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FRAMED BICOBORDISM

by Paul CHERENACK

CAHIERS DE TOPOLOGIE ET 

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XXXVI-4 (1995)

Resume. La Topologie algébrique a 6t6 a la source de la
th6orie des categories et par le cobordisme Poincar6 en un cer-
ta,in sens a fond6 la topologie algébrique. Ici nous introduisons
le cobordisme dans un cadre cat6gorique. En remplacant les
sous-variétés encadr6es par des applications encadr6es, nous
6tendons la construction de Thom dans le cadre du cobor-
disme. Hardie a introduit la cat6gorie des paires d’homotopie
pour étudier 1’homotopie des groupes d’applications continues.
Ici, nous consid6rons la cat6gorie des paires de cobordisme et
6tendons la construction de Thom dans ce cas. Boardman et
Steer comparent les constructions de cobordisme encadr6 aux
constructions en cohomotopie. Nous 6tendons ces correspon-
dances au cas des paires pour les suspensions. Finalement,
utilisant le travail de Hardie et Jansen, nous d6terminons cer-
tains groupes de cobordisme encadr6 stables.

Introduction.

In §0 we make our basic definitions and prove some fundamental
results. We first replace and extend the notion of framed manifold
by introducing the notion of framed mapping, essentially using the
Thom construction as motivation. In the same way the notion of
framed cobordism of framed maps is introduced. Here, however, we
are forced to use the reals R instead of the unit interval I and drop,
for manifolds with boundary appearing in the definition of framed
cobordism between framed maps, the requirement that submanifolds
are neatly imbedded. We show, modelled on a proof in Hirsch [6]
that framed cobordism of framed maps is essentially just homotopy.
Some of the fundamental results shown in §0 seem to be known but for
lack of an explicit reference we prove them here. We then introduce
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the homotopy pair category due to Hardie [6] and, correspondingly
but with some necessary change, the cobordism pair category. We
extend Thom’s bijection relating framed cobordism classes in a smooth
manifold X to the cohomotopy of X in the enlarged situation described
ill §0. Let P be a point of 5l" , the k sphere. Then, Thorn’s construction
tells us, without much difficulty, that there is a bijection

where PCOBk(X, P) is a set of proper framed maps replacing the
set of framed submanifolds of X modulo framed cobordism in each
case and IIk(X, 00) is the cohonlotopy of X. This result extends to

the case where P is replaced by an arbitrary framed submanifold of X
provided that the boundary of X is compact. The non-based version of
this result follows more simply. Extending to the pair case, we show
in Theorem 1.7: Let 9 : (Ej, U) --+ (Ek, P) be a framed map. Let

f : X -+ Y be a closed embedding where Y does not have boundary
or let f : X-+ Y be a submersion. Suppose that 8X is compact or U
is a one point set. There is a bijection

where CPC k(f , g) is a subset of the hom-set CPC(F , g) of the cobor-
dism pair category CPC and HPC( f, g) is the hom-set in the ho-

motopy pair category HPC. No counterexamples have been found to
show that this result does not hold for arbitrary X , Y and f . In §2
we extend this last result to the case where g : (W, D) --+ (Z, E) is an
arbitrary framed map where D and E are compact. We also obtain a
bijection between the homotopy group IIn(Y, yo) of a smooth manifold
Y (n &#x3E; 0) and a certain class of framed maps from R’ to Y. Next,
in §3, following the pattern developed by Boardman and Steer [1], in
ordinary framed cobordism, we interpret suspension in pair homotopy
in terms of pair cobordism. The methods here are not always straight-
forward but a more categorical approach sometimes makes them more
natural. This list of interpretations can probably be extended to cor-
respond to that treated in [1]. Finally, in our last section, using the
work of Hardie and Jansen [5], we are able to state explicitly the na-
ture of stable cobordism groups Fk(g) were 9 : E3 -+ E2 is the Hopf
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map. For function spaces the topology we refer to is the Whitney Coo
or strong topology. The notation f ML A means that f is transversal
to A at the points of L. If L is omitted, then A = L. We will refer
the reader to specific parts of Hirsch [6] to justify the more difficult
steps that we take; the reader should refer to [6] for basic definitions

and results which may be used here without reference.

0. Basic definitions in framed bicobordism.

Let f : X -+ Y be a smooth map of manifolds. We assume at the
outset that all of our manifolds have empty boundary. Suppose that U
(resp., V ) is a framed submanifold of X (resp., Y) such that f -1 (V) --
U and f m V. We do not assume that U or V are compact. Then, we
write

and call f a framed map if via f the framing on V pulls back to the
framing on U. The pair (X, U) is sometimes referred to as an inframed
submanifold of X (meaning U is framed in X). We change the usual
definition of framed cobordism which uses the unit interval in order
to avoid talking later about boundaries of boundaries. Thus, two
inframed manifolds (X, U) and (X, U’ ) are framed cobordant if and
only if there is an inframed submanifold (X x R, U* ) such that (X x
0, (X X 0)nU*) (resp., (X X 1, (X X 1)NU*) ) is an inframed submanifold
with framing induced from U* isomorphic to (X, U) (resp., (X, U’ )).

Letf : (X, U) -&#x3E; (Y, V) and g : (Y, V) -&#x3E; (Z, W) be framed maps.
Then, f -1 ( g -1 ( W ) ) = U and g o f m W . Furthermore, via 9 o f the
framing on W pulls back to the framing on U. Thus, ordinary compo-
sition makes framed maps into a category FR, the category of framed
maps. The definition here corresponds roughly with a definition in
Stong [10,p.17]. Let f : (X, U) - (Y, V) and g: (X, U’ ) -&#x3E; (Y, V’)
be framed maps. We say that f and g are framed cobordant or just
cobordant and write f cob g if there is a framed cobordism between
(Y, V) and (Y, V’ ) and, for some framed cobordism V* from V to V’,
there is a framed cobordism U* from U to U’ and a framed map
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such that F X R|X x0 = f and F X Rlxx1 = g . Note that instead of
writing the identity on R we simply write R . Equivalently, one could
use here the closed unit interval instead of the reals. For manifolds

with boundary, R must be used (not I), we require that, for maps
suck as /, the submanifold U and V are neatly imbedded in X and
Y (see [8]),respectively, but unfortunately must drop the requirement
that U* and V* be neatly imbedded in X X R and Y X R, respectively.
In the next result we relate cobordism to homotopy.

Proposition 0.1. Suppose that X and Y are inframed manifolds
without boundary.
a) Framed maps f and g from X to Y are framed cobordant (using

I instead of R) with U* neatly irnbedded in X X I if and only if
there is a neat cobordism between the codomains of f and g and
a homotopy G : X x I - Y x I such that G(x, 0)= (f (x), 0),
G(x, 1) - (g(x),1) and G(x, t) = (G’(x, t), t) for a continuous
function G’ : X X I --+ Y. The cobordism between f and g can be
chosen arbitrarily close to G in the strong topology .

b) If F and G define cobordisms (using R) with neatly cobordant
codomains between the framed maps f and g, and F and G a,re
sufficiently close in the strong topology, then F and G are smooth
homotopic to one another.

