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CAHIERS DE TOPOLOGIE ET Volume XXXVI-2 (1995)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

A NOTE ON r-EMBEDDINGS
by Luciano STRAMACCIA

Résumé. Dans cet article on étudie la classe des espaces r-compacts
[10,12] et la notion connexe de sous-espace r-plongé, ou r est un
épiréflecteur topologique. Cette notion permet d'obtenir des résul-
tats dans le contexte du probléme de la conservation des produits
topologiques par r. De plus, elle donne une caractérisation des
réflecteurs totaux, définis en [2,3].

Introduction.

Let r : Top — R be a topological epireflector. In [10,12] we have in-
troduced the category r — Comp of r-compact spaces, and the related
r-closure operator.

In this note we go on studing such classes of spaces. Since it turns
out that r-compactness is not an absolute property, then we are con-
cerned, in particular, with a concept that overcomes such a difficulty,
namely that of r-embedded subset. A subset A of a space X is r-
embedded in X whenever r(S) is a subspace of r(X).

After presenting the general properties of r-embeddings, we concen-
trate on two arguments.

First, we describe the close relation existing between the classes of
r-embeddings in Top and that of embeddings in R with respect to
which r is total, in the sense of [2]. Actually, r is total with respect
to the class of open embeddings if and only if every r-open subset of
a given space is r-embedded there.

Furthermore, we give a characterization of the maximal class 7} of
embeddings in R, such that r is total with respect to 7.. We obtain a
somewhat surprising result (Th.2.3) in this direction, by making use
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of the notion of pullback complement [3].

Secondly, the concept of r-embedding turns out to be useful in con-
nection with the question whether r preserves products. Given two
r-compact spaces X and Y, and two r-embedded subspaces A C X,
B C Y, then r(A x B) = r(A) x r(B) holds. Such kind of result
applies to a great variety of cases and, in particular, when r = 7 is the
Tychonoff modification functor.

1. r-Compact Spaces and r-Embeddings.

In this paper we shall be concerned with an epireflective subcategory
R of the category Top of all topological spaces and maps, with reflec-
torr: Top - R .

For every space X € Top, let rx : X — r(X) be its onto reflection
map, and let us decompose it as follows

X Ix r(X)
N\ /
jX //IJX
X,

where X, is the space having the same underlying set as X, with the
initial topology induced by rx. Then jx acts as the identity, and
rx =r’y as set maps.

Such a procedure is functorial and gives a decomposition r = r’ - j of
the reflector r by means of the two functors j : Top — Top,., and
r’ : Top, — R. Here Top, = {X,|X € Top} is the bireflective hull
of R in Top with bireflector j = {jx}, while r’ is the restriction of r
to Top,., in fact r’y =rx_, for every space X. The topology on X, is
generated by what we called in [12] the r — closure operator, defined
as follows

clr(M) = ry (cl(rx (M))),

where M C X and cl denotes ordinary closure. M is r — closed in X
whenever M = cl,.(M). A subset U of X will be called r — open if
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X — U is r-closed there.

EXAMPLES 1.1. (a) Whenr : Top — Top, is the T,-identification
functor, then U C X is r-open if and only if U is open and ¢ € U
implies cl{z} C U.

In general, for a quotient reflector r, the r-open subsets of X € Top
coincide with those subsets S that are open and saturated with respect
to the reflection map rx, that is S = ry' (rx(9)).

(b) Let T : Top — Tych be the Tychonoff modification functor [5,6].
The T-open subsets of a space X are those which are union of cozero
sets of X.

(c) Let r : Top — 0 — dim be the reflector functor on the category of
zero-dimensional spaces; in such a case the r-open subsets of X € Top
are those subsets that are union of clopen subsets of X.

(d) Let R C Top be such that the Salbany closure operator [9](called
R-closure) induced by it, coincides with the ordinary closure on each
X € R. This happens, e.g., for R = Haus, the category of Hausdorff
spaces, R = Reg, the category of regular spaces, R = Tych, R =
O — dim, etc. In such a case the r-open subsets of X are the same as
the R-open subsets. For the general situation see [11].

A topological space X is said to be r — compact whenever its
reflection r(X) in R is a compact space (no separation axiom is as-
sumed); this amounts to say that every cover of X by r-open subsets
has a finite subcover.

The category r — Comp C Top of r-compact spaces has been studied
in [10,12], where we are concerned with the question whether r pre-
serves topological products.

Recently, r-compact spaces have been studied further in [8].

r-compactness is not an absolute property, as shown by the following
example concerning the Tychonoff reflector 7.

EXAMPLE 1.2. Let X be the space having the closed unit interval
I as underlying set and a topology which differs from the usual one in
that the neighbourhoods of the point 0 do not contain points of the
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set A={L:neN}.

X is a non-compact, T-compact space, in fact one has 7(X) = X, = I.
If we consider the subset S = AU {0} of X, then S is relatively -
compact with respect to X, but it is not T-compact considered as a
topological space, with the topology inherited from X .

In order to avoid this kind of situation, it is useful to introduce
the notion of r — embedding, which also turns out to be of interest in
connection with other concepts, as we shall see below.

DEFINITION 1.3. A subset S of a space X is said to be r —
embedded in X provided that every r-open subset of S is the intersec-
tion of an r-open subset of X with S.

THEOREM 1.4. For a subset S of a space X, the following are
equivalent:

(1) S is r-embedded in X.

(2) S, is a subspace of X,.

