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MEASURE CHARACTERISTICS OF COMPLEXES
by B. de SMIT

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume,UffllI-1 (1996)

Résumé. Nous donnons une version du lemme du ser-

pent en théorie de la mesure des groupes abéliens loca-
lement compacts. Cette version utilise la notion d’ho-
momorphisme topologique strict et la notion d’exac-
titude de mesure. Grâce à ce lemme, les méthodes
d’algèbre homologique peuvent être appliquées dans
le contexte de l’analyse harmonique abstraite. On en
déduit des résultats sur les caractéristiques des com-
plexes de groupes abéliens localement compacts avec
des mesures de Haar.

1. Introduction.

For a bounded complex of abelian groups with finite homology groups
the Euler-Poincaré characteristic is the alternating product of the size
of the homology groups. The object of this paper is to develop an
analog of the Euler-Poincaré characteristic for complexes of locally
compact abelian groups with Haar measures. This entails proving a
measure-theoretic version of the snake lemma.

The main applications we have in mind are in algebraic number
theory. Many important invariants one associates to number fields,
such as the idele class group, are locally compact groups with a nor-
malization of the Haar measure. One often manipulates with such
groups by using exact sequences, and to keep track of what happens
to the measures one needs a theory of measure characteristics. Re-
cently there has been more interest in the Arakelov class group [8, III,
(1.10)] of a number field. By using volume characteristics of complexes
of such groups one can prove class number relations [4]. All results in
this note will be formulated without any reference to number theory.
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Under the assumption that all groups are countable at infinity,
Oesterlé defines a volume characteristic of bounded complexes with
finite homology groups [9]. By dropping these assumptions we can run
into certain anomalies of a purely topological nature, namely non-strict
homomorphisms. We will address this in the next section, and we will
need some arguments concerning strictness that go slightly beyond
Bourbaki [3, chap. III, §2.8].

In section 3 the measure-theoretic snake lemma is proved by a
purely category-theoretic reduction to a much easier case of a 3 x 3
diagram (a short exact sequence of short exact séquences) -

In section 4 we define measure characteristics of complexes and
show that they are multiplicative over short measure exact sequences
of complexes. As a special case we recover results used by Lang in his
book on Arakelov geometry [7, chap. V, §2].

2. Strict morphisms of topological abelian groups.

All objects in this section are topological abelian groups and a mor-
phism f : A --+ B is a continuous group homomorphism. We say f is
strict if the map from A onto its image I in B (with relative topology
from B) is an open map. In other words, f is strict if and only if the
continuous bijection A/ Ker f --+~ I is a homeomorphism. This defini-
tion of strictness can also be found in Bourbaki [3, chap. III, §2.8]
and in [11, exp. 1, §3.1]. One word of caution: a composition of strict
morphisms need not be strict, as one can see by considering the maps
Zqi C R --+ R/Z. A sequence of morphisms is said to be strict if all
morphisms in the sequence are strict.

A continuous bijection from a compact to a Hausdorff topological
space is a homeomorphism, so any morphism from a compact group
to a Hausdorff group is strict. In the context of Oesterlé [9] one only
considers Hausdorff locally compact abelian groups which are count-
able at infinity, i.e., a countable union of compact subsets. One can
show that a morphism between such groups is strict if and only if it
has a closed image [3, chap. IX, §5.3].
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(2.1) Lemma. be morphisms. If f is strict and
surjective then

If g is strict and injective then

Proof. For the first statement one notes that the open sets of B are

exactly the images of open sets of A. The second statement follows
from the fact that the map f (A)g( f (A)) is a homeomorphism. D
(2.2) Proposition. Suppose we have a commutative diagram of mor-
phisms

with strict exact rows. Let s be the group homomorphism Ker cp" --+
Coker cp’ from the snake lemma; see (3.5) below. Then the following
hold:

(1) if s is surjective and p is strict, then p" is strict;
(2) if s is injective and cp is strict then Sp’ is strict;
(3) if s is the zero map and p’ and p" are strict, then cp is strict.