Proof. a) The one direction is clear. From a result in Thom [11 ]ole
can assume that G’ is Coo and arbitrarily near the original G’ . For a
subset W of a set Z x I we define Wt = W n Z X {t}. One needs to
show that one can find a smooth G of the form G( x, t) = (G’ (x, t), t)
such that G(x, 0) - (f (x), 0) and G(x, 1) = (g(x),1) where G x V*.
The form of G implies that G-1 ( V * ) is a neat inframed submanifold
of X X I with framing induced from the framing of V*.

Next, following Hirsch (see [8,p.75]), for smooth manifolds X and
Y, a COO mapping class on (X, Y) by definition is a function T on the
set of tuples (L, U, V) where.U is open in X X I, V is open in Y X I
and L is a closed subset of U . Let Coo ( U, V ) * * be the set

if defined }
where Coo(U,V)* is the set
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We will first assume that T(L, U, V) = Y L(U, V) C C°°(U, V)** for
all ( L , U, V ) .

Next, we require a localization axiom: if f2 C Y(Li, Ui, Vi) =
Y Li(Ui, Vi), f E COO(U, V)**, L C ULi and f = f2 on a neighborhood
of Li, then f E Y L(U, V).

We finally require that T be rich: there are open covers VX and
VY of X x I and Y X I such that, for K C U compact, one has
YK(U, V) is dense in Coo(U,Y)* * for the weak topology. Let now

YL(U,V) = {F E Coo(U,V)**|F XLnU V* n V}.
One can show readily that T satisfies the localization axiom. Let

VX consist of open sets of the form U’ X J where U’ is an open
coordinate neighborhood in X and J is an open interval or a half

open sub-interval of I with the included endpoint 0 or 1. Let VY be
an atlas of open subsets for Y x I which define submanifold charts on

V*. We prove the following lemma which shows that T is rich.

Lemma 0.2. Let K be a compact set in a submanifold. U of X x I,
V* a submanifold. of Rn X I with boundary., and W C R’ X I an

open subset. Then, Y K(U, W) is dense in COO(U, W)** for the weak
topology on both sets.

Proof. Since Coo(U, W)** is open in COO(U, Rn X I)** , one can assume
that W = Rn X I. Thus, one needs to show that if g E Coo ( U, Rn xI)**,
then g is in the closure of YK(U, Rn X I). Multiplying by a suitable
"bump" function one can replace g by an a,rbitra,rily close function
k which can be extended to an open coordinate neighborhood U’ of
X x R and thus, after change of coordinate on LT’ and W , view k as
a map k= (k’, 1) : R m+1-&#x3E; Rn+1 with V* C Rn+1. Let L1 denote
the collection of (m + 1) x 1 rmatrices viewed as R m+1. Consider
a niap M : Rm+1 x L1 -&#x3E; Rn+1 defined by setting M(x,t,A) =
(k’(x, t) + Ax, t). It is not difficult to see that M is a submersion and
hence transversal to V* on K X L1. By Thom’s Tra,nsversality Lemma
there is a C E L1 , arbitrarily small, such that the map Mc, which is
M restricted to A = C, is transversal to V* on K x C. Thus, there
is a map Iz = {h,’ 1) : Rm+1 -&#x3E; Rn+1, where h’(x, t) = k’(x, t) + C1x,
transversal to V* on K with C arbitrarily small and hence h arbitrarily
close to k. Since, restricted to t = 0 and t = 1, k is transversal to V
and V’, respectively, one readily sees that k is transversal to V* on a



296

neighborhood N af t, = 0 and t = 1 on K. If h is chosen sufficiently
close to k, then one can find a "bump" function b which is 1 outside
N, 0 on t = 0 and 1 and such that p = bh + (1 - b)k is transversal
to V* on K and at the same time agrees with k on t = 0 and t = 1.

Since then pE YK(U, W) and can be chosen arbitrarily close to k,
we are done.

We globalize the last lemma:

Lemma 0.3. With the strong topology, L closed and
Y rich, TL(X x I, Y x I) is open and dense in COO(X x I, Y x I)**.
Proof. Since the result (see [8]) holds for a fixed parameter t E I and
I is compact, openess is clear. Let f E C°O(X x I, Y x I)** . Suppose
that i and j range over A. Following [8], let N = N( f ; O, w, 1(, E) be a
strong basic neighborhood of f with O = {Oi, Ui} a locally finite atlas
on X x I, I(i C Ui compact sets whose union contains L, W= (wi ; Vi}
a family of charts on Y x I such that f(Ki) C Vi and E - 1,E-1. Fix

j E A. Let E - uj rl f -1(Vj) and note that Ilj C E. As T is

rich, Y1Bj(E, Vj) is dense in COO(E, Vj)**. Choosing a COO function A
with values in I, compact support and 1 near Kj, for g C YKj ( E, Vj )
Sufficiently close to f|E and appropriate identification of Vj, one can
define h(x, t) = f (x, t) + n(x,t)[(g(x, t) - f (x, t)] if x E E and f (x, t)
otherwise. Then, as g --+ f| E, h --+ f in the strong topology. Thus,
one can choose h C N and as h - g near kj, h C Y Kj (X x I, Y x I). It

is not difficult to see that Coo(X x I, Y x I)** is a wea,kly closed subset
of Coo (X x I, Y x I) and hence Baire. But, then TL(X X I, Y x I)= 
nj YKj (X X I, Y x I) is dense in C°"(X x I, Y x 1)**. The proof of
Lemma 0.3 is complete.

From Lemma 0.2 and 0.3 it follows that Y XxI(X X I, Y x I) is
dense in COO(X x I, Y x I)** in the strong topology. Thus, arbitrarily
near G in the strong topology, there is a F E Yx xI(X x I, Y x I)
with the property that F is transversal to V*. The proof of part a) of
Proposition 0.1 is complete.

b) Let F and G define cobordisms between f and g, and F be
sufficiently close to G in the strong topology. This implies, in particu-
la,r, that G and F agree outside some compact set. From [8,p.38] one

knows that, for a-manifolds (smooth manifolds with possible bound-
ary) M and N, the set Diff(M, N) of diffeomorphisms from M to
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N is open in C oo (M, dM, N, dN )-{f E Coo(M,N)|f(dM) CdN).
Thus, restricting to boundary preserving smooth maps and proceed-
ing as in [4,p.76], one sees that there is a tubular neighborhood of the
graph of F (with F the zero section followed by projection to Y) such
that G is a section of this tubular neighborhood followed by projection
to Y.

Since F and G agree on X x 1 U X x 0 and preserve boundary
(t = 0 and t = 1), there is a C°° homotopy between F and G obtained
by deforming along the fibres of the tubular neighborhoods.

