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A SUSPENSION THEOREM FOR THE
PROPER HOMOTOPY AND
STRONG SHAPE THEORIES

by C. ELVIRA-DONAZAR and L.J. HERNANDEZ-PARICIO

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXVI-2 (1995)

Resume. Nous pr6sentons une extension du th6or6me de suspension de
Freudenthal pour la catégorie de syst6mes inverses d’espaces et comme
conséquences nous avons des theoremes de suspension pour 1’homotopie
propre et pour la theorie de la forme forte.

Abstract. We extend the Freudenthal suspension theorem to the category of towers
of spaces and as consequences we obtain suspension theorems for proper homotopy
and strong shape theories.

Key words: Tower of spaces, prospaces, model structure, suspension theorem,
proper homotopy, strong shape, cofibration, fibration, weak equivalence.

AMS classification numbers: 55P40, 55P55, 54C56, 55Q07

Introduction. *

In 1936, Hans Freudenthal [12] proved that the transformation defined by
the suspension functor becomes an isomorphism (or epimorphism) under adequate
dimension and connectivity conditions. In this paper we extend the Freudenthal sus-
pension theorem to the homotopy category of towers of pointed spaces Ho(towTop* ).

An application of this extended version is obtained when we consider the

Edwards-Hasting embedding theorem [10] of the proper homotopy category of lo-
cally compact Hausdorff o-compact spaces into the category Ho(towTop*). This

embedding preserves suspensions for nice spaces, see [7]. Consequently a suspension
theorem in the proper setting is also proved. We have not developed a suspension
theorem for the "global" category H o(towTop., Top*), but it can be checked that
the proof given in this paper also works in this category. Therefore there is also a
corresponding suspension theorem for global proper homotopy.

* The authors acknowledge the finantial aid given by the University of Zaragoza and
the DGICYT, project PB91-0861.
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Another application of this extended version of the suspension theorem is given
for strong shape theory. By considering the Vietoris functor, first introduced by
Porter [20], we also have an embedding of the pointed strong shape category into
Ho(proTop*). The Porter-Vietoris prospace VX of a metrisable compact space is
isomorphic to a tower of pointed spaces in Ho(proTop.). Therefore if we restrict
ourselves to metrisable compact spaces, we have an embedding of the category of
pointed strong shape of metrisable compact spaces into Ho(toz.uTop* ). The Vietoris-
Porter functor also preserves suspensions, see [10], and then we also have a suspension
theorem for pointed strong shape.

The paper is divided in three sections. The first section is concerned with

the categories used in this paper and some of their properties. For example, we
consider Ho(towTop*) as the category of fractions obtained by the inversion of
weak equivalences. Edwards and Hastings proved that if we have in a category C
a closed model structure (satisfying the condition N) then towC and proC inherit
induced closed model structures. A similar result was proved by Porter [22-23] for
the homotopy structure defined by Brown.

There are two well known structures of closed model categories in Top*, the
structure given by Quillen [29] and the structure given by Strom [33]. The for-

mal inversion of the respective families of weak equivalences produces the categories
Hostr(Top*) and HoQuillen(Top*). As consequence of the Edwards-Hastings meth-
ods we also have the categories Hostr(towTop.) and HoQuillen(towTop*). On the
other hand, there is another different notion of weak equivalence defined by Gross-
man that gives a new closed model structure on towers of simplicial sets and induces
the category of fractions Ho(towSS*). In section 1, we analyse some relationships
between these categories of fractions. The basic references for this section are the
monograph of Edwards and Hastings [10] and the papers of Porter [20-28] and Gross-
man [14-16].

In section 2, we develop a proof of the suspension theorem. We establish the
suspension theorem for towers of pointed CW-complexes. The main difference with
the Freudenthal theorem for standard homotopy is that the dimension condition

is stronger. However, when we consider towers of CW-complexes, whose bonding
morphisms are cellular inclusions of CW-complexes and whose limit is trivial, we
have conditions similar to those of the standard suspension Freudenthal theorem.
This implies that we have similar conditions for the suspension theorem in the proper
setting but stronger conditions must be considered for the suspension theorem in
strong shape context.

The last section is devoted to obtaining the suspension theorem in the proper
and strong shape settings from the suspension theorem for towers of pointed spaces.
As a consequence of a Grossman result the connectivity conditions can be given



100 

in terms of towers of homotopy groups or in terms of Grossman homotopy groups.
These Grossman homotopy groups appear as Brown homotopy groups in the proper
setting and as Quigley inward groups in the strong shape category.

The authors thank the Referee remarks which have improved some of the
results of this work.

1. Preliminaries.

In this section we recall some of the notions and results that will be used in
this paper. The structure of closed model category given by Quillen and the notion
of procategory introduced by Grothendieck are basic tools of this work. One of the
main results that we use is the Edwards-Hastings embedding of the proper homotopy
category into the homotopy category of prospaces.

a) Model categories.

This structure was introduced by Quillen [29]. It provides sufficient conditions
on a category to develop a homotopy theory. Next we give some of the notions that
we are going to use.

An ordered pair of morphisms (i, p) is said to have the lifting property if for
any commutative diagram

there is a morphism f: X - Y such that f i = u and p f = v. A map i has the left
lifting property with respect to a class, P, of maps if (i, p) has the lifting property
for all p in P, similarly a map p has the right lifting property with respect to a class,
I, if for each i in I, (i, p) has the lifting property.

