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HELLER’S AXIOMS FOR HOMOTOPY THEORY
by Jerome William HOFFMAN

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XXXJ II-3 (1996)

RESUME. Heller a defini une th6orie d’homotopie comme dtant une sorte
d’hyperfoncteur. Les axiomes qu’il a introduits reflètent certaines des propridtds
des limites directes et inverses d’homotopie dans le cas des ensembles

simpliciaux. Dans cet article on montre comment enrichir les axiomes usuels
relatifs à une catdgorie mod6le de Quillen pour obtenir des theories d’homotopie
dans son sens. On donne divers exemples.

1. INTRODUCTION

Recently, Alex Heller has given new formulation of homotopy theory
that puts emphasis on the functorial properties of the assignment

where C is an arbitrary small category and s is the category of "spaces"
ie., of simplicial sets, and where sc denotes the category of C - dia-
grams in s. This is a Quillen model category, with corresponding (ho-
motopy) category of fractions denoted II(C) = Ho(sC). Any functor
F : C - D induces

whose left and right adjoints are denoted LF and RF, and are known
as the left and right homotopy Kan extensions of F. For the special
case where D = 1 these are known as ho(co)lim and were studied by a
number of authors, among them Vogt [21], Edwards and Hastings [7]
and especially Bousfield and Kan [4]. Following ideas of D.W.Anderson
[1], Heller [11] has sought to isolate properties of these adjoints that
characterize "homotopy theory". Thus, for Heller, a homotopy theory
is an assignment (a "hyperfunctor")

with properties analogous to C - II (C) . These are codified in a small
list of axioms. Actually, there are right and left homotopy theories
depending on whether one is more concerned with RF or LF. Some
notable features of this approach:
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1. II itself is a (right and left) homotopy theory.
2. If T is a left (resp., right ) homotopy theory, then T is tensored

(resp. cotensored) over rI.
3. There is a general concept of (co)localization that includes many

known examples.
4. There is a theory of algebras.

The proof of 1) is nontrivial. The essential point is the construction
of the factorizations that are demanded in a Quillen model category,
and for that purpose, Heller has introduced an ingenious generaliza-
tion of the method by which Steenrod built the classifying space of a
topological group . Property 2 asserts roughly that there are external
pairings

which induce "derived functors" II x T 6-&#x3E; T . In this sense, the usual

homotopy theory of spaces is universal among homotopy theories. His
concept of localization is so general that it includes eg. not only the
arithmetical localizations at primes, but also the functors that truncate
homotopy from above or below. Finally, if H is an algebraic theory in
the sense of Lawvere [13], then there is a notion of homotopy H-algebra.
These generate a homotopy theory Hoalg(H, T). There is a beginning
to the theory of multialgebras, which links up via results of G. Segal
[18] to the theory of spectra.
The simplicity of the axioms is achieved in part by ignoring the

"spaces" that give rise to a homotopy theory (although in a weak sense,
the category T(l) generates T by the density theorem of [11]) . How-
ever, it seems desirable in view of the possible applications of this
theory to other domains of mathematics that one have a way of gen-
erating homotopy theories from interesting mathematical objects. In
other words, one should put the "spaces" back into the picture. This
brings us to the viewpoint put forth by Anderson [1]. In Bousfield and
Kan’s treatise the problem was posed to study homotopy direct and
inverse limits in general model categories. [4, p. 301]. In a sense, this
paper addresses that issue. Various authors have proposed axioms that
allow one to do homotopy in different contexts. Perhaps the simplest
one is that-of Baues [2], which is a variation of that of Brown [5]. How-
ever, counterexamples show that in themselves they are insufficient to
support a theory such as Anderson and Heller have envisaged. The
same is true of the more elaborate axioms of Quillen. The main point
is that these theories demand the existence of limits over arbitrary
small (but possibly infinite) categories whereas the usual axioms are
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silent about these infinite limits. Heller works exclusively with sim-
plicial sets and utilizes tacitly many properties peculiar to them. The
aim of this paper is to show that an extension of familiar axioms allows
for the construction of homotopy theories in the sense of Anderson and
Heller. The new axioms we give are labeled LCM*, RCM* , and there
are several variants. Inevitably, there is a large overlap with the first
third of Heller’s book. It is necessary to repeat many of the arguments
from [11] in order to see just exactly where the axioms are used. Also,
Heller’s presentation is often very brief. We present in detail a con-
struction of right homotopy theories, whereas Heller has presented the
details for the left homotopy structure associated to simplicial sets.
A word about the length of this article. The goal of this paper is to

link the ideas of Heller with other areas of mathematics by providing
actual examples of these theories. This paper is therefore intended for
the nonexpert as well. We have aimed at presenting complete and rig-
orous proofs of all our results. Unfortunately, many "facts" , including
assertions about so familiar a category as that of simplicial sets, have
attained the status of being well - known to experts, without there
being any published proofs of said facts. This author was forced to
reconstruct and/or rediscover some of these himself. Finally, the ques-
tion addressed here, that of understanding how the homotopy theories
of Heller arise, is not definitively answered. Clearly much remains to
be done about the very foundations of this subject. One possible ap-
plication of this theory that is not covered in this work is to that of
sheaves. This is especially important in Algebraic Geometry, where
some of the biggest open questions (Hodge conjectures, Beilinson con-
jectures) ultimately tie into the methods of abstract homotopy theory.
A recent work dealing with the homotopy theory of sheaves has been
published by Crans [6].
We would like to express thanks to Alex Heller for advice on these

questions. Thanks are also due to D. W. Anderson for some commu-
nications on his contributions to axiomatic homotopy theory. Some of
the diagrams in this paper were set up using Michael Barr’s 7gXutility.

Note. After this paper was written, A. K. Bousfield sent me a copy
of an unpublished manuscript of C. L. Reedy, dating from the late
1970’s, in which some of my results (Propositions 3.4 and 3.5) had
been proved (in more general form - the special axioms Path and Cyl
are not necessary). This means that our axioms LCM3c, RCM3f,
LCMS, and RCM5 are theorems in every closed model category. In
view of the importance of this, we present Reedy’s theorems in an
appendix to this work. Our proof of his proposition 7.4 is somewhat
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different from that given in [17]. Also, we have retained our proof of
3.4 because a slight modification of it gives a second proof of 7.5. We
have kept these axioms because their use clarifies the logic of the main
constructions. Special thanks are due to Bousfield for bringing this to
my attention.

Notation. These are all standard except that we use * J to denote
Lanj and J* to denote Ranj.
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2. MODEL STRUCTURES ON MC

2.1. In any category C we say that two morphisms u : A - &#x3E; X and

p : E-&#x3E; B are transverse and we write u l-l--- p, if given any map
( f , g) : u - p, there exists an arrow h : X - E, such that p o h = g
and h - u = f . In other words, the slanted arrow exists in the diagram:

We call such an h, if it exists, a lifting of (f,g). If A and B are
classes of arrows in C the symbol ,Al-l-- Ci has the obviois meaning.
We define 

Lemma 2.1. 1. Both A l-l- and l-l-- 13 are closed under com-
position and retraction, and contain all isomorphisms.

2. A I I is closed under base - change and products.2. A l-l-- is closed under base change and products. 
3. l-l-- is closed under cobase - change and coproducts.

Proof. These are easy exercises. D

Lemma 2.2. 1. Let

be a ladder, and assume that for all n, 
(a) Pn E A i i
(b) The canonical map sn : Xn - Yn x Xn-1 is in A l-l-

Yn - 1

Then p := lim pn : X = lim Xn - Y = lim Yn is in A 1 i

2 . Le t
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be a ladder, and assume that for all n
(a) un E l-l-B.
(b) The canonical map tn : Yn-1 V Xn - Xn is in 1 1 L3.

Xn-I
Then u := colim Un : X = colim Xn - Y = colim Yn is in
l-l--B. 

Proof. We prove (a) only since (b) is dual. Let §n: X -&#x3E; Xn and
T/n : Y -&#x3E;Yn be the canonical projections. Let

be given with u E A l-l-- and with h to be constructed. This gives
rise to a family

where In:= Çn 0 f , gn : = nn o g We will inductively construct a
family of liftings hn that are compatible as n varies. ho exists because
po E A l-l--. . Suppose that ho, ..., hN have been found so that each
hil is a lifting of (03BC, p03BC) and such that xJ.lohJ.l = hu-1 for all 1  03BC  N.
Then consider

Since PN 0 we get a unique arrow

with projections prl But then hN+1
exists as a lifting in
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because by hypothesis sN+1 E Al-l-- and one readily checks the
commutativity of the square. The equations sN+1 o hN+l = kN and
prl o sN+1 = PN+1 show that PN+1 o hN+1 = gN+1. That, together
with hN+1 0 U = fN+1 shows that hN+1l is a lifting of (u, pN+1 ). Also,
pr2 o SN+1 = xN+1 gives xN+1 o hN+1 = hN showing that hN+1 is
compatible with the previous h. s
Thus we have built a map from B to the projective system of the

X’s. We get therefore a unique map B -&#x3E; lim Xn with gn o h = hn .
h is a lifting of (u, p) because both sides in each of the equations to be
checked, p o h = g, h o u = f verify the correct universal mapping
property for maps to limits, ie. qn o (p o h) =nn o g, Çn o (h o 2L) =
in o f 0

Corollary 2.3. 1. In a tower

if each zn E A 1 1 then the projections

are all in A -l-l-- .
2. In a tower 

if each xn E l-l--B then the injections tn : Xn-&#x3E; X := colim Xn
are all in l-l--B.

Proof. We do the first one. Without loss of generality, we consider §0.
Define the constant pro jective system Yn := Xo, Yn := id = po.
Then Pn = Xl 0 X2 0 ... 0 Xn which is in A 

l-l-- because of lemma

(2.1.1) . The products Yn x Xn-l trivially exist and are = Xn-l.
Yn - 

The map Sn = xn which is in A l-l-- by hypothesis. Therefore,
lemma(2.2.1 ) applies. The coi-responding p is ço 0
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Remark. There is an obvious generalization of the above with N
replaced with any well-ordered set (assuming Zorn’s lemma).
Lemma 2.4. Let F : C1 - C2 be a functor. Let ,Aa, Bi be classes of
morphisms in Ci for i = 1, 2.

1. Suppose that G is left-adjoint to F, and that F preserves B, ie.

Then G preserves l-l--B, ie

2. Suppose that G is right-adjoint to F, and that F preserves A, ie.

Then G preserves A l-l-- , ie

Proof. As a) is dual, we do b). Let (p : X-&#x3E; Y) l-l-- A2. Consider
a diagram

By adjointness this gives a diagram

where #, b are Grothendieck’s notation for adjoints. Since
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a lifting k exists in the above diagram, and we define h := k5 to get
a lifting in the previous diagram.

D

2.2. Let M be a functorial closed Quillen model category. Recall that
this means that there are three distinguished classes of morphisms in
M:

9 : the weak equivalences ~-&#x3E;

Cof : the cofibrations Y

Fib : the fibrations ---»

These are subject to the axioms

CM1 Finite limits and colimits exist in M

CM2 If f and g are maps such that g - f is defined,
then if any two of f , g, g o f is in E, then so is the third.