Before giving the proof of (2.2), we point out an example of a diagram
that shows how non-strict maps can occur in this context. All vertical

maps are injective, and one map is non-strict. The map s is the zero
map (which is injective).

Proof of (2.2). The hypothesis that the rows are strict allows us to
view the injections A’ -3 A and B’ - B as inclusions of topological
groups.
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We first make the following remark: if X C Y C Z are inclusions
of topological groups, then the canonical map Y/X --&#x3E; Z 1 X is strict.
One can see this by writing the preimage U in Y of an open subset U
of with 0 open in Z. We then have l

so that U is the intersection of Y/X and the image of 0 in Z 1 X.
We first show (1). The surjectivity of the snake map means that

B’ C cp(A). Since cp is assumed to be strict, the map A --&#x3E; cp(A)/B’ is
a strict surjection. By the remark above, the map p(A) /B’ - BIB’
is strict, and with (2.1) we see that the map A - B/B’ is strict. The
map B/B’ --+ B" is a topologically isomorphism and the map A --&#x3E; A"
is strict and surjective. With (2.1) it follows that cp" is strict.

The hypothesis of (2) implies that Ker cp C A’. Again using the
remark above, one sees that the map A’/ Ker cp --+ A/ Ker cp is strict.
By applying (2.1) twice, and using that cp is strict, we see that the
composition 

_

is strict. Since B’ --+ B is a strict injection, a third application of (2.1)
shows that cp’ is strict. This shows (2).

For (3) we need to show that cp is open on its image, so for an open
neighborhood U of 0 in A we want that cp(U) is a neighborhood of 0
in cp(A). Let Uo be an open neighborhood of 0 in A with Uo + Uo C U.
Since cp’ is strict, we have cp(A’ n Uo) = cp(A’) n 0 for some open
neighborhood 0 of 0 in B. Let Oo be an open neighborhood of 0
in B with Oo - Oo C O. Let the subset X of cp(A) be defined as

then we have

Thus, we are done if we can show that X is open in cp(A). Denote the
map A --&#x3E; Ali by f . Since Uo n cp-1 (O0) is open in A, and the map f
is open, it follows that the set V = f (Uo n cp-1 (O0)) is open in A".



7-

Note that Since p" is strict, the set p"(V) is open
in cp"(A"). Denoting the map p(A) - cp"(A") by g, we deduce that
g-’(V"(V» = X + Kerg is open in cp(A). By some simple diagram
chasing, one checks that our hypothesis that s = 0 is equivalent to
Kerg = cp’(A’). But we have X = X + cP’(A’), so this implies that X
is open in cp(A). D

(2.3) Proposition. Suppose we have a commutative diagram of mor-
phisms

in which all rows and columns are exact. If five of the six exact se-

quences are strict then so is the sixth.

Proof. The case that the sixth sequence is the middle row or middle
column follows from (2.2) part (3).

So assume that the middle row and column are strict. It is clear
from (2.1) that the maps out of A’ and the maps into C" are strict.

Consider the following diagram with strict exact rows

where B’ x A has the product topology, and f is the sum map. The
snake map for this diagram is the surjective zero map, so by (2.2) part
(1) and (3) the strictness of f is equivalent to the strictness of the map
A - B", and, by symmetry, it is also equivalent to the map B’ --+ C
being strict.



The fact that there is at most one non-strict row or column, and

(2.1) now implies that A --+ B’ or B’ -&#x3E; C is strict. But then f is

strict, so both A - B’ and B’ --+ C are strict. Using (2.1) again it
follows that all incoming and outgoing maps of C’ and A" are strict
homomorphisms. D

(2.4) Remark. Suppose all maps in the diagram in (2.3) are strict.
We view A’, A and B’ as subgroups of B so that A" and C’ can be
identified with subgroups of B/A’. The map f in the proof above is
strict, and one can deduce that the canonical exact sequence

is strict.