A closed model category consists of a category C and three distinguished classes
of morphisms, fibrations, cofibrations and weak equivalences, satisfying certain basic



101

properties (axioms) that guarantee the existence of the basic constructions of a
homotopy theory, see [29].

A morphism which is both fibration (resp. cofibration) and weak equivalence
is said to be a trivial fibration (resp. trivial cofibration). The initial object of C is
denoted by 0 and the final object by *. An object X of C is said to be fibrant if
the morphism X --+ * is a fibration and it is said to be cofibrant if 0 -&#x3E; X is a

cofibration.

Definition 1. Let X be an object of C, a cylinder for X is a commutative diagram

zvhere 80+81 is a cofibration, p is a weak equivalence and p(80+81) = idx +idx = B7

Dually to this we have the cocylinder.

Definition 2. A cocylinder for an object X of C is a comrriutative diagram

where (do, dl) is a fibration, s is a weak equivalence and (do, d1)s = (idx, idx) = A.

Given a model category C, the category obtained by formal inversion of the
weak equivalences is denoted by Ho(C) .
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The category C is said to be pointed if the initial and final objects are isomor-
phic. This object is usually denoted by * and it is called the zero object.

Given a morphism f : X --+ Y in a pointed category, the fibre is defined to be
the fibre product * x X and the cofibre is the coproduct * V Y.

y x

Let X be a cofibrant object, a suspension SX of X is the cofibre of

80 + 81: X V X -&#x3E; X’, where X’ is a cocylinder for X . If Y is a fibrant object of C,
(do,d1)

a loop object for Y is the fibre of Y"-Y x Y where Y" is a cocylinder forY.

The constructions S and Q induce functors S: Ho(C) -&#x3E; Ho(C) and
S2: Ho(C) -&#x3E; Ho(C) such that S is left adjoint to S2.

The following closed model categories will be used in this paper.

1) The category of simplicial sets SS. Quillen [29] gave the following structure to
the category of simplicial sets: A map f: X - Y is a fibration if f has the right
lifting property with respect to A(n, k) -&#x3E; A[n] for 0  k  n and n &#x3E; 0, where

A(n, k) is the simplicial subset generated by the faces {QiA[n] l 0in i + k} of the
standard n-simplex A[n]. A map f: X - Y is said to be a trivial fibration if f
has the right lifting property with respect to &#x26;[n] -&#x3E; A[n] for n &#x3E; 0, where &#x26;[n] is
the simplicial subset generated by the faces of A[n]. A map i: A -&#x3E; B is said to be

a cofibration if it has the left lifting property with respect to trivial fibrations and
it is said to be a trivial cofibration if it has the left lifting property with respect to
fibrations. A map f : X -&#x3E; Y is a weak equivalence if f can be factored as f = pi
where i is a trivial cofibration and p is a trivial fibration.

2) The category of topological spaces Top with the Quillen [29] structure. A map
p: E -&#x3E; B is said to be a fibration if p has the right lifting property with respect to
Dn -&#x3E; Dn x I, x -&#x3E; (x, 0), for n &#x3E; 0, where Dn is the standard n-disk, and I
denotes the unit interval. A map f : X -&#x3E; Y is a weak equivalence if for any q &#x3E; 0
and xEX the induced map TTq(f): TTq(X, x) -&#x3E; 7rq(Y, fx) is an isomorphism. A map
A - X is a cofibration if it has the left lifting property with respect to any trivial
fibration (fibration and weak equivalence).

3) The category of topological spaces Top with the Strom [33] structure. A map
p: E -&#x3E; B is said to be a fibration if it has the right lifting property with respect
to the maps Q0: X -&#x3E; X x I, x -&#x3E; (x, 0). A map i: A -&#x3E; X is said to be a

cofibration if it is a closed map and it has the left lifting property with respect to
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do:YI -&#x3E; y, do(o) = a(0), where Y, is the standard cocylinder of Y. Finally a
map f : X --+ Y is said to be a weak equivalence if it is a homotopy equivalence.

Let HOQuillen(Top) and Hostr(Top) denote the categories of fractions ob-
tained by considering the Quillen structure and the Strom structure, respectively. If
Hostr(Top)/CW denotes the full subcategory of Hostr(Top) determined by the
spaces that admit a CW decomposition, we have that Hostr(Top)/CW and
HoQuillen (TOp) are equivalent categories.

If Sin: Top -&#x3E; SS is the singular functor and R: SS -&#x3E; Top is the realisation
functor, the equivalence above is given by the induced functors

b) Procategories.

The category proC, where C is a given category, was introduced by
A. Grothendieck [17]. Some properties of this category can be seen in the appendix
of [1] the monograph [10] or in the books [19] and [9].

The objects of proC are functors X : I -&#x3E; C, where I is a small left filtering
category and the set of morphisms from X : I -&#x3E; C to Y: J -&#x3E; C is given by

A morphism from X to Y can be represented by ({fj}, cp), where cp: J -&#x3E; I is a

map an each fj: X,,(j) -&#x3E; Yj is a morphism of C such that if j -&#x3E; j’ is a morphism
of J, there are iEI and morphisms i -&#x3E; p(j), i -&#x3E; cp(j’) such that the composite
Xa -&#x3E; X p(j) ----+ Yj -&#x3E; Yj’ is equal to the composite Xs -&#x3E; Xp(j’) -&#x3E; Yj’ .

The results of this paper will be developed for the category towC which is

the full subcategory of proC determined by the objects indexed by N the "small
category" of non-negative integers.