CM3 9, Cof, and Fib are closed under retraction.

CM4 Cof- Fib n E, and cof n S- Fib

CM5 Any map f : X - Y admits two functorial factorizations:

(left)X -&#x3E; L’f Lf -&#x3E; L"f Y with L’ f E Cof n E 
(right) X -&#x3E; R’ f R f % Y with R’ f E Cof, R" f E Fib

By the functorality of the factorizations, we mean that R and L are
functors

Concretely this means, eg. that given a commutative square
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there exists c : L f -&#x3E; Zg such that

commutes.

The elements of Cof ng (resp. Fib n e) are called acyclic cofibra-
tions (resp. acyclic fibrations).

Proposition 2.5.

2. (a) Both Fib and Fib n E are closed under composition, limits,
and contain all isorrcorphisms.

(b) Both Cof and Cof nE are closed under composition, colimits,
and contain all isomorphisms.

Proof. See [15, 16] 0

In fact, 1) =&#x3E; 2) above because of lemma 2.l. From the same lemma
we have

Proposition 2.6.
1. In ladder diagram such as in lemma 2.1.1 in which each pn E Fib

(resp. Fib n £’), and for which the Sn E Fib(resp.Fib n E),
we liave lim Pn E Fib (resp. Fib n s). In particular, in a

tower as in corollary 2.3.1 mitla Xn E Fib (resp.Fib n £), the

projections Çn E Fib (resp. Fib n -E).
2. In ladder diagram such as in lemma 2.2.2 in which each Un E Cof

(resp. Cof n £’), and for which the tn E Cof (resp. Cof n E), we
have
colim un E Cof (resp. Cof n E). In particular, in a tower as
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in corollary 2.3.2 witla xn E Cof (resp. Cof n .6), the injections
tn E Cof (resp.Cof n 6’).

Let 0 , e denote respectively the initial and final object of the cat-
egory Nl, which exist by CM1. An object X of M is called fibrant
(resp. cofibrant) if the unique arrow X -&#x3E; e (resp. O -&#x3E; X) is a
fibration (a cofibration). We let Me (resp.M f, resp.Mcf) denote the
full subcategory of cofibrant (resp. fibrant, resp. bifibrant = simulta-
neously fibrant and cofibrant) objects. In any model category, equiv-
alence relations are introduced into Me and M f called right and left
homotopy respectively. These relations induce the same equivalence on
the common subcategory Mcf, where it is simply called homotopy. We
let ’TrT Me, rr1 Mf, ’TrMef denote the corresponding quotient categories,
whose morphisms are the respective homotopy equivalence classes. Let
Ho(.M) denote the category of fractions obtained from M by inverting
the weak equivalences. Then

Theorem 2.7. 1. Ho(M) exists. The canonical functor

induces equivalences

where Yc has a fully faithful right adjoint, and hence has a cal-
culus of left fractions, and 77f has a fully faithful left adjoint, and
hence has a calculus of right fractions.

2. If A is cofibrant and B is fibrant, then

(When A is cofibrant and B is fibrant, left and right homotopy
coincide

3. Y(f) is an isomorphisms ==&#x3E; f E £

Proof. See [15, 16] 0

Let us remark that many of the familiar model categories, simplicial
sets, topological spaces, chain complexes bounded above or below, dif-
ferential graded algebras, etc. admit structures of functorial Quillen
model categories.
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2.3. Let C be a small category and M be a functorial closed model
category. We are going to associate to the category Mc of functors
C -&#x3E; .M two functorial closed model structures referred to as the left
and right structures. Each of these will require supplementary axioms
which will be given below.

Definition 2.1. Let f : X -&#x3E; Y be a morphism in Mc. We say
that

1. f is a weak equivalence if f, is a weak equivalence for all c E Co.
Notation: f E £c

2. f is a weak cofibration if fc is a cofibration for all c E Co.
Notation: f E Cofc

3. f is a weak fibration if fc is a fibration for all c E Co.
Notation: f E FibCw.

4. We then define the strong cofibrations, strong fibrations by the
equations

5. We define the left model structure on MC as (EC, CofC , FibCw )
and the right model structure on MC as (EC, Cofw, FibCs ).

Notice that if C is a discrete category then CofCw = CofCs and
FibCw = FibCs because of 2.5.
Lemma 2.8. 1. In the left structure on MC, CM1, CM2, CM3,

and half of CM4, namely Cof l-l-- Fib n E , holds.
2. In the right structure on MC, CM1,CM2, CM3, and half of

CM4, namely Cof n E l-l-- Fib, holds.

Proof. Recall that if (co) limits indexed by a small category I with values
in any category M exist, then those I-(co)limits exist in any functor
category MC and are computed "pointwise" , ie.

Therefore, CM1 holds in MC since it holds in As. CM2 holds because
the condition to be a weak equivalence is a pointwise condition. For
the same reason, CM3 is true for Cof£and Fib£, and it is true for

Cofc and Fibf because of 2.1.1 and the definitions.The half of CM4
is immediate from those definitions. 0
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The nontrivial part in showing that we have closed model structures
defined this way is to build the functorial factorizations

L L and L R in the left case

RL and RR in the right case

and to show

Cof ne l-l-- Fib in the left case

Cof l-l-- Fib n e in the right case
Here, LR denotes the right factorization in the left structure, etc.

For this, additional axioms are required.

3. SUPPLEMENTARY AXIOMS

3.1. These are

L CM 1 a Arbitrary sums exist in M.
b If Ii : Xi -&#x3E;Yi is a family

of weak equivalences, with Xi, Y cofibrant,
then U f is a weak equivalence.

RCMIa Arbitrary products exist in M.
b If fi : Xi -&#x3E; Yi is a family

of weak equivalences, with Xz, Y fibrant,
then IT f is a weak equivalence.

LCM2 If X : N -&#x3E; M is a sequence of morphisms
and p : X -&#x3E; B is a colimit cone
and if each pi is an acyclic fibration then
colim p : colim X - B is an acyclic fibration.

LCM2c If X : N-&#x3E;M is a sequence of cofibrations
and p : X -&#x3E; B is a colimit cone
and if each pi is an acyclic fibration then
colim p : colim X-&#x3E; B is an acyclic fibration.

LCM2cc If X : N -&#x3E; M is a sequence of cofibrations
and p : X - B is a colimit cone
with each pi is an acyclic fibration and
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if B and the Xi are cofibrant, then
colim p : colim X - B is an acyclic fibration.

RCM2 If X : Nop - M is a sequence of morphisms
and u : A -&#x3E; X is a limit cone
and if each ui is an acyclic cofibration then
lim u : A -&#x3E; lim X is an acyclic cofibration.

RCM2f If X : Nop -&#x3E; M is a sequence of fibrations
and u : A -&#x3E; X is a limit cone
and if each ui is an acyclic cofibration then
lim u : A -&#x3E; lim X is an acyclic cofibration.

RCM2ff If X : NOP -3 M is a sequence of fibrations
and u : A -&#x3E; X is a limit cone
with each ui is an acyclic cofibration and
if A and the Xi are fibrant, then
lim u : A-&#x3E;3 lim X is an acyclic cofibration.

LCM3 Let X , Y : N-&#x3E; M be sequences of cofibrations
and f : X - Y a morphism
such that each fi is a weak equivalence.
Then, colim f is a weak equivalence.

LCM3c Let X, Y : N-&#x3E; M be sequences of cofibrations
with each Xi, Yi cofibrant and f : X - Y a morphism
such that each f is a weak equivalence.
Then, colim f is a weak equivalence.

RCM3 Let X, Y : Nop -&#x3E; M be sequences of fibrations
and f : X -&#x3E; Y a morphism
such that each fi is a weak equivalence.
Then, lim f is a weak equivalence.

RCM3f Let X, Y : N -&#x3E; M be sequences of fibrations
with each Xi, Y fibrant and f : X -&#x3E; Y a morphism
such that each fi is a weak equivalence.
Then, lim f is a weak equivalence.

LCM4 Let
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be a co-Cartesian square with u E Cof and f E S. Then g E £.

RCM4 Let

be a Cartesian square with p E Fib and fEE. Then g e S.

LCM5 In the diagram below, suppose that both squares
are co-Cartesian, the objects are cofibrant, and
all the horizontal arrows are cofibrations.
Then if a, b and c are weak equivalences, so is d.

RCM5 In the diagram below, suppose that both squares
are Cartesian, the objects are fibrant, and
all the horizontal arrows are fibrations.
Then if a, b and c are weak equivalences, so is d.
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3.2. Remarks.

1. CM1 &#x26; LCMIa - all colimits exist in M.
CM1 &#x26; RCMIa all limits exist in M.

2. LCM2 - LCM2c =&#x3E; LCM2cc.
RCM2 - RCM2f =&#x3E; RCM2ff.
LCM3 F LCM3c
RCM3 RCM3f.

3. LCM4 holds if all the objects in question are cofibrant.
RCM4 holds if all the objects in question are fibrant.
[2, I. Lemma(1.4), p. 7 and Prop. (2.6), p. 15]

Lemma 3.1.

1. The classes Fibc , Cofc , Fib;, Cofc, Fibc nEc , cofc n,6c are
closed under composition, retraction and contain all isomorphisms.

2. FibCw, Fibc , Fibc nec are closed under all limits.
3. Cofc , Cofc, Cofc nec are closed under all colimits.
4. Assume that RCMIA is satisfied in M. Then

(a)

(b) CofCs nec is closed under composition, retraction, colimits, and
contains all isorraorphisms.

5. Assume that LCMla is satisfied in M. Then
(a) 

(b) Fibc nEc is closed under composition, retraction, limits, and
contains all isomorphisms.
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Proof. Statements 1), 2), and 3) are trivial consequences of the defini-
tions and lemma 2.1. Part b) of 4) and 5) follow from the respective
part a), which implies eg.

So we prove 4a), 5a) being dual. Let (u : X - Y) be a strong
cofibration. We will show that u, l-l-- Fib n E, for all c E Co
which by proposition 2.5 shows that u is a weak cofibration. Let

be an acyclic fibration in M. We can identify an object c E Co with
a functor c : 1 -&#x3E; C and then Xc = c*(X) where

. The right adjoint to this c* := Ranc is computed as

Start with

with h to be constructed. The adjoint of this is

In view of part 1) of this lemma , the above expression for c* (p)
shows that c*(p) E Fibcnsc. Therefore an arrow exists in the
above diagram, and we set h - k#, which gives the desired lift.

0
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3.3. Let LCM3cI stand for the assertion LCM3c but with N re-

placed with any well-ordered set I. Dually for RCM3fI.

