec. Notes Math. 269, Berlin-New
York 1971, pp. 1-217.

[G] J.W. Grossman, "A homotopy theory of pro-spaces", Trans. AMS 201

(1975), pp. 161-176.
[H] L.J. Hernández, "Functorial and algebraic properties of Brown’s P func-

tor", Preprint 1994.
[HP] L.J. Hernández &#x26; T. Porter, "Categorical models of n-types for pro-

crossed complexes and Tn-spaces", In J. Aguadé, M. Castellet, and F.R.
Cohen, eds., Algebraic Topology - Homotopy and Group Cohomology,
Springer-Verlag Lec. Notes Math. 1509, Berlin-New York 1992, pp. 146-
185.

[J] P.T. Johnstone, Stone Spaces, Camb. Stud. Adv. Math. 3, Cambridge U.
Press, Cambridge, 1994.

[Me] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag
Grad. Texts Math. 5, Berlin-New York 1971.

[Md] M.E. Mahowald, "The Image of J in the EHP sequence", Ann. Math.,
116 (1982) No. 1, pp. 65-112.

[MT] M.E. Mahowald &#x26; R.D. Thompson, "The K-theory localization of an
unstable sphere", Topology 31 (1992) No. 1, pp. 133-141.

[MS] S. Marde0161i0107 &#x26; J. Segal, Shape Theory: The Inverse System Approach,
North-Holl. Math. Lib. 26, North-Holland, Amsterdam, 1982.

[My] J.P. May, Simplicial Objects in Algebraic Topology, U. of Chicago Press,
Chicago-London, 1967.



278

[P] B. Pareigis, Categories and Functors, Academic Press Pure &#x26; Appl. Math.
39, New York-London, 1970.

[Q] D.G. Quillen, Homotopical Algebra, Springer-Verlag Lec. Notes Math. 20,
Berlin-New York 1963.

[TT] W. Tholen &#x26; A. Tozzi, "Completions of categories and initial comple-
tions", Cah. Top. Géom. Diff. Cat. 30 (1989) No. 2, pp. 127-156.

UNIVERSITY OF HAIFA, 31905 HAIFA, ISRAEL

E-mail address: blanc@mathcs2. haifa. ac. il