Edwards and Hastings [10], proved that if C is a closed model category satis-
fying some additional condition (condition N), then proC and towC inherit closed
model structures. As a consequence we can use the categories HoQullen (proTop),
Hostr(proTop), HoQuillen (towTop) , etc., and the corresponding pointed versions.
We also have that Hostr (towTop)/towCW the full subcategory determined by tow-
ers of CW-complexes is equivalent to HoQuillen(towTop).
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In this paper, we will use the comparison theorem of Edwards and Hastings:
If C is a pointed simplicial closed model category, the following sequence is exact

We also need the closed model structure of towSS given by Grossman and the
corresponding pointed version in towSS* . To see an exact description of these differ-
ent closed model categories we refer the reader to [10] and [14]. Let f = {fi:Xi -&#x3E;

Yi}i EN a levelwise map in towSS (or towSS.). The map f is said to be a strong
cofibration if for each i E N, fs: Xs -&#x3E; Ys is a cofibration. Similarly, it is defined
a strong weak equivalence. The map f is said to be a strong fibration if for each
i E N, fi : Xs -&#x3E; Yi and the induced map X;+1 -&#x3E; Xi x Yi+1 are fibrations. The

Y.
notion for cofibration given by Edwards and Hastings agrees with the notion given
by Grossman. A cofibration is a retract of a strong cofibration. For the closed model
structure considered by Edwards and Hastings, the class of weak equivalences is the
saturation of the class of strong weak equivalences. Grossman takes as weak equiva-
lences those morphisms which induce isomorphisms in the homotopy progroups, for
a more precise definition see [14]. We note that a weak equivalence in the sense of
Edwards-Hastings is always a weak equivalence in the sense of Grossman. A Gross-
man level fibration is a strong fibration f = {fi:Xi -&#x3E; Yi} such that for each i

there exists an n(i) such that TTq(Xi) -&#x3E; 1rq(Yi) is an isomorphism for q &#x3E; n(i). A
Grossman fibration is a retract of a level fibration. On the other hand, a fibration in
the sense of Edwards and Hastings is a retract of a strong fibration. We note that a
fibration in the sense of Grossman is a fibration in the sense of Edwards-Hastings.
As a consequence of the relation between the two notions of weak equivalence, the
inclusion (identity) functor induces a functor on the localizated categories:

where HOQuillen(towSS) denotes the category obtained by considering the Quillen
structure on SS and the corresponding Edwards-Hastings extension for towSS.
Given an object X of toz,v,SS, the map X - * can be factored as the compos-
ite X -&#x3E; RGX -&#x3E; *, where X -&#x3E; RGX is a Grossman trivial cofibration
and RGX -&#x3E; * is a Grossman fibration. The object RGX can be obtained from
X = {Xi} by killing higher homotopy groups, {cosk Ri Xi}, and replacing bonding
maps by bonding fibrations. Thus we have an induced functor
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These functors satisfy that

c) Categories of spaces and proper maps and the Edwards-Hastings embedding.

Definition 1. A continuous map f : X -&#x3E; Y between topological spaces is said to
be proper if for every closed compact subset K of Y, f -1K is a compact subset of
X. Two proper maps f, g: X - Y are said to be properly homotopic if there is a
homotopy F: X x I - Y from f to g which is proper.

Let P denote the category of Hausdorff, locally compact topological spaces
with proper maps. Dividing by proper homotopy relations we have the proper ho-
motopy category TT0(P) .

We also consider categories of spaces and germs of proper maps, see [10], that
can be defined by considering the category of right fractions, see [13], defined by
the class E of cofinal inclusions. An inclusion j : A - X is said to be cofinal if

cl(X - A) is a closed compact subset of X. The category PE-1 is also denoted by
Poo. There is also the corresponding notion of proper homotopy between germs of
proper maps and we also have the category of proper homotopy at infinity 7ro( P (0).

A closed map i: A -&#x3E; X is said to be a cofibration if it has the proper ho-

motopy extension property. A rayed space (X, a) is a space with a proper map
a: J -&#x3E; X, where J = [0, +oo) is the half real line. A proper map preserving the
ray is said to be a proper map between rayed spaces. It is said that (X, a) is well
rayed if a: J -&#x3E; X is a cofibration. We denote by Pi the category of well rayed
spaces (X, a) where X is in P. In a similar way we can define the category (PJ)oo
and the corresponding proper homotopy categories TT0(PJ), TT0((PJ)oo).

We will also work with some full subcategories of P, in particular Pa denotes
the full subcategory of Hausdorff, locally compact, o-compact spaces.

Given a well rayed space (X, a), Edwards and Hastings defined the end
prospace of (X, a) by

If X is an object in Pa, then there is an increasing sequence of compact subsets
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00

such that X = U Ki. If Xi = cl (X - Ki), the prospace e(X, a) is isomorphic to
the end tower {(Xi U a(J), a(0)) l i = 0,1,2,...}. Therefore - is a functor from

((Po)J)oo -&#x3E; towTop* . Edwards and Hastings proved that the induced functor:

is a full embedding.