Proposition 3.2. We have the implications

Proof. We do the assertion on the right. Totally order the set of indices
I. We let

Define

We obtain in this way X , Y : lOp -&#x3E; M. Note that each X a, Ya
is a fibrant object, because fibrations are closed under limits by 2.5.
For the same reason, each Xa -&#x3E; Xb is a fibration whenever b  a,
because

Now one can prove by induction that each fa : Xa - Y a is a weak

equivalence: it is true for the smallest element 0 E I; suppose that it
has been shown for a E I. Consider the set

If T is empty, then and the theorem is proved. If not,

let a + 1 denote the smallest member of T. We will show that fa+1 is a
weak equivalence, completing the induction. But this results from the
lemma that follows. 0

Lemma 3.3. In a closed model category M, 
1. Let fi : Xi 4 Yi be weak equivalences among cofibrant objects,

i = 1, 2 . Then

is a weak equivalence.
2. Let fi : Xi -&#x3E; Y be weak equivalences among fibrant objects,

i = 1, 2 . Then

is a 2ueak equivalence.
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Proof. We do b). In the pull - back,

the horizontal arrows are fibrations and all the objects are fibrant. By
remark 3.2.3 above, we conclude that g, is a weak equivalence. The
same reasoning applied to

shows that 92 is a weak equivalence. But /1 x /2 = g2 o gi - 0

3.4. The supplementary axioms LCM3, LCM5, RCM3, RCM5
and their variants are of a less elementary nature that the others, and so
it is desirable to see if they can be deduced from more basic properties.
We will do this, but first let us observe that often, in examples, it is
possible to prove these axioms using more direct methods. See section
5. The main new thing to consider is to impose conditions on the
cylinder or path objects in M. Namely,

Cyl There is a functorial cylinder object A e AI
giving a functorial factorization of the codiagonal

with QA E Cof and 7rA E E. We assume

(1) If A -&#x3E;u B is in Cof n £ then

(2) The formation of Al commutes with colimits.

Path There is a functorial path object A -&#x3E; AI
giving a functorial factorization of the diagonal
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with 7rA E Fib and l1A E .6. We assume

(2) The formation of Al commutes with limits.

3.5. Remarks. One important case of this is when .M is a closed sim-
plicial model category. In that case, we can take for AI the external
product A X I with a generalized unit interval. Actually, in the argu-
ments that follow we only need I = A[l]. The axiom Cyl is satisfied

provided that A is cofibrant : that o-A is a weak equivalence is [15, II,
p.2.7] and that iA is a cofibration is [15, II, p. 2.3, SM7(b)]. The dual
assertion concerning the path axiom requires fibrant objects. In the

applications to follow, this will be suflicient. As to the preservation of
(co)limits, it follows immediately from the fact that AI (resp. AI) is a
left (resp. right) adjoint.

Proposition 3.4. 1. Assume that LCMIa and Cyl holds in Mc.
Then LCM3cI holds in ,M.

2. Assume that RCMla and Path holds in Mf. Then RCM3ff
holds in ,M.

Proof. We do the second one. We will suppose that I = N since the case
of an arbitrary well-ordered set is only notationally different (assuming
Zorn’s lemma). Let then f : X - Y be as in the statement of RCM3f.
The first step is to refine this to

where Z : NOP - M is a tower of fibrations. Each un is an acyclic
cofibration, and each pn is an acyclic fibration. Since we are assuming
that each Yn is fibrant, it follows that each Zn is fibrant as well. Also,
the canonical maps

is an acyclic fibration for every n &#x3E; 0. The construction of Z is by
induction. First factor fo:
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with uo an acyclic cofibration and po an acyclic fibration. Then form
the diagram, where the bottom square is a pull-back:

Note that v, exists, and that ql and w, are acyclic fibrations, by base-
change. Factor vl:

with ul an acyclic cofibration and si an acyclic fibration. Define PI =
q1 0 si, which is an acyclic fibration, and z, : Zl - Zo as WI 0 sl,
which is a fibration. Now repeat this procedure with Xo, Yo, Zo, and Yl
replaced by X1, Y1 , Zl , and Y2, and so on.

Clearly, lim f = lim p o lim u, where the limits exist by the assump-
tion RCM 1 a (see the remarks following the supplementary axioms).
Also, limp is an acyclic fibration by 2.6. We are reduced to showing
that lim u is a weak equivalence. The strategy of the proof here is that,
as is well-known, and an easy exercise in Quillen model categories, an
acyclic cofibration among fibrant objects admits a strong deformation
retraction (dually, an acyclic fibration among cofibrant objects admits
a strong deformation section). In the special case of a simplicial model
category, the homotopies in question may be taken to be simplicial ho-
motopies, with path or cylinder object based on the generalized unit
interval A[l] itself [15, II, 2.4 Cor. Prop. 4]. We will inductively con-
struct a compatible family of such deformation retraction in the tower,
and this will induce a deformation retraction of lim u. This will give
what we want. Let then ro be a retraction of uo and let

be a homotopy 1 ~ uo o ro, stationary on Xo. We will show how
to construct a retraction r, of ul and a homotopy Hl, 1 N ul o rl,

stationary on X, and such that rl and Hl is compatible with ro and Ho
in the obvious sense. The general induction step will be just like this.
rl is given as a lift in
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which exists by our assumptions about ul and xl. This retraction is

compatible with ro. Now construct a map

with components (1, ul o rl) and Ho o zi, which exists because the two
maps equalize on Zo x Zo. We have a diagram

where B has components (po, p1) , and zt in the notation of Path. One
checks that the square commutes. Axiom Path, states that Q is a
fibration, and ul is given as an acyclic cofibration, so that a lift H1
exists. One verifies that HI satisfies the conditions.

These all fit together to give

which is a retraction of lim u, and

By axiom Path,

is a path-object, and one verifies that lim H is a homotopy 1 -

lim u o lini r D

Proposition 3.5. We have the implications
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We do not give the proof of this because a more general result is true
(proposition 7.3).

4. THE FACTORIZATIONS

4.1. We verify axiom CM5 for the left and right model structures on
mc.

Proposition 4.1. Let .M be a closed Quillen model category. Let C
be a small category and J : Co 4 C be the inclusion of the discrete
subcategory of objects.

1. If RCMla holds in ,M, then

2. If LCMla holds in .M, then

Proof. We prove the second part since the first is dual.
(a) Let u : X - Y be in Cofc’. We will prove that a lifting exists

in every diagram of the form

where p E Fibc nsc. The adjoint of this is

But J* (p) E FibCo n£co, and because Co is a discrete category, a
lifting k exists in the above diagram, because it exists pointwise by
CM4 . Therefore, h := kO defines a lifting in the previous diagram,
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and because of the definition of strong cofibrations, this proves the
claim.

(b) This is proved by the same argument, but with p E FibCw.
(c.) This is a pointwise condition to be checked. Let u E Cofco n£Co .

Then

Each E Cof n£ and the result that (*J(03BC)) E cof nE follows
from 2.5.2(b). 

c

0

Lemma 4.2. Let M be a closed model category. Let J : Co - C as
before be the inclusion of the subcategory of objects of a small category.

1. Assume that RCMla holds in M and let u : J*(X) -&#x3E; Y be a

cofibration in MCo. Define X’ by co-base extension in

where 1J, £ are the unit and counit of the adjunction *J -l J* .
Then:

is a cofibration in M Co.
2. Assume that LCMla holds in .M and let p : Y - J*(X) be a

fibrations in MCo. Define X’ by base extension in

where n, Eare the unit and counit of the adjunction J* -l J* .
Then:

is a fibration in MCo.
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Proof. We do 2). We must verify that for all c E Co,

mapping (J*X )c = X’c to Yc is a fibration. Observe that

(nX)c is defined by pr cp o

We have a diagram

where 0 is defined by prep o 8 = Xp o Pc (cp # 1 ) , and where the
products exist by RCMIa . We claim that the outer rectangle is the
Cartesian square defining X’ read at c, and also that the right-hand
square is Cartesian as well. Therefore by cancellation, the left-hand
square is Cartesian. Now, fl pd x 1, being a product of fibrations is a
fibration. By base change, (v#)c is a fibration as well. (prop. 2.5, and
lemma 2.1) The assertion about the outer rectangle amounts to the
equation Wc = Pc o vU = Pc o Ec o vc. Using the notation

for the set of T-valued points in Z, the very definition of X’ as a fibered
product leads to the description .

The maps vc, We are the first and second projections on the two com-
ponents of these vectors. The left and right hand side of the pro-
posed equation, applied to a typical vector yields x on the one hand,
(Pc o £Yc)(..., yp, ... ) on the other. By the formula for £ given above,
this last is pc(y1c) But the equation Xp(x) = pd (yp) applied to p =
Ie, gives x = pc (y1c) which is the equation we want.
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The Cartesian nature of the right square is verified as follows. Let
U be the fibred product of (TT Xd) xYd and Xc over TI Xd. As before,

p#1 p#1

This shows that the map given by

is a bijection ( : £(T) = U(T) which is functorial in T, and for which
prl 0 S = 8 x 1 and pr2 0 (. = Pc proving the claim. 0

4.2. Our aim is to construct the factorizations ’L and RR. The fac-
torizations LR and LL are strictly dual,, and in any case are explicitly
carried out by Heller in the context of simplicial sets in [11]. By a well
- known trick , only RL needs to be given, for we can construct the
other one as follows: For let f : X - Y be given in M’. Let

be the factorization coming from the functorial right factorization that
exists in M by CM5 , so that .R’ f E Cofc and R" f E Fibc nt:c.
Suppose that a functorial RL has been constructed. Then we use it to
factor R" f

and then we define RR f as follows:

and one sees that RR’ f e CofCw and RR" f E Fibf nec as required.
The functoriality of this is evident. Therefore we concentrate on RL.

Lemma 4.3. 1. Assume that axioms RCMIa and LCM4 hold
in M, and assume the following cancellation property is valid:

For this it is sufficient to assume that Fib = Epi, the fibrations
coincide with the epimorphisms. Then: In order to construct a

functorial LR in MC it is sufcient to do so for all rraorphisms
between weakly cofibrant objects.
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2. Assume that axioms LCMla and RCM4 hold in M, and as-
surrze the following cancellation property is valid:

For this it is sufficient to assume that Cof = Mono, the cofi-
brations coincide with the monomorphisms. Then: In order to
construct a functorial RL in Mc it is sufcient to do so for all
morphisms between weakly fibrant objects.