This completes the proof of Proposition 0.1.

Proposition 0.4. Let X and Y be manifolds with boundary.
a) Framed rnaps f and g from X to Y are framed cobordant using R

if and only if there is a cobordism (not necessarily neat) between
the codomains of f and g and a homotopy G : X x I - Y x
I such that G (x, 0) = (f ( x ), 0), G ( x, 1) = (g(x),1) and G(x, t) =
(G’(x,t),t) for some continuous function G’ : X X I - Y. The

cobordism between f and g can be chosen arbitrarily close in the
strong topology to G.

b) If F and G define cobordzsms with cobordant codomains between
the framed maps f and g, and F and G are sufficiently close, then
F and G are homotopic to one another and hence by the preceding
statement cobordant.

Proof. For a) one proceeds as in the proof of Proposition 0.1 but,
in Lemma 0.3, one must use the argument that Hirsch [8] gives for
manifolds with boundary with small modification. The proof of b)
follows from the following lemma. One can not apply the argument of
Proposition 0.1, part b) since neither F nor G is known to preserve
boundary.

We state two lemmas which will be useful later.

Lemma 0.5. Let g, f : X --+ Y be continuous maps between C°°
manifolds with, boundary. If g is suf, ficiently near to f for the .strong
topology, then g can be chosen homotopic to f .
Proof. Suppose first that Y has no boundary. Embed Y in RP and
give Y the structure of a Riemannian manifold. If g is sufficiently near
f , then f and g differ on some compact set K. Cover f (K) by finitely
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many geodesica,lly convex open sets Ui [3,p.328] diffeomorphic to R’2
where between any two points in a, given Ui there is a unique geodesic.
This is possible since f(K) is compact. Notice that the intersection

of finitely many geodesically convex open sets is again a geodesically
convex open set. Suppose that g is sufficiently near f and thus for some
x where f ( x ) and g(x) differ, f (x) and g(x) belong to Ui for some i .

Let qr be the unique geodesic from f (x) to g(x). Let d(u, v) be the
topological metric corresponding to the Riemannian metric on Y. If

F(x, t) is the point on 7x with d(f(x), F(x, t)) = td(.f(x), g(x)), then
F(x, t) is continuous (see [3,p.328]) and defines a homotopy between
f and g .

Suppose mow tliat Y has boundary 8Y. Put a collar C on OY so
that Y U G’ is a manifold without boundary and there is a continuous
map ( : Y U C --+ Y where ((y) = y if y E Y and ((y) is the projection
of y onto 8Y if y E C. The maps f and g define lnaps f’, g’ : X
Y U C. If f a,nd g are sufficiently close, then f((x) and g(x) will lie
in some geodesically convex open subset of Y U C, even if f (x) and
g(x) belong to OY, and one can then, as above, find a homotopy
F’ : X x I --+ Y U C’ between f’ and g’. The homotopy ( o F’ is then
the required homotopy between f alld g.

To avoid encumbering detail, the preceding lemma will be used
often without reference.

Lemma 0.6. Let f : X - Y be a (resp., proper) continuous map
between C° manifolds where the boundary aX of X is compact. Sup-
pose that U is cz neat compcxct inframed submanifold of Y. Then, there
is a (resp., proper) map h : X - Y arbitrarily close in the strong
topology and hence homotopic to f such that h x U and h-1 (U) is a

neat submanifold. of X.
Note that this result holds if U is a one point set without the

requirement that OX be compact. See [1].
Proof. We assume that f is proper and find a h which is proper.
The other case of the lemma follows without difficulty from this case.
Since C’(i9X, Y) is dense in C°(dX, Y) and the set of all maps in
Coo(dX, Y) transversal to U forms an open dense subset of
Coo(dX,Y), one can choose a g E Coo(dX,Y) sufficiently close to
flax and hence homotopic to f|ax such that g is proper, smooth



299

and g x U. The manifold Y is given the structure of a, Riemannian
manifold. One chooses two sufficiently small closed collars C1 and C2
on 8X with C1 c C2 and the fibres of C] extending to the fibres of
C2 such that if S and T are points of C2 not in Cl in the same fibre,
then, with g close enough to f |ax, gop’ (S’) (where p’ is the projection
of C2 onto dX ) and f (T) can be joined by a unique geodesic. Suppose
that S E (C2 - C1)cl n C1, T E C2 - Cint 2, where int (resp., cl) denotes
the topological interior (resp.,closure) operator, and Q is a point on a
fibre of C2 containing both S and T. Suppose that Q is a s-th of the
distance from S to T for a suitable orthogonal structure on the collar
C2. We then let k° : X --+ Y be the continuous map which is equal to
g o p’ on C1, which is equal f on the complement of C2 and sends a point
such as Q to the point a s-th of the distance from g o p’(Q) to f (Q)
along a geodesic joining these points. By taking C2 suitably small and
g suitably close to f ldx , one cam make ko : X --+ Y arbitrarily close
to f and hence homotopic to it and proper(see [8,p.38]). Because 8X
is compact, k° is equal to f except on a, compact set. By suitably
smoothing ko, one finds a smooth map k : X --+ Y arbitrarily close to
kO and hence homotopic to it and proper such that klax == g l dx x U.
Since 8X is compact, restriction to 8X defines a continuous map E :
Coo (X, Y)--&#x3E; COO(aX, Y) in the strong topology (see [8,p.64]). The
set of maps B in Coo(dX, Y) transversal to U forms an open subset
of Coo (dX, Y), in the strong topology, and then (E-1 )(B) is open in
COO(X, Y) in the strong topology . Since the set O of proper maps
in COO(X, Y) forms an open subset, k E On (E-1 )(B) and the set of
maps from X to Y transversal to U forms an open dense subset of

COO(X, Y), there is a proper h arbitrarily near k which is homotopic
to k and thus to ko and f in turn such that h X U and h lax x U.

Using the Thom construction, for some k, one can find a smooth
proper map f" : Y - Ek such that f " is transversal to some point
T and (f")-1(T) = U. This implies that f" o h and f" o hiax are
transversal to T and thus, applying a result in [8,p.31], one sees that
h - 1 (U) ( f" o h) (T) is a neat submanifold of X. This finishes the
proof.

Clearly, the framed cobordism relation cob is then transitive. It
is in some ways like the cobordism in Stong’s paper [9] on cobordism
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of 1naps. The class of f under framed cobordism is denoted by Lf]. If

[f] and [g] are tuTo framed cobordism classes, their composition [g] o [,f]
is defined by setting [g] o [f] = [g o f] if g o f is defined (and a framed
map). That the composition is well defined follows immediately from
Proposition 0.4. Using this composition the framed cobordism classes
of framed maps form a category COB, the framed cobordism category
which is a quotient of FR. To see this one applies the object-free
definition of category found in Herrlich [7,p.32].