3. Haar measures and the snake lemma.

Let G be a Hausdorff locally compact topological abelian group. A
Haar measure on G is a translation invariant non-zero measure on

G, for which all open sets are measurable, and all compact sets have
finite measure. If F(G) denotes the real vector space of real valued
continuous functions on G with support inside a compact subset of G,
then the Haar measure can be viewed as an R-linear map F(G) -+
R sending f to fa f (g)dg. The Haar measure on G is unique up to
multiplication by a positive real number. We refer to [5], section 11
and 15, and to Bourbaki [2, chap. VII] for the precise statements and
proofs.

We say G is a measured group if G is a Hausdorff locally compact
topological abelian group equipped with a choice of Haar measure.
If G is a compact measured group then its volume is defined as the
measure of the whole space, i.e., vol(G) = fG ldg. A strict morphism
of measured groups has a closed kernel and image [3, chap. III, §3.3].

(3.1) Quotient measures. Suppose that H and G are measured
groups, and that H is a closed subgroup of G. Then G/H is Hausdorff
and locally compact, and we will show how to give it a natural Haar
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measure. A function f E F(G) on G induces a function f on G/H
defined by

where x is a representative of x in G. Note that f (x) does not depend
on the choice of x as the measure on H is translation invariant. Further-

more, f has support inside a compact subset of G / H so f e F(G/H).
The quotient measure on G / H is the unique Haar measure on G / H
for which

(3.2) Measure characteristic of short exact sequences. Suppose
we have a strict exact sequence of measured groups

(S)

The isomorphism G’ ---+~ Ker cp is a homeomorphism, so we can give
Ker p the Haar measure of G’. Uniqueness of the Haar measure im-
plies that the topological isomorphism G/ Ker p --+~ G" identifies the
quotient measure on G/ Ker p with c times the measure on G" for a
unique constant c e R&#x3E;0 . This constant c is called the measure char-
acteristic of (S), and we denote it by k(S) . Oesterlé [10] calls c-’ the
"Haar index." If k(S) = 1 then we say (S) is a measure exact sequence.
If G is compact, then so are G’ and G", and

The following proposition resembles Oesterlé [10, A.4.2]. Oesterlé im-
poses stronger topological conditions, but he also allows non-abelian
groups.
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(3.3) Proposition. Suppose we have a commutative diagram

in which all rows and columns are strict short exact sequences of mea-

sured groups. Then we have

Proof. We will identify Ai, Ai and A2 with their image in A2. The
idea is to compute the integral of a function f E F(A2) in two ways.
For a e A22 and (x, y) E Ai x A13 we put

where ài and y are lifts in Ai and A2 of x and y. Note that ga(x, y)
does not depend on the choice of the lifts. Now consider the strict

exact sequence of (2.4):

We have ga(x, y) = f (a + x + y), where / E X(A22) /A11) is the function
induced by f as in (3.1), and a is the image of a in A22/A11. It follows
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that 9a E F(A3 x A13). The statements of (3.1) now tell us that for
u e A33 the integral

where îi is any lift of u in A22, does not depend on the choice of û and
that we have g e F(A33).

We now rewrite the integral fAz f (a)da by first using the middle
column, and then the outer rows:

By Fubini’s theorem [5, (13.8)] this is equal to

The same is true with rows and columns switched. By choosing a
function f whose integral over A2 is not zero, we get the equality
stated in (3.3). D

(3.4) Long measure exact sequences. Suppose we have a strict
exact sequence

of measured groups, with almost all Ai equal to the zero group of
volume 1. For each i, choose a Haar measure on the image Bz of Ai-1
in Az such that almost all Bi are the zero group of volume 1. We have
strict short exact sequences of measured groups
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and we define the measure characteristic K(A.) to be

This does not depend on the choice of measures on the Bi, because
changing the measure of Bi by a factor c E R&#x3E;0 changes both K(Si) and
k(Si-1) by a factor c-1. We say that A, is measure exact if K(A.) = 1.
It is easy to see that that K(A.) = lTi vol(Ai)(-1)i if all Ai are compact.