Proof. We do the second one. For any object Z in MC we may factor
the canonical map Z -&#x3E; e using the functor L in M :

where iz e CofCwnEC and Z E FibCw. Thus, Z is weakly fibrant. By
definition,

Let f : X - Y be any morphism in M. Form the push-out:

and note that j E CofCw nEc because of 3.1. Then factor T -&#x3E; e as

above to get a commutative diagram :

with E CofCw nEc because k = iT 0 j. Because the objects X , T are
weakly fibrant, we are assuming the existence of a factorization :
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with R L’7 E CofCw n£C, R L"7 E FibCs . Form the Cartesian square at
right below:

The arrow q exists by Cartesian property. By base-change, p is a strong
fibration, and since LCMIa is in force, p is a weak fibration as well
(3.1). Also, by RCM4 , m is a weak equivalence. But m o q =

RL’ f o ix is in cofc nEc and so by the cancellation hypothesis that
we are assuming, q E cofc n.6c. We get our factorization by setting

It remains to verify the functoriality of this construction. Given

we need the existence of a map c so that the diagram commutes:

Refering to the above construction, and with obvious notation
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a exists commuting the left face because Z -&#x3E; Z is a functor. We have
(j2b)f1 = j2f2a = q2i2a = (q2a)i1. Therefore by the co-Cartesian
property, b’ exists so that the whole cube commutes. We may find b in

and get a commutative cube:

The functoriality of RL among weakly fibrant objects guarantees that
c exists commuting :

Then we form the cube , with obvious notation :
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where We compute:

The Cartesian property then gives a map c commuting the cube. The
top face of this cube is the right-hand side of the diagram to be checked.
To get the left-hand side, we must show that

commutes. The morphisms ql, q2 exist by the Cartesian property defin-
ing Wl , W2 and are characterized by the equations

We calculate
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and

The above two equations show that c o q, = q2 - a by the Cartesian
property that defines W2 D

4.3. Let f : X - Y be a morphism in M C and let J : Cho - C
be the inclusion of the discrete category of objects of a small category.
We assume RCMIa holds in M. We then have the adjunction

J* -1 J* with unit and counit e

We now give the construction of the factorization RL. This is done
via an inductive procedure. We start from f = fo, Xo - Y. First,
we weakly factor f o with the aid of the functor L giving the left fac-
torization in M:

with L’ fo E cofc n£c, L" fo E FibCw. We must convert the weak
fibr ation into a strong fibration as requires in the right model structure
(CofCw,FibCs).
We assume that Xo, ... , Xn and fo, ... , fn have been defined. Then

we form the diagram

The square at lower right defines Xn+1 as the fiber product of the
other corners. The arrows Vn, xn+1 are the two projections from this
product ; gn+l = J* J* L’ f n , Zn+ 1 = J* J* L" f n . The arrow un exists with
vn o Un = nLfn since the equation zn+1 o nLfn= nXn o L" fn is true, being
a reflection of the naturality of q. Also, fn+1 exists, with Xn+l o f n+1 =
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fn for the same reason because Zn+l o gn+1 0 nx = nXno fn Iterating
this we obtain a ladder :

We define :

This is clearly functorial in f, and we claim that under suitable hy-
potheses on M to be made explicit below, this is a left factorization in
the right model structure on Mc. ie.

The following dualizes [11, II. Lemma 4.4] :
Proposition 4.4. Let M be a functorial closed model category and
assume that axioms LCMla and RCMla hold in M. Then in the
above notation :

1. All Zn E FibCs. all Xn E FibCs .
2. RL" f E Fib;.
3. If f is t’n.Ec then

Proof. (1) By definition of L, L" f n E Fib£. Thus, J* L" f n E Fibco ,
and therefore zn+1 = J*J*L" fn E Fibc by proposition 4.1, and
xn+1 E Fibc by base change (lemma 3.1).

(2) This follows from (1), the definition of strong fibrations, and
corollary 2.3.

(3) If f = fo E Ec then L" fo E £c by CM2 since L’ fo E Ec by
the definition of L and of the weak equivalences in MC. Therefore,
J* L", f0 E Fibco NECO and proposition 4.1 gives that

and x, being deduced from z, by base change is also an acyclic strong
fibration. Because of the equation fo = x, - /1 and CM2 we get that
fl E S’ and we may repeat this argument with fo replaced by fl. This
continues inductively to give
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But then by proposition 3.1

To prove the second part of (3) , the previous argument has shown
that In E 6’ so that L" In E Fibc neC by definition of L and CM2 .
Hence, 

which by proposition 4.1 gives

Thus,

by base change (lemma 3.1). Then corollary 2.3 gives

Proposition 4.5. Continuing the notation from above, assume that
one of the following conditions holds :

1. LCMla , RCMla , RCM2f hold in M.
2. LCMIa , RCMIa , RCM2ff hold in M, and both X and Y are

weakly fibrant.
Then, RL’ f E Cofc n£c
Proof. We apply J* to the diagram 4.1 and expand it by adding a
downstairs :

Because n, £ are the unit and counit of an adjunction, all three vertical
columns compose to the identity. (Recall that vn o un = TILl.). Now
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apply J* to the diagram 4.1 and interpolate terms from the above
diagram to obtain

where

We check the commutativities. The equation

is true because it is J* applied to the equation
equation

. The

is true because

where we have repeatedly used the identities from diagram 4.1. To
check that RL’ f = lim In is an acyclic weak fibration we need only
verify that this is true pointwise for all c, or equivalently, that

has this property. But in the ladder diagram, the arrows J*L’ fn are
final among the vertical arrows, so :

Let us observe that :

1. All the horizontal arrows in the ladder above are fibrations.
Because: For qn - J*L" fn it is true by the definition of L"

and of J*. For v#n, we appeal to the definition of vn in 4.1 and to
lemma 4.2.
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2. If we assume that Y to start out with is weakly fibrant, then
J*Xn, J*L fn are fibrant for all n &#x3E; 0.

Because: it is true for n = 0, since Xo = Y, and qo is a
fibration by part 1 above . The result follows easily by induction
again using part 1 .

Each ( L’ f n )c is a weak equivalence by the definition of L’ . Assuming
LCMIa , RCMIa and RCM2f , (1) above now suffices to show that

which was to have been shown. Alternatively, assuming that both
X and Y are weakly fibrant, and axioms LCMIa , RCMIa and

RCM2ff , (1 ) and (2) show that the exact same conclusion can be
drawn. 0

In view of lemma 4.3 we have thus proved half of the following, the
other half being strictly dual :

Proposition 4.6. Let ,M be a functorial closed model category.
1. The factorization LR exists in the left model structure on Mc

given by (CofCs, Fibc) if any of the following sets of axioms hold
(a) LCMIa , RCMla and LCM2c .
(b) LCMla , RCMIa , LCM2cc , LCM4 and the cancella-

tion property

This holds for exarrcple if Fib = Epi .
2. The factorization RL exists in the right model structure on Mc

given by (Cofc, FibCs) if any of the following sets of axiorras hold
(a) LCMla, RCMla and RCM2f .

(b) LCMIa , RCMla , RCM2f , RCM4 and the cancellation
property

This holds for example if Cof = Mono . 

Corollary 4.7. 1. Under the hypotheses of 4.6.1 ,

2. Under the hypotheses of 4.6.2 ,
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Proof. We do the second one. Let p : E -&#x3E; B be in Fibf nsc. We’ve
constructed a factorization

and RL"p is a weak equivalence as well, since p is. We show that

p is a retract of RL"p. We have a lifting in

since p . We get

showing that p is indeed a retract of IL"p. But proposition 4.4 gives
that

and therefore 2.1 gives

as required. 0

Theorem 4.8. Let .M be a functorial closed model category.
1. Suppose that either one of the following sets of axioms is valid in
:

(a) LCMIa , RCMIa and LCM2c .
(b) LCMIa , RCMIa , LCM2cc , LCM4 and the cancella-

tion property

This holds for example if Fib = Epi .
Then MC is of a functorial closed model category in the left struc-
ture given by (Cofcs, FibCw).

2. Suppose that either one of the following sets of axioms is valid in
:

(a) LCMla , RCMla and RCM2f .
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(b) LCMIa , RCMIa , RCM2ff , RCM4 and the cancella-
tion property

This holds for example if Cof = Mono .

Then MC is of a functorial closed model category in the right
structure given by (CofCw, FibCs).

5. HELLER’S AXIOMS

5.1. Let ,M be a functorial closed model category satisfying either
of the hypotheses of 4.8.1 (resp. 4.8.2 ) . Then the main result of the
previous section was to show that MC had the structure of a functorial
closed model category, and in particular, the homotopy category

exists. We let

be the canonical localization, which we regard as a strict localization.
This means (cf. [11, p. 7]) that 7c is a bijection on objects, and we
can describe the morphisms as follows. Given X, Y in MC, we hve a
bijection

where X is a cofibrant model of X, and where Y is a fibrant model of
Y, with the right-hand side above denoting the homotopy equivalence
classes of morphisms, the right and left homotopy notions coinciding
for cofibrant X and fibrant Y. Picture:

Then each f in the homotopy category is represented by a word

with g uniquely determined up to homotopy. Up to isomorphism, this
is independent of the choice of resolutions, X , Y, but we can make
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functorial choices, eg. in the right model structure, as follows :

We can see that C-&#x3E; T(C) is a hyperfunctor. This means that given
F : C-&#x3E; D there is a functor TF : T(D)-&#x3E; T(C) which satisfies
several properties relative to composition and natural transformations
of functors between small categories (cf. [11, p. 11]). That TF exists
results from the fact that

preserves weak equivalences, which is immediate from the pointwise
definition of the weak equivalences in these functor categories, and
hence localizes to give a morphism on the fraction categories. The
other properties of hyperfunctors are easy to verify. We now turn to
the axioms of [11]. We do them explicitly in the right structure, the
left structure being dual.

H0. For any family Ca of small categories, the canonical map

is an equivalence.
This is essentially clear from the equation

and all the model structures are compatible with this.

H1. For any C the functor

reflects isomorphisms.
That is, dgmc f is an isomorphism =&#x3E; f is an isomorphism. Recall

that dgmc is defined on objects as

or more precisely as

and if f : yC X -&#x3E; -YcY is a morphism in T(C) , represented by the
homotopy class of g : X -&#x3E; Y , in the notations as above, then
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If dgmc f is an isomorphism, then ¡9c is an isomorphism for all c, be-
cause both ypc and 7uc are isomorphisms. In a closed model category,
the weak equivalences are precisely the maps that become inverted in
the homotopy category (cf. theorem 2.7). Therefore, g, E F for all
c =&#x3E; g E £c =&#x3E; ycg is an isomorphism =&#x3E;

is an isomorphism also.

H2. If Fis a finite free category, then for all srraall categories C

is a weak quotient functor.
This means two things :
1. dgmF is full, ie. for all X, Y

is onto.

2. dgmp is replete, ie. every object of (Ho(MC)) F is isomorphic
with dgmF X for some object X in Ho(MCXF)

Since rr(McxF) (X, Y) is a quotient of .McxF (X, Y) , (1) will
clearly follow from

(1’) For all X, Y in .MCxF, with X weakly cofibrant and Y strongly
fibrant,

is onto.

A finite free category is determined by its graph r whose vertices
consist of the the objects of F , and whose edges are the generating
morphisms of F. Observe that in a finite free category, there is no non-
identity morphism from an object to itself, for otherwise its iterates,
which must all be distinct, would be infinite in number. We introduce
a partial order on Fo via

Notice that f  g and g  f =&#x3E; f = g because if f # g then the
composed arrow f -&#x3E; g -&#x3E; f would either be id f in which case the
category would not be free or it would be id f, but that’s excluded by
our previous remarks.
Now given a functor X : C x F -&#x3E; M we can regard it as a

functor X : F 4 MC, and we designate it by the same letter, as this



218

should cause no confusion. Also, we let M1 denote Mc so that MF1 =
MCXF, and we will generally use the subscript 1 to refer to constructs
in M1 so that for example 61 is the class of weak equivalences in M1.
This understood, we introduce the following condition :
Definition 5.1. An object X in Mc = M1 is said to verify (*) if for
all f E Fo the map

with components pr V’ 0 ç = Xp is a strong fibration in MI
The following dualizes [11, II. Prop. 5.1 ) ]

Proposition 5.1. Let X : C x F -&#x3E; M.
1. If X has property (*) then X is in FibsCxF
2. For any Y in MCXF there exists a morphism Y -&#x3E; X in

CofwCxF n£CxF, such that X has property (*).
3. Therefore, an object OfMCxF has property (*) if and only if it is

strongly fibrant.
4. For any W : F -&#x3E; Ho(MC) there exists a strongly fibrant X in
MCxF with dgmF X = W.