First, notice that the identities and hence objects of COB are
the framed cobordisme classes of the objects of FR. Moreover, sup-
pose that Iu : (X, U) --&#x3E; (X, U) and I’u : (X, U’) - (X, U’) are the
identity framed maps and (X, U) is framed cobordant to (X, U’ ) via an
inframed submanifold U* C X x R. Then, hJ cob IU’ via the framed
map IU*: (X X R, U*) --+ (X X R, U* ). Hence, the identities on COB
contain all the identities between inframed cobordamt submanifolds of

a given manifold.

Second, the hom-sets are small since the framed maps between
two smooth manifolds form a set.

Composition is clearly associative when defined. One needs only
show that the matching condition holds. This follows in an evident

fashion from the following lemma.

Lemma 0.7. Suppose that f : (X, U) -+ (Y, V), g : (Y, V’) -&#x3E; (Z, W)
are framed maps and V is cobordant to V’. Then, there is a framed
map f’ : (X, U’) -&#x3E; (Y, V’) cobordant to f .

Proof. Using transversality results there is a map f’ transverse to V’
arbitrarily close to and hence homotopic to f . To complete the proof
one applies Proposition 0.4.

We present briefly the definition of the homotopy pair category
HPC following Hardie [6] which will with suitable adjustment moti-
vate the definition of the framed cobordism pair category CPC. An
object of the category HPM of homotopy pair mappings is a contin-
uous map. Let f : X - Y and g : W -&#x3E; Z be objects in HPM . A



301

morphism in HPM is a square

where a) 0 and 0 are continuous; b) jat is a homotopy between O o f
and g o w; and c) {ht} is the collection of homotopies from 0 o f to
g o W homotopic to ht. One sometimes expresses the morphism from
f to g in HPM as a triple (0, W, fht I) and composition via

with + denoting the joining of the homotopy relations.
To obtain the homotopy pair category HPC we factor out the

relation which identifies two morphisms in HPM from f to g of the
form (O0, W0, I ht 1) and the form (O1, W1, {O1-t 0 f + ht + g o Wt}). A
morphism in HPC is sometimes pictorially represented by the diagram

The category HPC* is formed like HPC but taking topological
spaces with base points, base point preserving maps and homotopies
where {ht} consists of all kt such that there exists a F : X x Xx I x I -&#x3E;Z
with a) F(x, t, o) - h(x, t), b) F(x, t, 1) = k(x, t) and c) F(*,t,s) == *
where * represents the base point.
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Let now an object of the framed cobordism pair mapping category
CPM be a framed map. An arrow from the framed map f : X -&#x3E; Y

to the framed map g : W -&#x3E; Z is a diagram

where a) 0 and 0 are framed maps, and the composites 0 o f and. g o 0
aredefined in the category FR (but with the framings for 0 o f and g o 0
possibly different at X and Z) ; b) for the situation described in a),
gow cob ø 0 f via a framed map F x R : (X x R, U* -&#x3E; (Y x R, V*)
where F x R(x, t) - (F(x, t), t) and c) (F x R] is the framed cobordism
class of F X R. This arrow is denoted (ø,w, [F x R]). Then, as in
HPM,

where a) a(O’ o F + F‘ o w) is a smooth map obtained by smoothing
01 o F + F’ o1/J; b)if the domain of (o, w, [F x R]) is f : X -&#x3E; Y and the
range of (0’, 0’, [F’ x R]) is h : W - Z, then a(o’ o F + F’ 0 ’ø) x R
defines a framed map and a framed cobordism from h o 9’ o vb to O’o 0 o f ;
and c) a(O’ o F + F’ o W) is homotopic to 0’ o F + F’ o 0. All of the

above conditions can be achieved as a consequence of Proposition 0.4
The framed cobordism pair category CPC is formed from CPM

as HPC was from HPM. We write more explicitly ( O, ’Ø, f , g, [F x R])
for an arrow in CPM. In general we assume that the cobordism
between two framed maps ho and h, has the form ht. Using this
notation, in order to form CPC, one factors out the relation -Y on
CPM identifying (ø0,W0, f0, g0, [F x R]) and
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where a(g1 -t o 01 - t + F x R + ot o ft) is a framed map homotopic to
O1-to fl-t + F x R + gt o wt defining a framed cobordism from O1 o f
to g o ’l/11. The framed map a(O1-t o fl-t + F x R + gt o ’l/1t) exists and
g is transitive because of Proposition 0.4.

Let [O,W, f, g, [F x R]] and [0’, 1/J’, f’, g’, [F’ x R]] be the framed
cobordism classes of and

respectively. Then, as usual,

and

g’ is cobordant to f and the last composition is defined in CPM. As
for HP C, we represent an element [O, W, f , g, [F x R]] of CPC by the
diagram 

It is not difficult to see that the left identity for (2) (with a similar
statement for the right identity) is

Using Lemma 0.7 it is easy to see that (O, W, f , g . [F x R]] and
[01, 1/;’ , f’, g’, [F’ x R]] compose, as described above, if and only if [g’] =
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[f]. Applying the object-free definition of category found in Herrlich
[7,p.32], it is then clear that CPM is a category.

1. Extension of Thom’s Theorem.

In this section we extend Thom’s theorem relating framed cobor-
dism classes to cohomotopy as found, for instance, in the work of
Boardman and Steer [1]. In the next section we will state more gen-
eral and more streamlined versions of these results.

For a category A we let A(X, Y) denote the collection of mor-
phisms from X to Y with X and Y ob jects of A. Let TOPH* denote
the based homotopy category and Xc denote the one-point compacti-
fication of a topological space X where Xc= X U {oo} has base point
oo. The set IIk(X, oo) = TOPH*(X’, Ek) is the k-compact cohomo-
topy of a smooth manifold X. Thom [11] has shown that there is a

bijection between the set pk(X) of framed compact cobordism classes
of a smooth manifold X and Hk(X, oo) .
Definition 1.1. Let FR k(X, U) (resp. PFR k (X, U)) be the collection
of all (resp., proper) framëd maps f : (X, V)-&#x3E; (E k, U) where U
together with a framirLg and k are fixed. Let PCOB k (X, U) (resp.
COB k(X, U)) be the, image of PFR k (X, U) (resp. FRk(X, U)) in

COB(X, U).