Notice that for a well rayed space (X, a) in ((Po)J)oo we have the morphism
a: (J, idi) -&#x3E; (X, a) that induces a promap Ea: -(J, idi) - E(X, a). It is clear
that e(J, idJ)= {... -&#x3E; (J, 0) -&#x3E; (J, 0) -&#x3E; (J, 0)). Since the constant map
J -&#x3E; * is a homotopy equivalence in Ho(Top.), it follows that ê( J, idJ ) -&#x3E; * is a
weak equivalence in towTop* . Consider the pushout

in which ea is a cofibration and ê( J, idj) - * is a weak equivalence. Therefore we
obtain that -(X, a) --+ E’(X, a) is a weak equivalence, where

Consequently, because we work with well rayed spaces we can replace the functor -
by -’ and we also have that e’: TT0((Po)J)oo -&#x3E; Hostr(towTop*) is a full embedding.

It is interesting to consider well rayed spaces X such that eX is isomorphic in
Hostr(towTop*) to a tower of CW-complexes Xf. If X and Y are well rayed spaces
of this type, then

This means that if we confine ourselves to these spaces in the Edwards-Hastings
embedding the Quillen model structure can be used instead of the Strom structure.

Therefore it will be useful to consider the full subcategory (CWPa )j of (Po)J
determined by well rayed spaces (X, a) such that X admits a CW-decomposition
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with cx(J) as a subcomplex and X has a sequence of subcomplexes {Xi l i &#x3E; 0} such
that for each i &#x3E; 0, cl (X - Xi ) is compact, Xi+l C int Xi and Ono Xi = 0.

i=0

2. A theorem of Freudenthal type for towTop*

First we analyse some properties for cylinders, cocylinders, suspension and
loop objects in the category toz,vTop* .

If Ii is a pointed CW-complex, a cylinder for K is given by the commutative
diagram

where K 0 [0,1] = K x [0,1]/ * x [0, 1], Q0 + 81 is a cofibration and p is a weak

equivalence. This diagram is a cylinder for the Strom structure and for the Quillen
structure.

For a tower X of pointed CW-complexes, if we apply levelwise the above
decomposition, we obtain a commutative diagram

where 80 + Q1 is a cofibration, p is a weak equivalence in toz,vTop* .

For the Strom structure of Top* the remarks above can be extended to towers
of well pointed spaces.
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Now for a well pointed space L, consider the commutative diagram

where L[0,1] is the standard space of continuous maps from [0, 1] to L provided with
the compact-open topology. If l E L, s (l) is the constant path equal to 1 and for

aEL[o,l], dL0 (a) = a(0), dL1 (a) = a(1). In this diagram, s is a pointed homotopy
equivalence, and (dL0 , dL1) is a pointed Hurewicz fibration (that is, a fibration in
the sense of Strom). Note that (dL0 , dL1) is also a pointed Serre fibration (that is,
a fibration in the sense of Quillen). Recall that if L is Hausdorff, then s is also a
trivial cofibration in the sense of Strom.

If X is a tower of well pointed spaces, applying levelwise the decomposition
above, we have the diagram

Each level of the promap (do, di) is a fibration, but (d0, d1) need not be a
fibration in the sense of Edwards-Hastings. In order to obtain a cocylinder for X,
the morphism (d0, d1) can be factored as composition of a trivial cofibration i and
a fibration (do, d1")
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we also can assume that i is a level morphism and each level is a weak equivalence.
Because i is a weak equivalence and (d"0, d"1) is a fibration, the diagram above is a
cocylinder for X . If X is a tower of well pointed Hausdorff spaces, then i is also a
Strom cofibration.

Now for each j &#x3E; 0, consider the diagram

where (d0 Xj, dXj1’), (d"0, d"1)j are fibrations in Top* in the sense of Strom (or Hurewicz),
’QXj is the fibre of (d0Xj , dX1j) for each j &#x3E; 0 and nX is the fibre of (d", d"1). By
Proposition 5 Ch.I §.3 of [29], we have that ’QXj -&#x3E; (n2X)j is a weak equivalence.
Therefore if we write ’nX = {’nXj}, we have that ’QX -&#x3E; QX is a weak equiva-
lence. Then the loop functor of Ho(towTop* ) can be defined by extending levelwise
the loop functor of Ho(Top*).

Remark. Given X, Y E towTop* , we shall denote

The category obtained from towTop dividing by homotopy relations will be denoted
by 7ro(towTop.). Notice that if X is a tower of well-pointed spaces and Y is fibrant,
then

If X is a tower of pointed CW-complexes and Y is fibrant in the sense of Quillen,
then

Next we analyse the Freudenthal theorem for the category HoQuillen(towTop*)
giving enough conditions to obtain an isomorphism S: [X, Y] -&#x3E; [SX, SY].

For q &#x3E; 0 the functor -xq induces a functor towxq. Then for a given object
X = {... -&#x3E; X2 -&#x3E; Xi - X0} of towTop* , tow7rqX denotes the inverse system
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{... -&#x3E; TTqX2 -&#x3E; TTqX1 -&#x3E; TTqX0}. Let Top*N be the category of towers of pointed
spaces and level morphisms; that is, the objects are functors of the form N -&#x3E; Top*
and the morphisms are natural transformations between these functors. It is clear
that we have a natural functor TopN* -&#x3E; towTop* .

Lemma 1. Consider in TopN* the following commutative diagram

satisfying the following properties:

1) For each i &#x3E; 0, Xi is a CW-complex with dimXi=n + 1, Xi+l is a

subcomplex of Xi, Ai is a subcomplex of Xi and fl Xi = *.
i=O

2) For each i &#x3E; 0, pi: Ei --+ Bi is a (Serre) fibration and Bi is 0-connected.
Suppose also that for q  n towTTrq F is trivial, where F = {Fi} and Fi is the fibre
of Pi.