5. If X is weakly cofibrant and Y is strongly fibrant then

is onto.

Statements (4) and (5) prove axiom H2 as we’ve remarked.

Proof. The proofs are all by induction on the number of objects in
F. Each statement is seen to be true when #F = 1, for in that
case F = 1, and if * is the unique object, then r(*, *) = 0 and
the corresponding product in the definition of property (*) reduces to
TTO - e = the terminal object, and to say that X has property (*)
merely says that X is a fibrant object in ,MC. The remaining state-
ments to be proved follow from general properties of model categories.
We therefore assume that #F &#x3E; 1. Let m E F be a minimal element

for the partial order that was introduced above, and let F’ = F B {m}
be the full subcategory on the remaining objects. If X is a functor with
domain F, then X’ will denote the corresponding restriction to F’ so
that in this notation,

(1) What must be shown is that if X satisfies property (*), then
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Let u be an acyclic cofibration and

By induction hypothesis, there’s a lifting in

Now consider the lifting problem:

where cp is defined by the equation Ray (recall that
Since (*) is as-

sumed, § is in Fibs, and because im E cof, n£c there is a lifting hum.
We then define h : B - X by

We assert that it is a morphism of functors and that it is a lifting.
To see that it is functorial, since any morphism in F is uniquely a

word in the edges of r, it will sufhce to consider a q : p - q that is
an edge of that graph, and there are three possibilities to consider :

1. m  p  q. Then in the equation to be checked

lz = h’ and h’ was assumed by induction to be a morphism.
2. m = p = q. But then, I = idm as we’ve already remarked,

and the result is trivial.
3. m = p  q. In this case, I is one of the factors appearing in

the product in t4e diagram that defined hm. Applying pry to the
equation there
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gives Xy o hm on the left, by the definition of ç, and on the right
it gives h’ - By = hq o By, by the definition of p. This is what
we want.

That h is a lifting is checked pointwise for all values in F, and it true
for all q &#x3E; m by induction. For q = m, it is the equation hm o im = 1m
in the defining diagram for hm .

(2) Let Y be given, and suppose inductively that a u’ : Y’ -&#x3E; X’
with u’ E CofF’1 w n £F’1, and X’ satisfying (*) relative to F’ has been
found. Consider the composite

where , and q is defined by pry We may factor

this in the model category M1 as

defining Xm and um § E Fibf. We define a functor

on objects as

and to define it on morphisms, we need only define it on the generating
morphisms in r and we may do so arbitrarily because of the freeness
of F. If q : p -&#x3E; q is an edge in r, and if m  p  q then X1 has
already been defined as X’, whereas for m = p, 7 appears as one of
the factors in the product in the diagram defining § and we may set
Xy= pr, o §. This is clearly a functor, because of the freeness of F.
We define a morphism u : Y -&#x3E; X by the rule

and one must verify that it is indeed a morphism. By the reasoning
given in the first part of this proposition, in the equation to be checked

we can assume that 7 : p - q is an edge in the generating graph r,
and it divides into three cases as before. For m  p  q it holds by
induction; for m = p = q it is true because / = idm; for m = p  q, q
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is one of the factors in the diagram defining Urn, and applying pry to
the equation 

coming from there gives an equation between XI 0 u,n on the left side
and and

on the right.
(1) &#x26; (2) =&#x3E; (3) Let Y be a strongly fibrant element of MCxF.

Regarded as an element of MF1 it is also strongly fibrant. This is
because the strong fibrations are defined by a transversality condition
relative to the acyclic cofibrations, and those are defined by a pointwise
condition, so that (the model structure on M1 = Mc being the right
structure) a morphism is an acyclic cofibration whether it is regarded
as an element of MF1 or MCXF . Let X be a strongly fibrant element of
MCxF Now by (2) we can find a map u : X - Y with u an acyclic
cofibration and Y having property (*). But by (1), Y is strongly fibrant
as well, and u therefore has a retraction because a lift r exists in

We will verify that X has property(*) by showing the existence of a
lift in every diagram

We expand this to
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6 and 77 are defined by the formulas pry o 6 = X-r and pry o q = Yy.
It is easy to see the commutativity of the above diagram. The arrow

exists because, Y having property (*), n is a strong fibration. Define
h - r f o k. This is the desired lift.

(4) Let W : F - Ho(Mc) be given. For each f E F we have an
object W f of M1 and for each morphism a : f -&#x3E; g we have a map
Wa : W f =&#x3E; Wg in Ho(M1) where the double arrow indicates that
we are thinking of it as a finite composition of actual maps - and
of arrows - in El. We can find an isomorphism W= W , such that
each W f is bifibrant, and the Wa will induce and it is well known
(abstract Whitehead theorem cf. 2.7) that Wa will be represented by
an actual map - . We can therefore assume from the outset that each

Wa is an actual morphism from M1, well-defined up to homotopy. In
the notations of the preceding proof, we suppose inductively that X’
has been found with dgMFI X’= W’. In fact, we assume that

with u f E Cofl nsi has been found for each f E F’ such that

is homotopy-commutative for all a : f - g in F’. We define Xm (m
: minimal element) by factoring

with
, and w defined by into

with Urn E Cof1,w n£i and § E Fibi,s. We then define a functor
X : F - Ho(§iii ) by the rule
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and we define Xy to be X§ for a morphism in F’ and to be pr"’( 0 ç for
q E r (rn, f ) and as F freely generates F , this specifies X as a functor.
To see that u : X - W defined by

is an isomorphism in Ho (M1 ) , it is clear in view of the nature of the
maps u f that it will suffice to prove merely that it is a morphism, or in
other words, that the appropriate squares are homotopy commutative.
As previously argued, the only really new case to be considered is that
of an edge, : m -&#x3E; f in r. Applying pry to the defining equation

W,y on the left and

pry o § o um, = Xy o 03BCm on the right, showing strict commutativity on
these edges.

(5) First we note that Y being strongly fibrant, as an element of MF1 
it is weakly fibrant as well, by lemma 3.1. Observe that the assumption
that LCMIa holds in M implies that it holds in the functor category
M1 - Mc , so that the cited lemma applies. If X is a weakly cofibrant
object of MF1, by the Whitehead lemma quoted in the previous section,
every map dgMF’ X =&#x3E; dgmF, Y is represented by a collection of actual
arrows a f : X f -&#x3E; Yf in M1 , for all f E Fo such that

is homotopy-commutative for all a : f -&#x3E; g. We must replace the a’s
by b’s such that the corresponding squares are strictly commutative.
We inductively assume that this has been done on the subcategory F’,
and in fact we will assume that maps b f : Xf-&#x3E; Yf and homotopies
af ~ b f have been constructed for f &#x3E; m, so that the corresponding
squares with the b’s are strictly commutative. Consider (m : minimal
element )

§ and q are defined by the formulas pry o § = Xy and pry o q = Yy.
Q = TT b f This is homotopy-commutative. Indeed, the yth projections
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are the two maps

given by

showing the homotopy-commutativity. Let

be a cylinder on Xm so that p o i = B7 Xm is a factorization of the

folding map. u E Cofi w, p E §1 , and we let H be a homotopy

Since Xm is cofibrant, it is well-known ([15,1. Lemma 2, pl.6]) that the
insertions il, i2 : Xm - Z are acyclic cofibrations, and because
we are assuming that Y satisfies (*), 77 is a strong fibration, and hence,
a lift exists in

Define bm - G o i2 , which by its very construction is homotopic
with am- We claim that b : X -&#x3E; Y defined as

solves the problem. As before, the commutativities to be checked con-
cerning a given morphism reduce to a consideration of an edge in the
generating graph r, and there are three cases as before, the only non-
trivial one being that of a q : m - f . Such a 7 appears in the

defining diagram for bm. Then

and this gives
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H3. We do H3R since H3L is dual and carried out in the context of

simplicial sets in [11].
Let F : C - D be a functor. Then TF : T(D) -&#x3E; T(C) has an

adjoint denoted RTF = RF.
The definition of the adjoint is as follows. Let X be an object of

.Mc. We factor the canonical map X - e as

Where u = RL’(X 4 e) E CofCw n§c and p = RL"(X-&#x3E; e) E Fibf.
Thus, MX is a strongly fibrant model of X, previously denoted X.
We then define RF(X) = RanF(MX) = F*(MX) which is clearly a
functor MC 4 .MD. The key point is to show that this localizes
to the fraction categories Ho(Mc)-&#x3E; Ho(MD) and for this it is

necessary to show :

Proposition 5.2. Assume that RCM1 , RCM3f , RCM5 hold.
Then F. o M preserves weak equivalences.

Proof. Let h : X -&#x3E; Y be a weak equivalence in M C. In what follows
we refer to the construction of RL as applied to the morphism X -&#x3E; e.

Recall that MX is the limit of a tower of strong fibrations:

with compatible maps In : X - X and a similar tower for MY and
maps gn : Y - Yin. Then Mh is lim hn where the hn are constructed
to fit into a diagram

Observe that each of the Xn, Yn is strongly fibrant, since all the hori-
zontal arrows above are strong fibrations. Since we are assuming that
LCMI is in force, the are all weakly fibrant as well ( 3.1). The hn
arise inductively from
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where the squares are Cartesian, and hn+1 exists by Cartesian prop-
erty. The bottom horizontal arrows are the zn+1 that appear in the
construction of RL, and are strong fibrations by 4.4. The left ver-
tical maps are the vn that appear there. (In = J*J*hn and an =

J* J* L ( h, hn ) where (h, hn): In - 9n’ Note that all the objects in
the above diagram are weakly fibrant. This can be seen by induction
on n. We’ve noted it above for the X, Yn. But then J*J*Xn, J*J*Yn
are strongly (hence weakly) fibrant because of 4.1. Since the lower hor-
izontal arrows are strong fibrations it follows that J* J* L f n , J* J* Lgn
are strongly (hence weakly ) fibrant.

Lemma 5.3. Under the hypotheses of the proposition,

Proof. This is done by induction on n. For n = 0, we have Xo = Yo =
e, (30 = id.. We have

The left horizontal maps are weak acyclic cofibrations, and the right
horizontal ones are strong fibrations. Since LCMI is one of our as-

sumptions, these are weak fibrations as well by 3.1. By the hypothesis
that h E EC it follows from this diagram and CM2 that Z(h, ho) E Ec.
Since ao - J* J* L (h, ho ) the result for n = 0 now follows from 5.4 be-
low.
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Lemma 5.4. Under the hypotheses as above,
1. Let J : Co -&#x3E; C be the inclusion of the discrete category of

objects. Then J*J* preserves weak equivalences among the weakly
fibrant objects.

2. Let Fo : Co -&#x3E; Do be a functor between discrete small categories.
Then Fo* preserves weak equivalences among the weakly fibrant
objects.