Note that since any point R of Ek can be smoothly rotated to any
other point P, preserving orientation, COB k(X, P) and
PCOB k(X, P) are independent of P. The set FR k (X, p) for P C Ek
consists of the codimension k framings on X . We will assume for

general U that U does not contain the base point of Ek.
One can now show:

Proposition 1.2. There is a bijection

if U is a one-point set or if dX is compact, induced by the Thom
construction and essentially the Thom isomoTphism (see [1]and [11]).
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Proof. Let U = {P}. Let f : (X, V) -&#x3E; (E k, U) be a proper framed
map. The framing on U defines (see [1]) a base point preserving
continuous map f’ : Xc -+ Ek and thus a homotopy class {fC} of
basepoint preserving continuous maps from Xc to Ek. Suppose that
g is cobordant to f’ and g : (X, V) - (Ek, P). Since U and V are
cobordant by definition, f and g define, under the Tliom bijection,
the same homotopy class {fC} - I g c I in IIk (X, oo ) and one has a map
a: PCOB k (X, P) - IIk(X, oo). For general U, let P CEk not be the
basepoint. Then, by Lemma 0.6, f is homotopic to a proper smooth
map f m P and thus there is a framed map
f : (X, f -1 (p)) -&#x3E; (E k, P). One then defines, as above, a ([f]) = {fc}.
To see that this definition is well defined, suppose that [f] = [h]. Then,
f is homotopic to h and, thus, f is homotopic to h. But, then, by
Proposition 0.4, f is cobordant to h and, by the above, {fc} = fAc 1.

Conversely, consider a basepoint preserving continuous map
f : Xc -+ E k sending the point at infinity to a point C = P in
E k and arising from the Thom construction. Let U = (P). Then,
because of the Thom isomorphism [1], one can assume that fiX is

proper, f-1 (P) is an inframed submanifold of X and f is smooth on
a tubular neighborhood of f -1 (P). Furthermore, smoothing the map
Ilx and using the fact (see [8,p.41]) that proper smooth maps form
an open subset of the collection of all smooth maps between 2 smooth

manifolds, a smooth proper map g : X - Ek can be chosen arbitrarily
near fix and thus homotopic to it, by LemmaO.5, with g m P and
V = g-’(P) - f -1 (P). It follows that g : (X, V) - (Ek,p) is

a framed map homotopic to fix. Thus, to f one can associate a
cobordism class of maps [g] E PCOBk(X, P). Suppose that f is

homotopic to f’ : X,-+ Ek. If f’ defines a proper framed map

g’ : (X, V’) -&#x3E; (Ek,P) with g’ homotopic to f’|X and, because the
homotopy from f to f’ preserves basepoints, g homotopic to g’, using
Proposition 0.4, one can find a smooth homotopy F from g to g’ such
that F x R : (X x R, V*) -+ (Ek x R, P x R) is a framed map. But,
then, g and g’ are framed cobordant and a map fl : nk(X, 00) -&#x3E;

PCOBk(X, P) is determined. The Thom construction shows that
a o B is the identity map. The map P is surjective since every proper
framed map f : X -&#x3E; E k can be extended to Xc. For general U,
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one uses the fact that, from the Thom construction (see [1]), every
homotopy class {f} contains an element which restricts to a proper
map h . One applies Lemma 0.6 to h’ and obtains a proper framed
map 12" : (X, V) -+ (E k, U) homotopic to f with V neatly imbedded
in .LY. It is not difficult to see then that a-1({f})= [h"] , which by
Proposition 0.4 is independent of h" .

In a, similar way, on approximating continuous maps by smooth
maps, using standard transversality results, using Lemma 0.6 and then
using Proposition 0.4, one can show:

Proposition 1.3. There is a bijection

if ax is compact or U is a one point set, where the framed cobordism 
class of a framed map f : (X, V) -&#x3E; (Ek, U) is sent to the homotopy
cLass { f }.

We write II( f, g) = HPC( f, g), conforming to standard nota-
tion. Let y : (Ej,U) -&#x3E; (Ek, P) and f be fixed framed maps. Sup-
pose that CPCk(f,g)(resp., PCPCk(f,g) is the set of all elements
(O,w, f, y, [F X R]) in CPC( f, g) such that O e FRk(X,P) andW E
FRk(X, U) (resp., O E PFRk(Y, P) and W E PFRk(X, U)) modulo
7. Let 1 k : Ek -&#x3E; Ek be the identity map from the k sphere to itself.

We then show first a simple version of Theorem 1.7 below:

Theorem 1.4. Let f : X -&#x3E; Y be a closed embedding where Y does
not have boundary or let f : X -&#x3E; Y be a submersion. Let j = k and
U = {P}. There is a bijection

extending Proposition 1.3.
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Proof. Suppose that one is given a diagram in CPC

Since in diagram (3) w is cobordant to 0 o f , there is a homotopy ht
from 0 o f to 0 and, taking homotopy classes, a diagram

in II(f,1k) where one readily sees that {ht} is depends only on the
cobordism class [F x R]. The map a thus associates to diagram (3)
diagram (4).

Conversely, suppose that one is given diagram (4) in HPC. Using
Proposition 1.3, f 01 determines a framed cobordism class fl((§)) =
[o] for some W and similarly 01 determines B({W}) = [T] for some w.
Let V = f -1 (P) and i : V - Y be the inclusion. Suppose that f is a
closed embedding. Then, f mV if i X f (X) . An open neighborhood S
consisting only of closed embeddings (see [4,p.76]) of i in C°°(V, Y) can
be identified with an open neighborhood Q of the graph of the 0 section
in the set of sections C’(Ui) of the closed tubular neighborhood Ui of
the graph Vi of i (which is a closed smooth submanifold of Y x Y). For
this proceed as in Proposition 0.1,b) using the fact that, since Y has
no boundary , the set Diff (Y, Ii) of diffeomorphisms from Y to Yi is
open in Coo (V, *Vi) (see [8,p.38]). Let p : V X Y - Y be the projection.



308

The framing on V pulls back via p to a partial framing on Vi. By
standard transversality results, there is a map h in S, arbitrarily close
to i, with h m V which after identification is a map h* in C’(Ui).
The graph rth- of th* acquires a partial framing by lifting the partial
framing on Vi using th* for 0  t  1, The partial framing on Tth*
induces a framing Ft (v) = (F1(v,t), ...,Fk(V,t)) on At = p(Tth*),
for h close enough to i, which depends continuously on t. Applying
the Gram-Schmidt orthogonalisation procedure, one can assume that
Ft(v) is an orthonormal basis for each t and v. Using [8,p. 116], it is
clear that there is an isotopy {Nt} of closed tubular neighborhoods
of radius bt &#x3E; 0 of the At. Let Dk be the closed k-dimensional unit
disk. On each of the Nt one defines a map 71t : Nt -4 Dk which sends
a point (vt, wt) on the fiber of Nt above vt E At to (1 gt)u where u is
the representation of Wt with respect to Ft(v). Let wt = q 0 TIt where
q : Dk --&#x3E; Ek contracts the boundary of Dk to a point Q # P and we
assume that q(0) = P. Now, O defines the framing F(v, 0) on V and
so wo 1 (P) = V. There is a homotopy L from wo to -1) which is defined
by mapping a point X E No to a point a t-th of the distance from
O(X) to wo(X) along the unique geodesic between O(X) and wo(X)
and by mapping X in the complement of N to a point a t-th of the
distance from tP(X) to Q along the unique geodesic between tP(X) and
Q. Since wo sends the complement of N to Q, it is clear that L is
continuous. One can smooth wl to obtain a smooth map 0’ homotopic
to wi which is equal to wi on a tubular neighborhood of w1. It then
follows that O’ : (Y, h(V)) --&#x3E; (Ek, P) is a framed map. But, since
0’ is homotopic to wi, wl is homotopic to cvo and wo is homotopic to
O, it follows that $ is homotopic to 0’ and hence by Proposition 0.1
cobordant to it. If f is a submersion, then f : (X, f -1 (V )) --&#x3E; (Y, V)
is already a framed map and one lets 41) = O’. Since O’ o f is homotopic
to XF7 by Proposition 1.3, O’ o f cob T via a cobordancy F x R and
diagram (3) is obtained. One sees moreover , by Proposition 0.4, that
[F x R] is independent of the choice of ht.