Then there is a morphism h: X -&#x3E; E in towTop. such that ph = f and hi = g
(i n t owT op* ) .

Proof. Since towTTqF = 0 for q  n, we can find a subtower {Fpi} such that for
every i &#x3E; 0 and q  n, TTqFp(i+1) -&#x3E; 1rqFcp(i) is trivial. Therefore after reindexing
we can assume that we have the additional hypothesis that for i &#x3E; 0 and q 

n, 1rq(Fi+l) - TTq (Fi ) is trivial.

The lifting is going to be constructed by induction on the dimension of the
skeletons of X . Since each Bi is 0-connected and pi: Ei -&#x3E; Bi is a fibration, it fol-
lows that each pi is a surjective map. Therefore given a 0-cell Do in

XiB(Xi+l U Ai) we can find hi(DO)EEi such that p¡hi(DO) = fi(DO). Using the
elements hj (D°), j &#x3E; i and the bonding maps of E, we can define a coherent level
lifting hi: X0i -&#x3E; Ei.

In the next step we do not obtain a level lifting, but it is possible to con-
struct a sequence of coherent maps hi: X1i+1 -&#x3E; Ei, i &#x3E; 0. Given a 1-cell D1 in
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Xs+1/(Xi+2 U As+1), we can apply that 7ro(Fi+l) -&#x3E; 7ro(Fi) is trivial to obtain the
desired lifting.

Repeating this argument with higher homotopy groups and taking into account
that dimX  n + 1, we finally obtain a sequence of coherent maps h; : Xi+n+1-&#x3E; Es
that defines a lifting h: X - E in the category towTop*.

Lemma 2. Let f : Y - Z be a morphism in towTop. between towers of pointed
0-connected CW -complexes. If for every q &#x3E; 0, f induces an isomorphism towTTq f,
then Sf: SY - SZ satisfies the same property; that is, towTTqSf is isomorphism
for q &#x3E; 0.

Proof. Consider the singular functor

and the "inclusion functor"

Because Sin and Inc preserve cofibrations and weak equivalences we have that Sin
and Inc commute with suspensions functors. By the conditions of the hypothesis
Inc Sin( f ) is a Grossman weak equivalence. Therefore the suspension S(Inc Sin(f))
is also a Grossman weak equivalence. However S(Inc Sin(f)) = Inc Sin(Sf). This
implies that S f : SY -&#x3E; SZ is such that towxqs f is an isomorphism for q &#x3E; 0.

Given a tower of CW-complexes X = {... -&#x3E; X2 -&#x3E; X 1 -&#x3E; X0} we denote
dimX = sup{dimXi l i &#x3E; 0}.

Lemma 3. Let f: Y - Z be a morphism in towTop. between towers of 0-connected
spaces such that towTTqf is an isomorphism for 0  q  2n - 1 and epimorphism
for q = 2n - 1. Assume that X is a tower of pointed CW -complexes such that

for each i &#x3E; 0, Xi-1 is a subcomplex of Xi and n Xi= *. Then if dimX 

2n - 1, f* [X,Y] -&#x3E; [X, Z] is an isomorphism and if dimX  2n - l, f. is an

epimorphism.

Proof. Because TopN has a closed model structure, see [10], we can consider a
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commutative diagram

where E, B are fibrant, p is a level morphism and each pi : Ei -&#x3E; Bi is a fibration
and u and v are weak equivalences.

Let Fi denote the fibre of pi : Ei -&#x3E; Bi and F = {Fi}. From the hypothesis
conditions on towTTqf we have that towTTqF= 0 for q  2n - 2. Since u, v are weak

equivalences the map [X, Y] -f* [X, Z] is isomorphic to [X, E] -&#x3E;p* (X, B]. Since X is
cofibrant and E, B are fibrant [X, E] and [X, B] can be realised as sets of homotopy
classes. Now from Lemma 1, we have that if dimX  2n - 1, p. is an isomorphism
and if dimX  2n - 1, then p* is an epimorphism.

Lemma 4. Given a tower of poanted spaces Y such that towTTwqT = 0 for q 
n -1 (n &#x3E; 1), there is a tower of pointed 0-connected CW-complexes Y’ and a level
morphism Y’ -&#x3E; Y such that towTTqY’ towirqy is an isomorphism for q &#x3E; 0
and for each i &#x3E; 0 and q  n - 1, TTq(Y’i) = 0.

Proof. Given Y = {Yi}, we can apply the singular functor Sin: towTop. -&#x3E; 

towSS., SinY = {SinYi} and by considering the coskeleton functor

coskn: towSS. -&#x3E; towSS., we have the level morphism

Let Fi -&#x3E; SinYi -&#x3E; coskn SinYi denote the homotopy fibre of SinY -&#x3E; 

-&#x3E; cosknSinYi. We have that 7rqFi = 0 for q  n - 1 and 7rqFi -&#x3E; TTqSinYi is

an isomorphism for q &#x3E; n. This implies that towTTq [Fi] -&#x3E; towTTq {SinYi} is an

isomorphism for q &#x3E; 0. Applying now the realization functor R we have that the
morphism

induces isomorphisms on towxq for q &#x3E; 0 and for each i &#x3E; 0 and q  n-1, TTq (RFi ) = 
0. Then defining Y/ = RFi, Y’ = {Y’i} is the desired tower.
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Theorem 1. Let X be a tower of pointed CW -complexes such that for each i &#x3E; 0,

Xi+l is a subcomplex of Xi and n xi = *. Suppose also that Y is a tower of pointed
i=O

CW -complexes such that towTTqY = 0 for q  n - 1. Then if dimX  2n - 1, the

suspension map

is an isomorphism and if dimX  2n - 1, then S is an epimorphism..