Proof. (1)

In both cases the result follows from the axiom RCMIb . D

We now do the induction step n =&#x3E; n+1. Since we are assuming that
an, 3,, and hn are weak equivalences, and as we’ve remarked, all the
objects in the big picture-frame diagram are weakly fibrant, the hor-
izontal arrows are strongly, hence weakly, fibrant, we conclude from
RCM 5 that hn+1 is also a weak equivalence. But then 5.4 gives that
(3n+l = J*J*hn+1 is a weak equivalence. The diagram below gives that
L(h, hn+1) is a weak equivalence:

Another appeal to 5.4 gives that an+1 - J*J*L(h, hn+1) is a weak

equivalence, completing the proof of lemma 5.3.
D

Returning to the verification of 5.2, F : C -&#x3E; D induces Fo : Co
- Do on the discrete categories of objects. Let J : Co -&#x3E; C and
K : Do - D be the canonical functors. Clearly, F o J = K o Fo
and therefore, which gives
Lemma 5.4 shows that K* 0 F0,* preserves weak equivalences since as
we’ve remarked, all the objects are weakly fibrant anyway. Thus it is
true as well for F o J. Now apply F* to the picture-frame diagram.
Because F* is a right adjoint, it preserves limits, and so the resulting
squares are still Cartesian. According to lemma 2.4 F* preserves Fibf .
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Therefore, all the horizontal arrows in this new diagram are strong
fibrations. Of course, F* (e) - e and precisely the same argument that
showed that all the objects in the original picture-frame diagram were
(strongly, weakly) fibrant, shows that all the objects in this new picture-
frame diagram are (strongly, weakly) fibrant. The same argument that
showed 5.3 shows that F* (an), F*(f3n), F* (hn) are weak equivalences
for all n. An appeal to RCM3f then shows that

is a weak equivalence, which was to have been proved. 0

Now we claim that this RF is right adjoint to TF = Ho(F*), ie.
that

functorially in both variables, where

[--, --]c is an abbreviation for Ho(Mc)( --).
If X -&#x3E; X and Y -&#x3E; Y = MY are the canonically defined resolutions
given in section (4.1), since F* preserves weak equivalences , the left
side is canonically bijective with

Also F* preserves cofibrations (in the right structure on Mc) and so
the result we need will follow from

Proposition 5.5. In the notations above, The adjunction F* -l F*
induces a bijection : 

where X is a weakly cofibrant object of MD and Y is a strongly fibrant
object of Mc.

Proof. F* preserves Cofcw (trivially) and F* preserves Fibcs as we’ve
mentioned (lemma 2.4). Therefore the equality to be proved amounts
to a bijection

of homotopy-equivalence classes of morphisms. Right and left homo-
topy notions coincide here since X, F*X are cofibrant and Y, F*Y
are fibrant. Because F* -1 F*, in Grothendieck’s notation #,b induce
reciprocal bijections
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and what must be demonstrated is that this is preserved by the homo-
topy relation. In fact we show

which suffices. (=&#x3E;) Let Z be a cylinder on X, and let

be a homotopy with H o i 1 - gl , H o i2 = 92. Since F* preserves weak
equivalences and cofibrations, F*Z is a cylinder on F*X. Because

by the calculus of adjoints, H# is a homotopy connecting go and 0
(=) We can take any cylinder to give the homotopy, since F*X is
cofibrant and Y is fibrant. So let

be such that K o F* i 1 = g#1 ,Ko F* i2 = gO2. Defining H = Kb the
calculus of adjoints shows that H is a homotopy connecting g, and
g2 . D

(H4) We do H4R. Here we must assume the existence of coproducts,
so that LCM1 will be in force as well.

Let P : E - B be a discrete opfibration. Then

has a left adjoint LP = LTP and the square

has the Beck- Chevalley property.
Recall that this means that in the square deduced by taking adjoints,

which is only 2-commutative ,

the natural transformation p defined as the composite
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is an isomorphism. Here nT, eT (n, E) are the unit and counit of the
adjunction LP -l TP (*P -l P* ).

Recall that a functor P : e -+ B is said to be a prefibration (resp.
preopfibration) if for all objects b E Cio the canonical functor

has a right adjoint I*. (resp. the canonical functor

has a left adjoint *I’)
If v : b -&#x3E; Pe is an object of bBP we abbreviate

and call it the pull-back or base-change of e along v. Similarly, we set

and call it the push-forward or cobase-change of e along v. We say
that a prefibration is a fibration if whenever w : b’ -&#x3E; b we have

transitivity of base-change: (v o w)* = w* o v* and a preopfibration is
an opfibration if (v o w) * = v* o w* when w : b - b’ . Finally, we
say that an (op)fibration is discrete if each of the category-fibers Gb is
a discrete category.

Lemma 5.6. 1. Let P : S - B be a discrete fibration of cate-
gories. Then, for all b E Bo, the natural functor

is initial.
2. Let P :§ -&#x3E; B be a discrete opfibration of categories. Then, for

all b E 80, the natural functor

is final.

Proof. We do the case of fibrations. Two things must be checked (see
[19, 1.9.1.1-9.1.2, pp. 64-65]) :
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1. For every object § E (bBP)0 there exists a morphism a : I§’ -&#x3E;§
for some §’ E (Eb)o

If § = (v : b -&#x3E; Pe) we define §’ = v* (e) and

by the counit of the adjunction I -l I..
2. Given a comutative diagram

we must have Ç1 = §2 and a1 = a2.
Since we are assuming that is discrete, we must have B1 =

Q2 = id. Hence, Ç1 = §2 = §3 and a1 = a2
O

Corollary 5.7. 1. Let C be a category with products, and let
P : E -&#x3E; B be a discrete fibration of small categories. Then

exists and is naturally isomorphic with the functor Q given on
objects as

2. Let C be a category with coproducts, and let P : E -&#x3E; B be a
discrete opfibration of small categories. Then

exists and is naturally isomorphic with the functor Q given on
objects as

Proof. We do the first one, since the second is dual. By Kan’s formula,

where Jb : (bBP) -4 E is the functor that sends (v : b -&#x3E; Pe) to e.
This formula assumes a priori that general limits exist in C, but since
I : Eb -4 (bBP) is initial, we can compute this limit over the discrete
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category E6, and this reduces to the formula given, which only requires
products. More precisely, (cf. [19, 1.9.1.2]) if

is the cone defining the limit, then there’s a unique

such that 8 = S * I and it defines the product on the right as the limit
on the left. 0

Let (ME)c and (MB)c be the full subcategories of (weakly) fibrant
objects. We know that

is a weak fraction functor (see 2.7) and similarly with E replaced by B.
Both P* and *P restrict to these subcategories and asuming the axiom
LCM 1 preserve weak equivalences there. This is trivial for P*. In
view of the description of * P given in corollary 5.7 , this follows from
3.1. Therefore, these induce functors Ho(P*) = TP (as we’ve already
noted), and Ho(.P) = LP. We must check that they are adjoint and
that the Beck-Chevalley property holds. On the first point:

Lemma 5.8. Let

and

be (weak) fraction functors. Given an adjoint pair F -i G, A - -&#x3E; B
such .that

the canonically induced functors F ,G : A[E-1]- -&#x3E; B[H-1] are adjoint.
Proof. Let 77: 1 -&#x3E; G o F and e : F o G - 1 be the unit and counit.
We can see that the lemma is true in the case that k and p are strict
localizations, ie. that A and p induce bijections on the objects of their
respective categories (see [11]). One can unambiguously define F, G
by the formulae FAa := pfa and Gpb := AGb and we can define the
unit and counit of F -l G by n *k = k * n and e * 03BC = 03BC * E. That
this uniquely defines 77 and - follows from :

Lemma 5.9. [8, I. Lemma 1.2]) Let 



233

be a aueak fractions functor. Let

be two functors. The assignment 0 - 8*, induces a bijection between
natural transformations F, - F2 and F1o y -&#x3E; F2 o y

The above definitions, together with Godement’s 5 rules of functorial
calculus (see [19, II. 16.1.1]) yield

and

and

and

We then compute :

Then, ( 5.9) shows that

A similar argument gives

showing that q and e are indeed the unit and counit of the adjunction.
Suppose now that A, p are merely weak fraction functors. Then

according to [11, p. 2], strong fraction functors

exist, inverting E and B. By the universal properties of these categories,
there are equivalences of categories

over A, À1, p, 03BC1.Given an adjoint pair

we create one

by the formulas F := V o F1o S and G := U o Gi o T. The verifications
are left to the reader. 0
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Finally, we must see the Beck - Chevalley property : that cp is an
isomorphism. For X E (TE)o we compute LP(X) as Q(Y) where Q is
the functor given in 5.7 (2) and where Y is any weakly cofibrant object
that resolves X, ie. we have

where p E FibE n £E. For instance, we can take Y = X as in section
5.1. The counit 1JT is described as follows. For each e E (E)o the arrow
,(Pe) yYe-&#x3E; ,Xe is an isomorphism in Ho(,M) = T(1). If

is the canonical insertion, then one defines (nTX)e to be the composite

Recall that the counit 6 : . P - P* - 1 is given by

Putting it all together, we see that ’Pe amounts to the map

given by (ype)-1 which is an isomorphism.
Theorem 5.10. Let M be a functorial closed model category, and sup-
pose that LCM1 and RCM1 hold.

1. Assume that one of the following sets of axioms holds:
(a) LCM2c
(b) LCM2cc, LCM4, and the cancellation property

This holds for example if Fib = Epi .
Then 

is a left homotopy theory.
2. Assume that one of the following sets of axioms holds:

(a) RCM2f
(b) RCM2ff, RCM4, and the cancellation property

This holds for example if Cof = Mono .
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Then

is a right homotop y theory.

6. EXAMPLES

We show a few representative cases, by no means an exhaustive list.
We mostly give sketches only, since much of this is well - known. Since
each of these is a closed model category, the independent verification
of some of these axioms is superfluous. Nonetheless, it is interesting to
verify these axioms directly when possible because they often elucidate
nontrivial properties in the various cases.