(3.5) The snake lemma. We briefly recall the snake lemma as given
in Atiyah-Macdonald [1, prop. 2.10]; see also Lang [6, chap. II, §9].
Suppose we have a commutative diagram of abelian groups, with exact
rows and columns

The snake lemma asserts that we have a canonical exact sequence

where the "snake map" K3 - Ci is defined as follows: take an element
of K3, find its image in A3, lift it to A2, map it to B2, lift to B1 and
map to Cl.
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(3.6) Theorem.
(1) Suppose that the groups in the diagram are topological groups

and that the maps are strict continuous homomorphisms. Then
the maps in the snake sequence (S) are continuous and strict.

(2) Suppose that the diagram consists of measured groups and strict
homomorphisms, and that the rows and columns are measure ex-
act. Then the snake sequence (S) is also measure exact.

Proof. Note that for continuity of the map K1--+ K2 we need strict-
ness of the map K2 - A2. For any commutative square of continuous
homomorphisms of topological groups

we have induced continuous maps Ker cp--+ Ker cp’ and Coker cp--+
Coker V’. This shows continuity of all maps in (S) except for the snake
map.

In a purely category-theoretic way one can build up the snake
diagram from five diagrams of the type considered in (2.3) and (3.3).
Thus the proof will be a reduction to (2.3) and (3.3).

First fix some notation: Ii is the image of Ai in Bi and for X
equal to the letter K, I or C, we let KX be the kernel of X2 -&#x3E; X3,
and we let CX be the cokernel of Xi - X2. We can choose topologies
(measures) on these groups so that in the following two diagrams the
short exact rows and columns are strict (measure exact):
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Let H be the cokernel of the map K2 - K3 and give it the topology
(measure) that gives the following diagram strict (measure exact) rows
and columns:

We now deduce that the top row in the left diagram below is strict
(measure exact), and that the bottom row in the right diagram is strict
(measure exact)

Our snake sequence now consists of four short strict (measure exact)
sequences. This proves (3.6). D

(3.7) Remark. Suppose that the rows RA and RB and the columns
Pl, P2 and P3 of the snake diagram are strict exact sequences of mea-
sured groups, without assuming that they are measure exact. In order
to consider measure characteristics we need to fix the parity of indices
in these sequences, so let the index be 1 at Ki for the columns, at A1
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and Bl for the rows and at Kl for the snake sequence (S). Then one
has

To see this one can either go through the proof of (3.6) again, or one
can reduce to case we proved already by changing the measures on the
groups in order to obtain measure exact rows and columns and keeping
track of the effect of the measure changes on all measure characteristics
involved.

(3.8) Remark. By modifying A, and B3 one can easily generalize
this snake lemma to the following diagram

where n  1 and m &#x3E; 3. One obtains a snake sequence

Again, strictness of the diagram implies strictness of the snake se-
quence. In the measure-theoretic setting one can formulate the re-
sult as follows: if we fix indexing parity on the snake sequence by
giving Ki index 1, then the characteristic of the snake sequence is

K(AO)K(BO)-1K(P1)K(P2)-K(P3) with Pi as in (3.7).
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4. Measure characteristics on complexes.

A complex is a collection of abelian groups Ai with i e Z, with maps
d2: Ai -+ Ai+1, such that di+1 di = 0 for all i. By a measured complex we
mean a complex A, of measured groups for which all di are strict and
almost all Ai are the zero group of volume 1. Suppose A, is a measured
complex. Let Zi be the kernel of di, and let Bi be the image of di-le
The ith homology group of A, is defined to be Hi(AO) = Zif Bi, and
it is again locally compact. We have strict exact sequences

If we fix indexing in (S:) by Si = Zi, and choose Haar measures on all
Zi and Hi (making almost all of them zero groups of volume 1) then
we can use (3.4) to define the measure characteristic of A. to be

Now x(A,) does not depend on the choice of measures on Zi but it
does depend on the measures on Hi (AO) .