Proof. Since towTToY = 0, Y can be considered up to isomorphism in towTop* as a
tower of pointed 0-connected CW-complexes. By Lemma 4, there is a tower Y’ and
a morphism f : Y’ -&#x3E; Y such that towTTrqY’ -&#x3E; towTTrqY is an isomorphism for q &#x3E; 0
and such that TTqYi’ = 0 for i &#x3E; 0 and q  n - 1. By Lemma 2, Sf : ,SY’ - SY
induces an isomorphism towTrqSf for q &#x3E; 0. Now consider the commutative diagram

By Lemma 3, f * and (Sf)* are isomorphisms. By the Freudenthal theorem for
standard homotopy we have that for i &#x3E; 0, TqY’i -&#x3E; TTqnSYi’ is an isomorphism for
q  2n - 1 and an epimorphism for q = 2n - 1. Therefore tow7rqY’ -&#x3E; towxqosY’
is an isomorphism for q  2n - 1 and an epimorphism for q = 2n - 1.

Applying Lemma 3, we have that if dimX  2n - 1, [X, Y’] -&#x3E; [X, QSY] is an
isomorphism and if dimX = 2n - 1, then [X, Y’] - [X, OSY’] is an epimorphism.
This is equivalent to saying that if dimX  2n - 1, [X, Y’] - [SX, SY’] is an

isomorphism and if dimX  2n - 1, then [X, Y’] - [SX, SY’] is an epimorphism.

Finally taking into account that f * and (Sf)*. are isomorphisms, we obtain the
thesis of the theorem.

Lemma 5. Let X be a tower of pointed CW -complexes. Then there is a tower

X’ of poanted CW -complexes such that the bonding morphisms of X’ are cellular
°°

inclusions, n°° X’i = *, dimx’ = dimX + 1 and X = X’ in Ho(toz.vTop* ).
1=0
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Proof. Let X = f- - - -&#x3E; X2 - Xi - Xo} be a tower of pointed CW-complexes.
In order to have cellular bonding maps we can apply the cellular approximation
theorem, so for each j there is a homotopy Fj: Xj (D [0,1] -&#x3E; Xj - 1 such that

Fj g0 = X4 and FjXQ1 = Xj-1, where Xj-1 is a cellular map. By considering
the commutative diagram

where (Fj, pr2) (X, t) = (Fj (x, t), t), we have that {QX0} and {QX1j} are weak equiva-
lences. is isomorphic to

in Ho(towTop*), and now the bonding maps are cel-
lular.

Recall that given a cellular map f : X-&#x3E; Y between pointed CW-complexes,
the cylinder for f defined by the pushout

admits a CW-complex structure.

Given a tower X = {... -&#x3E; X2 -&#x3E; X1 -&#x3E; X0 } we can suppose that the bonding
morphisms are cellular. By considering the cylinders for the bonding maps the
following telescope TX can be constructed, see [10; page 115].
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For i &#x3E; 0, define Xi as the quotient of

defined by the relations

Notice that we have a natural sequence of cellular inclusions

such that + n°° t=0 Xi = *. We also have the maps ini:Xi -&#x3E; X’i, ini(z) = (x, i) and
i=0

pri: X’i -&#x3E; Xi defined by prs(x, t) = Xkix if xEXk (k 2:: i).

It is easy to check that in: X -&#x3E; X’ and pr: X’ -&#x3E; X are lewelwise mor-

phisms, pr in = idx and for each i &#x3E; 0, ini pri = idX’. Therefore in and pr are
weak equivalences in towTop* . We also have, that if dimX :5 n, then dimX’  n+1.

Applying the last result and Theorem 1, we have the following version of the
Freudenthal theorem for more general towers:

Theorem 2. Let X , Y be towers of pointed CW-complexes such that towTTqY = 0
if q :5 n - 1 and dimX  2n - 2, then S: [X,Y] -&#x3E; [SX, SY] is an isomorphism.
If dimX  2n - 2, S is an epimorphism.

Notice that the dimension condition for a general tower of pointed CW-
complexes is stronger than the condition for a tower of pointed CW-complexes in
which the bonding morphisms are cellular inclusions and the inverse limit is trivial.

Examples. Let sn be the standard n-dimensional sphere.We also denote by Sn the
constant tower {... -&#x3E; Sn id-&#x3E;Sn -&#x3E;id Sn}. The Grossman n-sphere E" is the
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tower defined by where and the bonding maps are given

by inclusions.

From the comparison theorem of Edwards and Hastings, we have that

For because we have that For it is

easy to check that O x3(S() is a retract of x3( V Si2) and because the retractions
commute with the bonding morphisms, it follows that {O TT3(S2i)} is a retract of

i&#x3E;k

{TT3(V S2i)} in towGps. As a consequence of the functorial properties of liml we also
i&#x3E;k 

have that limk EÐ TT3(S2i) is a retract of lim 1kTT3(. V Si2). On the other hand, it is easy
i&#x3E;k i&#x3E;k

to check that limk C TT3(S2i )= n TT3(Si2)/ C TT3(S2i) # 0. Then lim1kTT3(V Si2) is
i&#x3E;k iEN iEN I&#x3E;k

non trivial and [S2,Ë2] I 0. 