That a is a bijection follows then from Proposition 0.4 and Propo-
sition 1.3.

Following immediately from this proof one obtains:

Corollary 1.5. Suppose that Y does not have boundary. If, as con-
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jectured by Hirsch [8,p.84] {i E COO(X, Y)li x f } for proper f E
Coo(X,Y)} is residual and open in COO(X, Y), then if f is proper,
Theorem 1.4 holds without the restriction that f be a closed embed-
ding.

As shown by Hardie and Jansen in [5], HPC(F, 1k) degenerates
to TOPH(Y, Ek). In the same way here, since in diagram (3) [0] o f
determines [w], one has:

Corollary 1.6. With the conditions used in Theorem 1.4, the set

CPCk(f, 1 k) is bijectively equivalent to COBk(Y, P).
Let g : (Ej, U) -+ (Ek, P) be a framed map. Then, extending

Theorem 1.4, one has:

Theorem 1.7. Let f : X - Y be a closed embedding where Y does not
have boundary or let f : X --+ Y be a submersion. Suppose that dX is
compact or U is a one point set. There is a bijection a : CPCk(f, g) -
HPC( f, g) defined in the same way as a in the proof of Theorem 1.4.
Proof. Assuming that the definition of a is known, suppose that one
has a diagram representing an element ( of HPC(F, g) = II( f, g):

Choose 0 as in the proof of Theorem 1.4. Choose 0 so that 0 m U
and thus 0 : : (X, v-1(U)) -&#x3E; (E’, U) is a framed map. Then, g o v
is homotopic to 0 o f and hence cobordant (independent of lat) to it.
Thus, an element (* in CPC( f, g) is determined and the association
( - (* inverts a.

One can prove a version of Theorem 1.7 extending Thom’s the-
orem in the form below, using Proposition 1.2 instead of Proposition
1.3 and the evident modifications:
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Theorem 1.8. Let f : X -&#x3E; Y be a proper closed embedding where
Y does not have boundary or let f : X -&#x3E; Y be a proper submersion,.

Suppose that U is a one-point set or aX is compact. With the evident
choice of base points there is a bijection

where fc aside from mapping the base point at infinity to the base point
at infinity equals f.

Remark. Again Theorems 1.7 and 1.8 holds without the assumption
that f is a closed embedding or a submersion if f is proper and Hirsch’s
conjecture, alluded to in Corollary 1.5, is true.

Examples
1) Let X = Y =  E1, k = j = 1, f(z) = z and g(z) = z2. Then,

assuming tra,nsversality for the various mappings, set g-1(p) =
{P1, P2}, v-1(P1) = {Q1, ..., Qi}, 7jJ-I(P2) == {R1 ..., Rj} and
O-1(P) = (O o f)-1 (P) = {S1, ..., Sm}. Note that i = j [8,p.124].
Since O o f is framed cobordant to g o 7p, m = i + i. It follows

that II* (f,g) is the subset of Z X Z consisting of all integer pairs
(1n, z) such that m = 2i and thus isomorphic to Z.

2) Let X = Y be the Mobius strip without boundary. Then, X and
Y can be viewed as the quotient of I x (0,1) where, for y e (0,1),
one identifies (0, y) with (1,y). Let q : I x (0,1) -&#x3E; X be the

quotient map and X have the smooth structure induced from
I X (o,1). Suppose that f(a) = a for a C X and g(z) = z 2
Consider the image L of {(o,y)|y E (0,1)} under q in X . By
choosing arrows in one way or the other L can be made into a
framed submanifold cobordant to L with the opposite orientation.
It is also clear that L is cobordant to the image L’ of {(1/2, y) I y E
(0,1)} under q with the correct orientation. One can choose o
so that (g o v)-1(P) = L U L’ represents the trivial element of
II1 (X, oo) but with v not homotopically trivial. Suppose that
0-’(P) - 0. If (g o v’)-1 (P) = 0 and 0’ is homotopically trivial,
one has both (ifJ, 1/1, [F X R]) and (O, v’, [F’ x R]) in H* (f, g) forsuitable F and F’ . Thus, P C P C (f, g) does not trivialize as in
Corollary 1.6. It seems likely that II*(f,g) can be identified with
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the subset of Z2 X Z2 consisting of all (m, i) such that m = 2i = 0
and thus with Z2.

2. General relations between CPC and HPC

We let COB(X, (Y, U)) denote the union of the images of all
FR((X, V), (Y, U)) under the framed cobordism relation as V varies.
To reduce the amount of language needed and relate some involved
concepts we make the following definitions.

Definition 2.1. Let D denote the quotient set of a set of structured
maps where the underlying maps are Cr maps or framed maps (0 
r  oo) but only one of these types from a smooth manifold X to a
smooth compact manifold Y with basepoint yo. Thus, D can be the
quotient set of a set S whose elerraents are Cr maps alone for a fixed
r or framed maps from X to Y alone. Let D = S/R. Let ES be the
subset of S corresponding to C’’ maps or framed maps frorra X to Y
such that f extends to the one point compactification in a continuous
way and maps the point at infinity to yo. Next, let ED(yo) be the
image of ES in D under the quotient map S - S/R. Suppose now
that D is a category.. Then, we set ED(X, Y, yo) = ED(X, Y)(yo).
Let PD(X, Y, yo), similarly, correspond to Cr maps or framed maps
f from X to Y such that, for any compact subset K of Y, f-1(K) is

compact and f maps the point at infinity to yo.

Remark. One can show that f E ES if and only if f C S and f-1(K)
is compact for every compact set K with yo E K.

The following result can now be stated:

Theorem 2.2 For smooth manifolds X and Y where X has compact
boundccry and U is compact:
a) The set COB(X, (Y, U)) = TOPH(X, Y) where = denotes set

equivalence.
b) Let A = E or P. Let yo E Y. Then, ACOB(X,(Y, U), yo ) =
ATOPH(X, Y, yo) C TOPH(XC, Y, yo).
Proof We prove a). In the forward direction, [f] C COB(X, (Y, U))
implies f : X -&#x3E; Y is continuous and f cob g implies f - g. In
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the reverse direction, for {f} E TOPH(X, Y), f is homotopic to a
smooth iuap g with g m U and then g : (X, g-1(U)) -&#x3E; (Y, U) is a

framed map and g-1(U) is a neat submanifold of X , by Lemma 0.6.
Using Proposition 0.4, it is clear that [g] is independent of the choice
of representative of {f}.