6.1. Simplicial Sets. The main facts are stated as Proposition 3.4 in
Chapter II of [11]. However, no proofs are given and standard refer-
ences, eg. [14], [22], do not prove them either. That s is a functorial
closed simplicial model category is proved in [15, II, Thm. 3, p. 3.14].
LCM1 and RCM1 are easy to prove.
LCM2: A morphism in S is an acyclic fibration if and only if it has

the RLP with respect to all inclusions

and these are small in the sense that

with respect to all filtering colimits. The result follows easily from this.
RCM2: Since cofibrations coincide with monomorphisms, it is easy

to see that if each ui is a cofibration, then lim ui is a cofibration. The
result concerning the weak equivalences then follows from RCM3, to
be proved below.
LCM3: This follows from proposition 3.4, and the fact that all

objects are cofibrant. Alternatively, one can appeal to Bousfield - Kan
as follows. Let

be a sequence of cofibrations. Then, for any Kan complex Y,

is sequence of fibrations, and all the spaces are fibrant ([14, Thm. 6.9
and Thm. 7.13], hom = function complex). According to [4, XI 4.1 (v),
p. 299, and XII, Prop. 4.1. p. 334]
lim hom (Xi, Y) = holim hom (Xi, Y) = hom (hocolimxi, Y)
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are weak equivalences. The first one is evidently isomorphic with
hom (colimX;, Y) so we see that the natural map

induces a weak equivalence

Taking 7ro of both sides gives a bijection

That being true for all Kan complexes Y, we conclude that § is a weak
equivalence ([15, II, Prop. 3, p. 3.15]). Now if f : X -&#x3E; X’ is a

map of sequences of cofibrations with each f t a weak equivalence, the
homotopy lemma of [4, XII, 4.2, p. 335] shows that hocolim f i is a
weak equivalence. In view of the preceding, this shows that colim f is
a weak equivalence as well.
RCM3. Proposition 3.4 implies RCM3f here. One can also prove

this by the reasoning above, which shows that lim Xi = holim Xi.
Then the homotopy lemma of [4, XI, 5.6, p. 304], shows that holim ft
is a weak equivalence. We can remove the hypothesis that the spaces
involved are fibrant by the following argument (shown to me by Heller):
Recall the well - known

Lemma 6.1. Given

where pl, P2 are fibrations and g is a weak equivalence. Then, f is a
weak equivalence if and only if the induced map on every fiber :

is a weak equivalence (b E B1).
Let f : X-&#x3E; X’ be as in the statement of RCM3. We apply the

above to By 2.6 the
projections 7ro : lim Xi -&#x3E; Xo and rr’ : lim X’i -&#x3E; Ao are fibrations.
Choose any point in Ei as a base - point. By taking images of this
point we can consider all the maps in question as being pointed. The
fibers will refer to these points. Then we have
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where

We get in this way a map of towers of fibrations:

in which all the spaces involved are Kan complexes, and the vertical
arrows are weak equivalences by the original hypothesis about X -
X’, and lemma 6.1. Therefore by RCM3f we get that lim F; -&#x3E; lim Fi
is a weak equivalence, and again by 6.1 so is lim X; -&#x3E; lim X’i .
We sketch the proof of 6.1. A map X -&#x3E; Y in S is a weak

equivalence if and only if Ex°° (X ) -&#x3E; Ex°° (Y) is a weak equivalence
([15, II, Prop. 4, p. 3.19]). Also

Ex°°(El) -&#x3E; ExOO(B1) is a fibration with fiber ExOO(F(Pl, b))

([12, Thm. 4.3]). ,,Thus it is sufficient to prove the lemma in the
case where all the spaces are Kan complexes. A simple argument then
reduces to the case where they are all connected. The result now follows
by a 5 - lemma argument comparing the long exact homotopy sequences
for El -&#x3E; Bl and E2 - B2.

RCM 4. This follows from 6.1 because ( f, g) induce an isomorphism
of fibers F(q, v) -&#x3E; F(p, f (v)) for all vertices v E Yo.
LCM 4. This follows from remark 3.2.3 since all objects are cofi-

brant. We can also derive this from RCM 4 by the following device. It
suffices to show that 7ro hom(g, K) is a bijection for all Kan complexes
K ([15, II, Prop.4 (ii), p. 3.19]), which in turn will follow if we show
that hom(g, K) is a weak equivalence. The functor X H hom(X, K)
carries push - outs to pull - backs and carries cofibrations to fibrations
([15, II, axiom SM7, p. 2.2 and Thm. 3, p. 3.14]). That it preserves
weak equivalences, and thus reduces LCM 4 to RCM 4 is

Lemma 6.2. For all Kan complexes K,

preserves weak equivalences in S.
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Proof. Let f : X -&#x3E; Y be a weak equivalence. We can imbed this in

where X, Y are Kan complexes and u, v are acyclic cofibrations. By
axiom SM7 for simplicial closed model categories ([15, II, p. 2.2]), both
hom(u, K) and hom(v, K) are acyclic fibrations, and thus to check that
hom( f, K) is a weak equivalence it suffices to show that hom(7,K) is a
weak equivalence, so that we may assume at the outset that X and Y
are Kan complexes. But in S a weak equivalence among fibrant objects
is a homotopy equivalence. Let g : X - Y be a homotopy - inverse,
with homotopies

connecting 1, g o f and 1, f o g respectively. Observe that

all of these being Kan complexes. That being so, hom(X, K)I is a path
- object for hom(X, K) ([15, II, the proof of Prop. 5 ]). Therefore,
hom(M, K) is a homotopy connecting 1, hom( f, K) o hom(g, K).
A similar argument shows that hom(N, K) is a homotopy connect-
ing 1, hom(g, K) o hom( f, K). Therefore, hom( f, K) is a weak

equivalence, as claimed. 0

RCM5. This follows from proposition 3.5. Alternatively, one reduces
to the case where all the spaces are connected. One puts in base points.
The 5 - lemma applied to the homotopy exact sequences shows that
(a, b) induce isomorphisms

But F(pi, *)) = F(q1, *)) and F(P2, *)) = F(q2, *)) by the
Cartesian nature of the square. The 5 - lemma applied to the top rows
of the diagram gives the isomorphisms

LCM5. This follows from proposition 3.5. One can also derive it
from RCM5 by applying hom(-, K), and reasoning as in LCM4.
Theorem 6.3.



239

is a left and right homotopy theory.

6.2. Chain Complexes. Let R be a ring with unit. There are two
cases to consider.

1.) M = Ch* (R), the category of positive chain complexes of (left)
R - modules; 9 : An+1 - An, An = 0 if n  0. This is a closed
model category in which the weak equivalences are the homology iso-
morphisms (quasi - isomorphisms), the fibrations are epimorphisms in
strictly positive degree, and the cofibrations are the monomorphisms

X - Y such that Yn/Xn is a projective module for all n

2.) M = Ch* (R), the category of positive cochain complexes of (left)
R - modules; d : An -&#x3E; A n+l , An = 0 if n  0. This is a closed model

category in which the weak equivalences are the cohomology isomor-
phisms (quasi - isomorphisms), the cofibrations are monomorphisms in
strictly positive degree, and the fibrations are the epimorphisms
X - Y such that the kernel is an injective module for all n

Note that this is a slight variation of the usual axioms for chain com-
plexes that are bounded below or above . The necessity of this variation
has been noted before (see [15, II, p. 6.3]), and was pointed out to me
by Heller. One proves that these define closed model categories by the
same arguments as in the bounded cases with a careful attention to
what happens in dimension 0.

Proposition 6.4.
1.

is a left homotopy theory.
2.

is a right homotopy theory.

Proof. In both instances, LCM1 and RCM1 are easy to see.
(1) LCM2. Each pi being an epimorphism in strictly positive degrees,
so is colim pi . That colim also preserves weak equivalences is well
- known in homological algebra (filtering colim is an exact functor),
which also proves LCM3 and more.

LCM4, LCM5. These can be seen by 5 - lemma arguments. For

example, in the situation of LCM4, we obtain a diagram
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in which h is an isomorphism and f is a quasi - isomorphism. Therefore,
g is a quasi - isomorphism. 
(2) The reasoning here is similar with one exception : lim is no longer
an exact functor.
RCM2f. If each ui is a monomorphism in strictly positive degree then
so is lim ui . That it is also a weak equivalence if the ui all are follows
from:

RCM3, which we prove as follows. In any tower of fibrations

we have

since all the transition maps are epimorphisms (Mittag - Leffler condi-
tion). Also, one knows quite generally that

holds for countable inverse limits. Let f : X - Y be as in the state-
ment of RCM3. There are two spectral sequences

where R is the hyperderived functor, and we are thinking of lim as a
functor between the abelian categories ([9])

f induces a map of spectral sequences

The above remarks show that the second spectral sequences collapse
into isomorphisms:
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On the other hand, the homology isomorphisms f induce isomor-
phisms of first spectral sequences, and hence by convergence, an iso-
morphism of their respective abutments, as is well - known. Therefore,

which was to have been shown. 0

6.3. Simplicial Objects.

Proposition 6.5. Let A be a category closed under limits and colim-
its having sufficiently many projective objects and possessing a set U
of small projective generators. Let sA be the category of simplicial ob-
jects over A. Then, sA has the structure of a simplicial closed model
category, and

is a left horraotopy theory.

Proof. Quillen has shown that sA has the structure of a simplicial
closed model category ([15, II, pp. 4.1 - 4.12]) in which a map f is a
weak equivalence (resp. a fibration) if and only if Hom(P, f ) is a weak
equivalence (resp. a fibration) in S for all P E U. A map is a cofibra-
tion if and only if it has the LLP with respect to all acyclic fibrations.
We verify supplimentary axioms. LCMIa and RCMla are true by
hypothesis.

RCMlb. Since

our assumption that the Xi are fibrant means that each Hom(P, Xi)
is a Kan complex, and ditto for Hom(P, Yi). The result now follows
from RCMIb in S and the description of weak equivalences in sA.

LCMIb. This follows from proposition 3.2, proposition 3.4 and re-
mark 3.5, which also gives a proof of RCMIb.

LCM2. By the smallness of P E U we have

By our hypotheses, Hom(P, pi) are all acyclic fibrations in s, where
LCM2 is known to be true.

LCM3c. This follows from proposition 3.4.

LCMS. This follows from proposition 3.5 and remark 3.5. D
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6.4. Commutative DGAs. Let K be a field of characteristic 0. We
let A be the category of (anti) commutative differential graded algebras
over K, and Ao is the category of augmented commutative DGA’s over
K. We follow the notations and results of [3].
Proposition 6.6. 1. A is a closed model category, and

is a left homotopy theory.
2. Ao is a closed model category, and

is a left horraotopy theory.

Proof. We do the unaugmented case. That A is a closed model cat-
egory is proved in [3, §4] .The weak equivalences are the cohomology
isomorphisms, the fibrations are the epimorphisms and the cofibra-
tions are the maps that have the LLP with respect to all the acyclic
fibrations. The product is the direct product; the coproduct is the
tensor product. Note that infinite products and coproducts exist, the
infinite tensor product being the direct limit of the finite ones. Axioms
LCMIa and RCMIa are thus satisfied.

RCMIb. This follows from H(fl X;) =TT H(Xi)

LCMIb. Since filtering colimit is an exact functor, it is enough to
prove that finite tensor product preserves homology isomorphisms, but
this follows from Kfnneth’s formula

LCM2. Each pi being an epimorphism, colim pi clearly is. If each pi
is also a weak equivalence, then so is colim pi because as was already
mentioned, filtering colim is an exact functor. This proves LCM3 as
well. 

’

LCM5. Given squares as in the statement of LCM5 we apply the
functor

where F is the function space construction of [3, §5]. Note that
a) F(-, Y) carries cofibrations to fibrations; F(X, Y) is a Kan com-
plex if X is cofibrant. [3, Prop. 5.4].

b) F(-, Y) carries weak equivalences among cofibrant objects into
weak equivalences. [3, Prop. 6.6].
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c) F(-, Y) carries push - outs to pull - backs.
To see this last point, note that [3, Lemma 5.2] implies that F(-, Y)
applied to a push - out yields a square that has the Cartesian mapping
property relative to all finite simplicial sets. But a square with this

property truly is Cartesian because every simplicial set is a direct limit
of its finite subcomplexes.