(4.1) Exact sequences of complexes. Suppose we have a short
measure exact sequence of measured complexes 0 --&#x3E; A’O -&#x3E; A, -
AO" -&#x3E; 0. By this we mean that for each z we have a sequence 0 -

A’i---+ Ai -+ Ai’ --&#x3E; 0 as in (3.2), such that the diagram

commutes for each i. The most fundamental result of homological al-
gebra [6, chap. XX, §2] says that a short exact sequence of complexes
gives rise to a long exact sequence
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(4.2) Theorem. The sequence (HO) is strict. Moreover, if we fix in-
dexing parity by setting H0 = Ho (Aé), and we choose Haar measures
on all homology groups (making almost all of them zero groups of
volume 1), then

Proof. The proof of (4.2) is by repeated application of the snake
lemma. Let Zi be the kernel of the map Aj - Ai+1, and define Z’i,
and Zr similarly. Also choose Haar measures on all Zi, Zi’ and Zi",
giving almost all of them volume 1. We show by induction that for
each i we have a strict long exact sequence

and we keep track of its measure characteristic. For sufficiently large
i this sequence consists of only zero groups of volume 1 and for suffi-
ciently small i it is identical to 11.. The reader may finish the proof
by applying (3.8) to the diagram
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(4.3) Global measure characteristic. If the homology groups of a
measured complex A, are compact, then we can give them measure
1, and the corresponding value Xgl(AO) of X(AO) is called the global
measure characteristic. This characteristic is the best measure of size,
in the sense that we have

if all Ai are compact. The theorem above implies that xgl is multiplica-
tive over short measure exact sequences of measured complexes with
compact homology. Moreover, strictness of the homology sequence im-
plies that if two of the three complexes in the theorem have compact
homology, then so does the third.

In Lang [7, chap. V, §2] this characteristic occurs in the following
context. Let M be a finitely generated abelian group with a given Haar
measure on M oz R (with the Euclidean topology). Giving M the
discrete topology and counting measure, we can consider the complex
CM : 0 --+ M - M xz R--+ 0. The characteristic xgl (CM ) is the ratio
of the covolume of the image of M in M x R and the order of the
torsion subgroup of M. Lang also shows additivity over short measure
exact sequences.

(4.4) Local measure characteristic. If the homology groups of a
measured complex A, are discrete, then we can give them the counting
measure, and the corresponding value Xloc(AO) of X(AO) is called the
local measure characteristic of A, . This characteristic keeps track of
local blow-up factors in the measure. For instance, if A1 = A2 = R/Z
with d1 (x) = 2x and all other Ai are the zero group of volume 1, then
xgl (A. ) = 1, but xlo (AO ) = 2. Note that Xi.c is multiplicative over
short measure exact sequences of measured complexes with discrete
homology. Again, strictness of the homology sequence implies that if
two of the three complexes in the theorem have discreté homology,
then so does the third.

If A, has finite homology, then we have
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where x# is the usual Euler-Poincare characteristic given by

(4.5) Duality. Under Pontrjagin duality [5, chap. VI], compact groups
are dual to discrete groups. The dual of a strict morphism is again
strict [11, exp. 11, §6.1]. Moreover, the dual of a measured group has
a dual measure, which is the measure for which the Fourier inver-
sion formula holds. The dual of the volume-one-measure on a compact
group is the counting measure on its dual. It is not hard to see that
dualizing a measured short exact sequence inverts the measure char-
acteristic. Taking the dual of a measured complex A with compact
homology groups and replacing the indices i in the resulting sequence
by -i, we obtain a measured complex A with discrete homology, and
we have

If the homology groups are finite we deduce that

This statement can also be found in Oesterlé [9, §3].
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