For b) and any A, in the usual way, the bijection in the forward
direction is defined. In the reverse direction and anyA the fact that g
(chosen sufficiently close to f) sends the point at infinity to yo, pro-
vided that f sends the point at infinity to yo, can be readily shown
using the following result in [8, p.43]: For any sequence {gn} converg-
ing to f in Cr(X, Y) (r &#x3E; 0) in the strong topology, there exists a
compact set 7C C X such that, for almost all n, gn is equal to f out-
side K. This allows one to show that g is extendable to the one point
compactification and complete the proof if A = E. For A = P, one
must show that g is proper if f is proper. Again, this follows from
Lemma, 0.6

The inclusion of b) follows immediately from definition.This com-
pletes the proof of the theorem.

We provide an example to show some uses for this theorem.

Example 2.3. Let Y be a compact connected smooth manifold and
n &#x3E; 0. Then, the n-th homotopy group H,,(Y, yo) can be written

Suppose that [f],[g] E ECOB(Rn,(y, U),yo). One identifies the do-
main of f (resp. g) with the set of points satisfying rn  0 (resp.
Xn &#x3E; 0). Let f u g be the extension of f and g to all points of Rn
except those satisfying zn = 0 and f 11 g maps those points satisfying
Xn = 0 to yo. Then, let h be 1 II g suitably smoothed and homotopic to
f 11 g. The addition in Hn(Y, yo) transferred to ECOB(R", (Y, U), yo)
satisfies [f] + [g] = [h]. In fact, this addition can be shown to define a
group structure in the usual way on PCOB(Rn, (Y, U), yo). One can
ask:
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If Y = En, the answer is no since, for any element [f] of
PCOB(Rn,(En,U),yo), as f-1(En) = R’, it is clear that
PCOB(Rn, (E", U), yo) is trivial. In fact, the author has yet to find
a case where PCOB(Rn, (Y, U), yo) is not trivial.

Let g : (W, D) - (Z, E) be a framed map. Let CPC( f, g)"
consist of all squares (see diagram (2)) such that [0] C COB(Y, (Z, E))
and [v] E COB(X, (W, D)). Then, extending Proposition 1.3 to the
pair category, one has:

Theorem 2.4 Suppose that D and E are compact. Let f : X
Y be a closed emebedding where Y does not have boundary or let f :
X -&#x3E; Y be a submersion. Suppose that D is a one-point set or aX is
compact. Suppose that E is a one-point set or aY i.s compact. There

is a bijection

sending a framed cobordant commutative square (diagram(2)) to a cor-
responding horraotopy commutative one (diagram(1)).
Proof. Again, the definition and existence of a is straightforward.

In the other direction, using Theorem 2.2, one can always find an
element in the homotopy class of 0 in diagram (1) which is smooth
and transversal to D; so on the side of diagram (1) with 0 there is
little problem.

Let p C {f}. One can suppose that p is smooth and transversal
to E. Let C=u-1(E). Then, p : (Y, C) -&#x3E; (Z, E) is a framed map.
Since when f is a submersion, f is transversal to C, we need only
consider the case where f is a closed embedding. There are up to dif-
feomorphism open tubular neighborhoods (defined by the framings)
TE and TC of E and C, respectively, so that piT, can be viewed as
a fibred map from Tc to TE. Let p : C -&#x3E; Tc be a smooth section

with p transverse to f(X) nTc. The existence of p follows from an
exercise in Hirsch [8,p.83(No. 13)]. One lets B = f-1(p(C)) and then
f : (X, B) - (Y, p(C)) is a framed map. Let Tp(c) be an open tubular
neighborhoods of p(C) strictly contained in an open tubular neigh-
borhood Tc of C which is again strictly contained in Tc. There is

a diffeomorphism x of Y onto itself sending Tp(c) to Tr, Tc - Tp(c)
to Tc - Tc and which is the identity ouside Tc. Let J-l’ = p o K.
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Then, clearly, p’ : (Y, p(C)) - (Z, E) is a framed map. Since there
is a smooth deformation of p(C) onto C along the fibres of the tubu-
lar neighborhood Tc, the diffeomorphism K can be chosen to depend
smoothly on a parameter t E R in such a way that, writing kt to denote
this dependence, then p o k1 = u’ and u o k0 = ti. LTsing Proposition
0.4, Jl is cobordant to p’ and hence p’ E [u]. Thus, on the bottom of
diagram (2), one takes the framed map p’.

Since gov and uof are homotopic framed maps, using Proposition
0.4 twice, one can associate to diagram (1) a, unique diagram (2). In

this way one defines a map (3 which associates to each diagram (1) a
diagram (2). Clearly, the map (3 provides a right inverse to a. As (3
is onto, it and a are bijective.

Remark. Again, one can apply Hirsch’s conjecture to prove the above
result for proper f without the assumption that f is a closed imbed-
ding.

3. Pair cohomotopy bicobordism conversion: suspension.

In analogy to the relation between such notions as suspension, track
addition, etc. developed in cohomotopy and their corresponding rep-
resentation in framed cobordism as put down in [1], we develop, as far
as possible, the same relation (but extended) between framed bicobor-
dism and pair cohomotopy in the case of suspension. Throughout this
section g : (Ej, U) -&#x3E; (Ek, P) is a framed map.

The suspension of an inframed manifold a = (X, U) is the in-

framed manifold E(a) = (X X R, U) where U in E(a) has the framing
of U in X plus the outward unit normal of X in X X R. Here, X is
embedded in X x R, via the map sending x to (x, 0).

Let * denote the north pole of any sphere. Consider the map
q : Ek X Ek’ -&#x3E; Rk+k’+1 sending ((x1 , ..., Xk+1),(y1, ..., yk’+1)) to

where Notice that q is smooth. We show:
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Lemma 3.1. The smooth map q : Ek X Ek’ -&#x3E; q(Ek X Ek’) serves as
the identification map for the smash product and is a diffeomorphism
outside (Ek X *) U (* X Ek’).
Proof. If x or y is * (thus, defined by Xk+1 = 1 or yk’+1 = 0), then
q(x, y) = (0, ...,0,1). The converse is also true. If neither x nor y is

a north pole, then u # 1 and q is one-one. By definition of the smash
product, there is a continuous bijective map

Since both Ek X Ek and q(Ek X Ek’) are compact Hausdorff, r is

a homeomorphism and q is an identification as required. The in-

verse to q on q(Ek’ X Ek’) - {(0, ...,0,1)} sends (a1, ...,ak+k’+1)
to (P-1k(a1/d, ... ,ak/d),P-1k’(ak+1/d, ... ,ak+k’/d)) where d = 1 -
ak+ k’+1 and Pk is the inverse of the stereographic projection from the
north pole. The proof of Lemma 3.1 is complete.