For n &#x3E; 2, it follows that is isomorphic to

fore we have that

From these facts we can conclude that:

1) The suspension morphism [S1,£1] -&#x3E; [S2, £2] is not surjective. (n = 1, dim =
2n - 1).

2) [S2, £2] -&#x3E; [S3, £3] is a surjective map and it is not injective (n = 2, dim =
2n - 2). Notice that the suspension morphism TT3(S2) -&#x3E; 7r4(83) induces the mor-
phisms

Therefore kerp is a retract of ker1f;. Because TT3(S2) -&#x3E; TT4(S3) has no zero kernel,
it follows that ker1f; =F 0.

is an isomorphism (dirn  2n - 1).

We also have the usual dimension condition if Y is a movable tower. Recall
that a tower Y = {Yi} is movable if for each i there exits a k &#x3E; i such that for
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each 1 &#x3E; k there exits a map pkl: Yk -&#x3E; Yi such that plipkl = pkl, where gij are the
bonding maps.

Proposition 1. Let X, Y be towers of pointed CW -complexes and assume that Y
is movable. If towTTqY = 0 for q  n - 1, and dimX  2n - 1 then S: [X, Y] -&#x3E;

[SX, SY] is an isomorphism and if dimX  2n - 1, S is an epimorphism.

Proof. If we apply the comparison theorem of Edwards and Hastings we have the
following exact sequence

Since Y is a movable tower, it follows that {colimj [SXj, Yi]}iEN is a movable tower of
groups, then it is satisfied the Mittag-Leffler condition and lim1i colimj [SXj , Yi] = 0.
Therefore [X,Y] = limsi colimj [Xj, Yi]. Similarly, [SX, SY] = limi,colimj[5X,5Y].

Now the Freudenthal suspension theorem for standard homotopy implies the
Freudenthal theorem for towers under the conditions of Proposition 1.

Corollary 1. Let X be a tower of pointed CW-complexes and let 5’n be the constant
tower (sn = {... -&#x3E; sn -&#x3E;id Sn}). If dimX  2n -1, then S: [X, Sn] -&#x3E; [SX, Sn+1]
is an isomorphism and if dimX  2n - 1, S is an epimorphism.

3. Applications.

We are going to see that the suspension theorem for towers of spaces implies
suspension theorems for proper homotopy and strong shape theories.

a) A suspension theorem on proper homotopy theory.

The categories (Pa ) j and ((P6)J)°° , defined in section 1, have the structure of
a cofibration category, see [2, 3, 7]. Therefore a suspension functor S can be defined
as follows:
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For a given well rayed space (X, a) of Pa, consider the pushout

and the proper map . This map can be factored as the composite

where i is a cofibration and p is a weak equivalence.

If a: J - X is a cofibration and X is a Hausdorff, locally compact, 0’-compact
space, we can apply Uryshon’s lemma to obtain a proper map r: X --+ J such that
ra = idj. We are going to use this map r to define the proper suspension, however
we also show that if we consider a different proper map r’: X - J the proper
suspension induced by r’ has the same proper homotopy type as the suspension
induced by r.

Given a well rayed space (X, a) the proper suspension, SX, is defined by
considering the following composition of pushout diagrams

If we consider well rayed spaces, all vertical morphism of diagram above are
cofibrations. Since X -&#x3E; SjX is a cofibration and because two proper maps
r, r’: X -&#x3E; J are always properly homotopic, we have that the suspension induced
by r is properly equivalent to the suspension induced by r’.

We are going to restrict ourselves to the full subcategory of (P6)J determined
by well rayed spaces (X, a) such that X has a CW-decomposition, a(J) is a sub-
complex and X has a sequence of subcomplexes {Xi |i &#x3E; 0} such that for each
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i 2: 0, cl (X - Xi) is compact, Xi+l C intXs and n°° Xi = 0. We denote this full
t=0

sub category by (CW P6)J .

Consider the Edwards-Hastings embeddings

defined by X -&#x3E; {Xi/ray}, and recall the following result proved in [7].

Theorem 1. For a given object X of (CW Pq)J there exist isomorphisms,

in the categories Ho(towTop*, Top*) and Ho(towTop*), respectively.

In 1975, Brown [6] defined the spheric object BSn by attaching an n-sphere at
each integer of the semiopen interval [0, +00). The Brown proper homotopy groups
are defined by 

for a rayed space X. Brown also defined functors towSet* -&#x3E;P Set., towGps -&#x3E;P Gps
such that

There also are Pg functors defined for the global case that satisfy similar properties.

Grossman, proved that the P functors reflect isomorphisms, therefore we have:

Lemma 1. If X is a well rayed space the following conditions are equivalent

a) tow TTq E°° X= 0 q  N,

b) B 7r c* X = 0q  N.

There is a similar global lemma. Therefore we have the following definition:
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Definition 1. A well rayed space X is said to be N-connected at infinity iftow1rq£X
= 0 for q  N or equivalently BTT°°q (X) = 0 for q :5 N. It is said to be N-connected
if the corresponding global condition is satisfied.

Now we can establish the following proper suspension theorem, where we have
denoted TT0((P6)J)oo(X,Y) by [X,V]oo.

Theorem 2. Given X , Y spaces in (CWPq)J and suppose that Y is (n - 1)-
connected at infinity (n &#x3E; 1). Then if dimX  2n - 1, the natural map

is an isomorphism and if dimX = 2n - 1, S is an epimorphism (Of course we also
have a similar theorem for the global case).