Hence applying F(-, Y) to the diagram LCM5 in A gives a diagram
RCM5 in S, which in turn shows that

is a weak equivalence of spaces. We get a bijection therefore

But the D’s being cofibrant (and all objects are fibrant) we have

This holds for all Y and so d : D1 -&#x3E; D2 is invertible in the homotopy
category and since ,A is a closed model category this shows that d is a
weak equivalence as claimed. 0

We give a second proof of LCM5 by a different method. Let us say
that a morphism X -&#x3E; Y has the Eilenberg - Moore property (EM) if
in every push - out

the natural map

is an isomorphism. See [3, 10.4]. Here Tor is the differential torsion

product.

Proposition 6.7. Every cofibration in A or Ao is EM.

Before beginning the proof, let us derive LCM5 from it. By the
fundamental mapping theorem of [10, Cor. 1.8] the homology isomor-
phisms Ha, Hb, He induce an isomorphism

and hence an isomorphism Hd since A1 - Bl and A2 - B2 are given
to be cofibrations.
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Proof. We do the unaugmented case. We will first show that the class
of EM morphisms are closed under the operations:

a) Composition 

b) Cobase change

c) Filtering direct limits

d) Retract

e) Tensor product

Recall that Torx (C, Y) is computed as H (S xX Y) where S -&#x3E; C is
a K3nneth resolution as differential graded X - modules (terminology
as in [10, pp. 2 - 3]).
a) Consider

where the top arrows are EM and each square is a push - out. We thus
have isomorphisms

Let S - C be an X-module Kfnneth resolution. Then by the above,

is a homology isomorphism of Y- modules. Therefore by the mapping
theorem of [10] there is an isomorphism

Let T - Z be a Kfnneth Y-module resolution. Then

where the last isomorphism follows from the mapping theorem already
mentioned. Combining these gives the desired Torx (C, Z) = H E.
b) The argument here is very similar to the proof of a).
c) This follows from the fact that both homology and tensor product
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commute with filtering direct limits.
d) This is easy.
e) This follows from a) and b), because a morphism

is a composition of the cobase extension of Xi - Yl along X1 -&#x3E;
X1 x X2 with the cobase extension of X2 - Y2 along X2 - Y, x X2
One can generate all the cofibrations using the above operations

starting from the elementary cofibrations

See [3, pp. 20 - 22], whose notation we are following. Therefore it
suffices to show that all these elementary ones are EM. For a), b), and
those of c) with m &#x3E; 1 this follows from [3, Lemma 10.6]. It only
remains to verify the EM property for S(1) -&#x3E; T(0). The argument
in loc.cit. does not apply because S(1) being not simply connected,
one does not have naive convergence of the Eilenberg - Moore spectral
sequence. One can show however that T(0), regarded as a differential
graded S(1)-module is a distinguished, split object, and therefore a
Kfnneth resolution of itself. [10, pp. 2 - 6] The required

then results essentially from the definition of Tor. In more details: we
follow the notations of [10] by defining

where a2 = c2 = 0 and db = c. The natural map S(1) -&#x3E; T(0) sends a
to c. Define

Then

The filtration

is by sub differential U - modules. Define
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so that

In the decomposition of the differential we have simply

Finally, the complex

is easily seen to be a resolution. 0

Here is a third proof of LCM5 in case all the objects involved are
augmented and connected. By [3, 6.14] we have a long exact homotopy
sequence

and a map to a similar one for A2, B2, C2, D2. By the Whitehead
theorem of [3, 7.10] the isomorphisms Ha, Hb, Hc give rise to homotopy
isomorphisms 7ra, 7rb, 7rc. By the 5 - lemma, we obtain isomorphisms

But then another appeal to the Whitehead theorem gives the sought -
for isomorphism

Remark. It might be wondered whether one can prove LCM5 by
appealing to Proposition 3.5. In other words, produce a cylinder object
with the required properties. This appears to be impossible for the
following reason. Let K be a finite simplicial set. Then, the construct
X x AK of [3, Lemma 5.2] is not an ob ject X x K in the sense of [15,
Axiom SM7, II, p 2.2] but it is an object XK in that sense. One can
ask whether an object X x K exists at all in the category of differential
graded algebras, or in other words, whether the functor X -&#x3E; X K has a
left adjoint. This is false because that functor does not preserve inverse
limits (tensor product does not commute with products).

7. APPENDIX : REEDY’S THEOREMS

Throughout the following, M will denote a closed Quillen model
category. We begin with a characterization Qf the weak equivalences
among fibrant or cofibrant objects
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Proposition 7.1. 1. Let A, B be cofibrant objects of M. Then,
f : A - B is a weak equivalence if and only if any lifting problem

where p is a fibration can be solved to the extent that w exists with

p o w = v and there is a left homotopy H : u N W 0 f such that
p o H is stationary.

2. Let X, Y be fibrant objects of .M. Then, f : X - Y is a weak
equivalence if and only if any lifting problem

- 

u 

where i is a cofibration can be solved to the extent that w exists
with w o i = u and there is a right homotopy H : v N f o w such
that H o i is stationary.

Proof. We do (2). (=&#x3E;) We can factor f as

with j an acyclic cofibration and k an acyclic fibration. Since X is

fibrant, we have a retraction r for j and a homotopy : 1 ej 3 o r
stationary on X, as may be seen by considering the diagrams :
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Moreover, it is easily verified that the path object Pw may be chosen
to be compatible with a given path object on Y in the sense that we
have a diagram:

Finally, find a lift in

and define w = r o m and H = I - K o m, which have the required
properties.

(=) Suppose that f has the stated property. Then f induces a
monomorphism of left homotopy classes

since we can find K in every diagram

with K o a A = (at, a2). f also induces an epimorphism of right homo-
topy classes

when A is cofibrant because we can always find v in

with u l1J f o v. But when A is cofibrant and X, Y are fibrant these
sets of right and left homotopy classes coincide with Ho(,M)(A, X),
etc. so that we see that f induces a bijection of homotopy classes of
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morphisms when A is cofibrant, which shows that f becomes invertible
in the homotopy category. Since M is a closed model category, this
shows that f is a weak equivalence. D

Proposition 7.2. 1. In a push-out diagram

in which i is a cofibration, A and C are cofibrant, and f is a
weak equivalence, we have that g is a weak equivalence. Therefore,
axiom LCM4 holds among the cofibrant objects of ,M.

2. In a pull-back diagram

in which p is a fibration, A and C are fibrarct, and f is a weak
equivalence, we have that g is a weak equivalence. Therefore, ax-
iom RCM4 holds among the fibrant objects of M.

Proof. We do (2). We are going to apply the criterion of 7.1. Consider
a diagram

in which i is a cofibration. Our assumptions and that proposition imply
that we can find a map w : V -&#x3E; C with w o i = q o u and a homotopy
H : V -&#x3E; PA, p o v ~ f o w stationary on U. It is easily seen that we
may choose a path object on B that has the additional property that
there is a natural projection

which is a fibration. From this is derived a map

where the fiber product is taken relative to the first projection rr1 : PA
- A, which because A is fibrant is an acyclic fibration, and we can
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see that 01 is an acyclic fibration as follows : The map

is an acyclic fibration by base - extension. B being fibrant, 7r, : PB
-&#x3E; B is an acyclic fibration, and it factors as

where T is the map with components (prl 0 prl,pr2). This shows that
B1 = T o B is a weak equivalence. To see that it is a fibration, note the
Cartesian square :

which shows that T is a fibratiorl. Define K as a lift in

and we define

One checks that x o i = u, that K is a homotopy v r~ g o x, stationary
on U, which shows that g is a weak equivalence by 7.1. 0

Proposition 7.3. Axioms LCM5 and RCM5 hold in any closed model
category.

Proof. We do RCM5, whose notations we follow. Consider the dia-

gram :
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E2 is defined by factorization f2 = I; 0 f2 with f2 a fibration and f2’
an acyclic cofibration. Ei is defined by base - extension along a. An
application of 7.2 shows that e is a weak equivalence. The arrow Ii (not
pictured) exists and is therefore a weak equivalence, since c, f2, and e
are. Fl , F2 are defined by base - extension along pi, p2, respectively.
The arrows g’1, g’ exist, and the top front and back rectangles are
Cartesian, by cancellation of Cartesian squares. Two applications of
7.2 gives that g’ and g2 are weak equivalences. Therefore, d will be
a weak equivalence if and only if f is a weak equivalence, so we are
reduced to the situation of the lower half of the cube. But now the

diagram

which is the diagonal of that lower half, is a Cartesian square because
it is a composition of the front lower face and ,the right side face. It is
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also the composition of the back lower face, which is Cartesian, and the
left side face, which is therefore Cartesian, by cancellation of Cartesian
squares. As g1" and g2 are fibrations, one more application of 7.2 shows
that f is a weak equivalence.

0

Remark The above argument shows that RCM5 holds in every fibra-
tion category in the sense of [2]. The only change to make is that f’2 is
merely a weak equivalence. The point is that 7.2.2 holds in a fibration
category. For the same reason, LCM5 holds in a cofibration category.
The following crucial fact is given without proof in [17].

Proposition 7.4. 1. Let

be a sequences of cofibrations with each An cofibrant. Then :
(a) We can choose cylinders Zn on the An so that

commutes, and

(b) for all n,

is a cofibration.
(c) Assume that sequential colimits exist in ,M. For cylinders

chosen as in a) and b), Z = colim Zn is a cylinder on A =
colim An.

2. Let

be a sequence of fibrations with each Bn fibrant. Then :
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(a) We can choose path objects Pn on the Bn so that

commutes, and

(b) for all n,

is a fibration.
(c) Assume that sequential limits exist in M. For path objects

chosen as in a) and b), P = lim Pn is a path object on B =
lim Bn.

Proof. We do (2). The construction of the P’s is easily done by induc-
tion. To prove c), we must show that liman is a weak equivalence and
that lim 7rn is a fibration. The last statement follows immediately from
2.6. The Bn being fibrant, the projections

are acyclic fibrations. Because the composition

is the identity, lim o-n will be a weak equivalence if and only if lim 7rI n
is one. In fact, we will prove as an application of 2.6 that lim rr’n is
an acyclic fibration. The only new point to be checked is that the
canonical maps 

(fiber product taken with respect to rr’n) are acyclic fibrations. Since
the pn are fibrations, this point has already been verified in the proof
of 7.2 (see the argument showing that (31 is an acyclic fibration). 0

Corollary 7.5. In any closed model category in which sequential col-
imits exist,
LCM3c holds. In any closed model category in which sequential limits
exist, RCM3f holds.
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Proof. We do the second one.
(first proof, Reedy) We will use the criterion of 7.1. It can be shown

that one can choose the Wn in

and the right homotopies Hn: B -&#x3E; Pn = path object on Yn compatibly
as n varies, and so that the conditions of 7.4 are satisfied. Therefore
we get maps

where the target of the latter really is a path object, satisfying all the
conditions of 7.1.

(second proof) The very same argument that was used in proving 3.4
works, but replace the functorial path object used there by a sequence
of path objects satisfying the conditions of this proposition.

0
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