Let 9 : (Ej) -&#x3E; (Ek,P) and g’ : (Ej’,U’) -&#x3E; (Ek’,P’) be framed
maps. One would like to approximate the diagram

in HPC, where q’ is the identification defining Ej A Ej’, by a diagram
in CPC. First, we replace Ej A Ej’ = q’(Fj x £J’ ) by Ej+j’ to which, in
light of Lemma 3.1, it is homeomorphic and diffeomorphic outside the
north pole and then view g A g’ : Ej+j’ -&#x3E; Ek+k ’ as q o (g x g’) o (q’)-l
outside (0, ... , 0, 1) and modulo a diffeomorphism. Next, we patch
together, using partitions of unity, some constant map X, from Ej+j’
to Ek+ " defined on a sufficiently small euclidean neighborhood N of
the north pole in Ej=j’, sending north pole to north pole, and the map
x2 equal to g A g’ on an open subset R of Ej+j’ not containing the
north pole (where Ek+k’ = NUR) by smoothing across the intersection
N n R where if N is small enough, then both X1 and X2 on NnR map
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to the euclidean space which is Ek+k’ minus the south pole. Call the
smooth patched map g A’g’. If N and R are chosen properly, then, on
open set H not containing the north pole, one has a) q’(U x U’ c H
b) g A’ g’ equals g A g’; consequently g A’ g’ is transverse to q(P x P’
and c) g A’ g’ is arbitrarily close to, thus homotopic to g A g’ . Thus,
except for some smoothing around the north pole g A’ g’ equals g A g’
and any two choices of g A’ g’ are homotopic.

In the same way one can approximate q’ by a smooth map q" equal
to q’ on an open set not meeting Ek x* U * x Ek’ and containing
U X U’, q" is transversal to q’(U X U’). As a consequence, one obtains
framed maps q" : (Ei x Ej’, U x U’) -&#x3E; (Ej+j’, q"(U X U’)) and g lB’ g’ :
(Ej+j’, q"(U x U’)) -&#x3E; (Fk+k’ q(P x P)). Different possibilities for q"
are cobordant. Similarly, q can be changed to q° along the bottom of
the above diagram but g X g’ need not be changed. One thus ends up
in the evident way with a diagram in CPC:

where F x R arises from the homotopy between (g A’ g") o q" and
qo o (g X g’) which exists because of the above construction.

Consider the map w :

in CPC where 0 : : (X,W) -&#x3E; (Ei, U), 0 : (Y, V) -&#x3E; (Ek, P) and
f : (X, W’) - (Y, V) are framed maps. The suspension E(w) of w is
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the equivalence class of the outer rectangle in

where ij and ik are open smooth immersion, the middle diagram being
commutative defines an element of CPM and G X R arises from the

homotopy between (g A’ R) o q" and qo o (g x Ej). Thus, suppose that
U° = (q" o Z*j)(U x 0). Then, p = q" 0 ij o (v x R) is transversal to U°,
u : (X x R, W X 0) - (Ej+’, UO) is a framed map and p is the top of the
above diagram. As q° o ik is an open embedding on a neighborhood of
P X 0, P A 0 acquires a framing from the framing on P X 0 as a subset of
Ek x R. As q" oij is an open immersion on an open set containing U x 0
and the framing on P x 0 pulls back via g x R to the framing on U x 0,
U° = (g A’ R)-1(P A 0) has the framing induced from P A 0 via g A’R.
Thus, k = (g A’ R) o u : (X x R, W x 0) -&#x3E; (Ek+1,P A 0) is a framed
map where, as we noted above, (X x R, W x 0) is the suspension of
(X, W). Similarly, along the bottom of the above diagram, one obtains
a framed map

is a framed map and

is the suspension of (X, W’). Let f : X - Y be a proper closed
embedding where Y does not have boundary or let f : X -&#x3E; Y be a

proper submersion. Suppose that U is a one-point set or 8X is empty.
Let S denote the usual suspension functor on TOP*. The assignment



318

w -&#x3E; E(w) then, by Theorem 1.8, determines a map
E : II*(f,g) - 1-1 * (f x R, g A’ R) - HPC*(Sf,g) of cohomotopy pair
sets or, without the assumptions of Theorem 1.8, just a map
E : CPCk(f,g) -&#x3E; CPCk+1(f x R, g A’ R). On restricting to the
case where f and g are identities and, applying Proposition 1.1, one
obtains the usual suspension map:

Remark. Using the algebraic rna,nipulation language MAPLE, one
can show that if k = 1, then q(Ek X E1) has defining equation 2a2b2 +
(2b2+ 2a 2)(c - 1)2 + 8(c - 1)3 + 2(c - 1)4 = 0. It follows then that

g(E1 x E1) is an algebraic variety but not a manifold since (0,0,1) is
obviously a singular point of q(Ek x E1).

4. Stable pair framed cobordism.

We let now f = g : : E3 -&#x3E; E2 be the Hopf lnap, which is a
submersion, and use the paper [5] by Hardie and Jansen to provide
an example of the cylinder web diagram with respect to CPC and
then analagously calculate the stable group corresponding to
pCpC2(g X Rk, g) = II*(g X Rk, g). We let .h denote the function

induced by precomposition with h and h. the function defined by
postcomposition with h. The cylinder web diagram in [5] modified to

CPC*, where

i) as usual the cohomotopy set 

ii) the horizontal and vertical arrows are described in terms of map-
pings between hom-sets in TOPH*,

iii) Pg : CP1 -&#x3E; Cg = Cp2 can be viewed as the inclusion identifying
CP’ with a projective line in CP2,

iv) Qg is the map shrinking CP’ as imbedded by Pg in CP2 to a
point and

v) X is X minus its basepoint and we write simply Pi instead of
CPj for complex j-dimensional projective space,
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is given below

Viewed as a diagram in TOPH, one can apply repeatedly the suspen-
sion S to the above diagram. Taking direct limits one ends up with
the stable cylinder web diagram where we let

The isomorphism here is that of groups (see [1]). The groups
Fn(R k, E3) (resp., Fm(R’, E2)) are all isomorphic via the Thom con-
struction to Qfrn+k-3, the group of framed cobordism classes of framed
n + j - 2-dimensional manifolds, (resp.Qfrl+m-2). See [10]. The stable
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cylinder web diagram is then

where Gi(X) = Gi(X, P2). Using the above cylinder web diagram,
the stable groups Tk+2(g) = Gk(CP2, E2) have been calculated in [5]
and this calculation implies immediately the following table of results:

Proposition 4.1 

Let (Sjg)A be a framed map where the underlying map is homo-
topic to S39. One can also define

If the isomorphism induces a group structure on Fk(g), using the re-
sults of [4], one then obtains:
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Proposition 4.2

However, the group structure on Fk(g) should be given in the first
instance by extending the pair cohomotopy bicobordism conversion of
§3.
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