Proof. We can consider the commutative diagram

By the Edwards-Hastings embedding, the maps of type Eoo are isomorphisms and
by Theorem 1, [éooSX, EooSY] = [SEooX, SEooY]. Because EooX and Eoo Y are under
the conditions of Theorem 2.1, we have that [EooX, éoo Y] -&#x3E; (SEooX, Séoo Y] is an
isomorphism (or epimorphism). Therefore we conclude that [X, Y]oo -&#x3E; [SX, ,SY]oo
is an isomorphism (or epimorphism).

Corollary 1. Let Y be a rayed space in (CWPa)j and assume that Y is (n - 1)-
connected. Then the suspension BTTooq(Y) - BTTqoo+1(SY) is an isomorphism if
q  2n - 1 and an epimorphism for q = 2n - 1 (similarly for the global case.

Remark. Of particular interest are the epimorphisms
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and the corresponding global versions

In the first case, BTT1oo (B S1 ) has a natural near-ring structure, see [18],
and BTToo2 (B S2) a natural ring structure. The suspension is the natural near-

ring morphism. The second case is the proper version of the standard morphism
TT3S2 -&#x3E; TT4S3.

We also obtain a suspension theorem for the strong (or Steenrod, Cerin) proper
homotopy groups, which are defined by using sphere objects of the form SSq =
Sq X [0, oo). Because dirra SSq = q + 1, we have:

Corollary 2. Let Y be a rayed space in (CWPa)j and assume that Y is (n - 1)-
connected. Then the suspension morphism

is an isomorphism if q  2n - 2 and epimorphism if q = 2n - 2.

b) The suspension theorem for strong shape theory.

First we recall the definition of the Cech nerve C(X) of a space and the Vietoris
nerve V(X). This second Vietoris functor was first introduced by Porter [20].

Given a pointed space X with a base point x we can consider the directed
set covX . An element of covX is an open covering Ll of X with a distinguished
UEL! such that xEU. Given a pointed space X and a pointed open covering U,
CXu denotes a pointed simplicial set such that a typical n-simplex is given by
(Uo, ... , Un) where Uo, ... , Un Eu and Uo n ... n Un # 0. This defines a functor
C: Top. --+ proHo(SS.).

If U is a pointed open covering of the pointed space X, the Vietoris nerve of U,
VXu is the pointed simplicial set in which an n-simplex is an ordered (n + 1)-tuple
(xo, ... , xn+1 ) of points contained in an open set U E Ll. One important difference
with the Cech nerve is that if U’ refines U there is a canonical map VXU, -&#x3E; V Xu,
in the case of the Cech nerve the corresponding map is only determined up to
homotopy, i.e. in Ho(SS*).
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Therefore we are going to consider the functors

and their compositions with the realization functor

We shall use the Dowker theorem [10, page 251] that shows that for a (pointed)
covering of X, RCXu is canonically homotopy equivalent to RV Xu .

The following notion of dimension, see Spanier [31], will be used. Given a

space X , it is said to be dimX  n if for every open covering Ll of X there is an
open covering U’ such that U’ refines Ll and CXU, is a simplicial set such that any
nondegenerate simplex in CXU, is of dimension at most n.

It is not difficult to check that if X is a compact metrisable space, then there
is a cofinal sequence ... ,U2, U1, Uo of open coverings in covX . Therefore {CXu}
is isomorphic to {CXui} in proHo(SS* ) and {VXu} is isomorphic to {VXu,} in
pro,SS*.

We also have that if X is a compact metrisable space and dimX  n, then
there is a cofinal sequence of open coverings ... , U2, U1, U0 such that for i &#x3E; 0 the

simplicial set CXui is of dimension at most n.

Therefore for compact metrisable pointed spaces we have functors

and we can define the pointed shape category and pointed strong category by con-
sidering the full embeddings

Using the functor Ho(towTop*) -&#x3E; towHo(Top*) and the Dowker Theorem, we
have that for a compact metrisable space X , RCX and RV X are isomorphic in
towHo(Top*). Applying Theorem 5.2.9 of [10] we also have that RCX and RVX
are also isomorphic in Ho(towTop*). -
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Using this isomorphism we have that if X is a compact metrisable space and
dimX n, then RV X is isomorphic to a tower of finite CW-complexes with dimen-
sions less than or equal to n.

We also need Proposition 8.3.20 of [10] that asserts that the functor V com-
mutes with the suspension.

For a given compact metrisable pointed space X, we have the natural functor
towTTqRVX and the Quigley inward group Q1rq(X) that is obtained from tow1rqRV X
by the P functor QTTIq(X) = Ptow1rqRVX. It is said that X is shape n-connected if
towTTqRVX= 0 for q  n or equivalently QTTq (X )= 0 for q  n.)

Theorem 2. Given X, Y compact metrasable pointed spaces and suppose that Y is
shape (n - 1)-connected . Then if dim X  2n - 2, the natural map

is an isomorphism and if dim X = 2n - 2, S is an epimorphism.

Proof. Consider the following diagram

Because the realization functor and the Vietoris functor commute with the suspen-
sion, it follows that the diagram is commutative.

Since RVX is isomorphic in Ho(towTop* ) to a tower of CW-complexes of
dimension less than or equal to dimX , we can apply Theorem 2.2, to obtain that S
is an isomorphism if dimX  2n - 2 or an epimorphism if dimX = 2n - 2.
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