(3) r(S) is a subspace of r(X).

4) clrs(M)=cl, x(M)NS, for every M C S.

PRrROOF: The equivalence of (1) and (2) follows directly from the defi-
nitions.

(2) — (3). Let s be the embedding of S in X. We have the following
situation: r(s,)-rs, =rx, - S, where s, is the embedding of S, in
X, and rx, - Sy, r(s;) are initial maps. Our first task is to show that
r(s,) is also initial. To this end, let V' C r(.S) be an open subset; then
there exists an open subset T' C r(X) such that

r5 (V) = (rs, - 5;)"H(T) = (x(sr) - 15,)"H(T) = 15, (x(s)1(T))-

Since rg, is onto, we obtain that V = r(s,)"!(T’). For r(s,) to be an
embedding it remains to show that it is injective. In order to do this
let us recall 7] that R is either bireflective in Top or it is contained
in the category Top, of T,-spaces; in the former case r(s) must be
injective, hence an embedding. In the latter case r(S) is a Tp-space. If
z and y are two distinct points in r(S) then there is an open subset U
of r(S) such that z € U and y ¢ U. By the first part of the proof there

-144 -



L. STRAMACCIA - A NOTE ON r-EMBEDDINGS

exists an open set V C r(X) such that U = r(s)~1(V). It follows that

r(s)(z) and r(s)(y) must be different.

(3) — (4). Let us recall that cl. (M) is given by the intersection of

all r-closed subsets F' of S that contain M. Every such F is of the

form F = rg'(F’), being F’ a closed subset of r(S). Note also that,

by assumption, F’ is of the form F' = r(s)~!(F") for some closed

subset F” of r(X). Then one has rg’(r(s)"1(F")) = s~} (r}' (F")) =

3 (F")N S. Tt follows

clys(M) = N{rg'(F") : M C F} = n{rg*(r(s)"Y(F")) : M C F} =
=n{s7H ' (F"): M C F} =n{r*(F")NS: M C F} =

=N{ry(F"): M CF}nS=cl.s(M)NS.
(4) — (1). This is immediate.

COROLLARY 1.5. Let S be an r-embedded subspace of X. Then:

(1) r(S) =rx(S) andrs =rx|s.
(2) S is r-compact iff it is r-compact relatively to X.

COROLLARY 1.6. Every retract of X is r-embedded in X.

EXAMPLES 1.7. (a) Let r be a quotient reflector withrx : X —
r(X) = X/ ~, for every X € Top. A subset M C X is then r-
embedded exactly when M/ ~ is a subset of X/ ~. It follows that a
sufficient condition in order that M be r-embedded in X is that M is
either open or closed in X and saturated with respect to the quotient
mapry.

If r is the T,-identification functor, then every closed subset of X is
r-embedded in X, as one can easily verify.

(b) Recall that a subset S of a space X is z — embedded [1] whenever
every cozero set in S is the intersection with S of a cozero set in X.
Hence it is clear that every z-embedded subset is also T-embedded.
Moreover, since every cozero set is z-embedded, it follows that every
T-open subset of X is T-embedded.

REMARK 1.8. In the non-surjective case of the Hewitt realcom-
pactification functor v : Top — r — Comp, the concept of v-embed-
ding coincides with that defined in [1].
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The situation described in 1.7.(b) above is not typical of 7, but it
is fairly general, since it is shared by all those reflectors that are total
(in the sense of [2]), with respect to the class of open embeddings.
Besides 7, other examples are the reflectors onto the categories Haus,
Reg, 0 — dim.

Let us recall that the epireflector r is said to be total [2,3] with respect
to a class S of topological embeddings, whenever, given an embedding
s:S — r(X), with s € S, then the restriction of rx to ry'(S), that
is the map

Txiesi(s) | Tx (8) =8

is uniquely R-extendable, hence a reflection map.

PROPOSITION 1.9. The epireflector r is total with respect to the
class of open embeddings iff, for every X € Top, every r-open subset
of X is r-embedded in X.

PRrROOF: Let r be total with respect to the class of open embeddings
and let A be an r-open subset of X. Then rx (A) is open in r(X) and
A = ry}!(rx(A)). It follows that rxja: A = ry' (rx(A4)) — rx(A4) is
the reflection map for A, hence r(A) = rx(A) and ry = rx)4, that is
A is r-embedded in X.

Conversely, assume that, for any space X, every r-open subset of X is
r-embedded. Let s : S — r(X) be an open embedding; then ry*(S) is
r-open in X. It follows that rXIr;l(S):r;(l(S) =yl (rx(rx'(S))) —
S is a reflection map. This shows that r is total with respect to the
class of open embeddings.
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2. Further Properties of r-Embeddings.

Let the epireflector r : Top — R be given and let us denote by T}
the maximal class of topological embeddings such that r is total with
respect to it.

A natural question that arises is then to characterize the class T.
The next results deal with this problem.

PROPOSITION 2.1. Let X € Top. An embedding s : S — r(X)
is an element of T, if and only if there exists a subset A of X such
that:

(1).322 rx(fiy
(2) A is saturated with respect torx.
(3) A is r-embedded in X.

ProOOF: The proof is straitforward and depends essentially on the
definition of r-embedding.

The following theorem indicates how one must choose the subset

A of X, involved in the previous proposition. It make use of the notion
of pullback complement [3] which we recall for sake of completeness.

DEFINITION 2.2. Let f: A — U and s : U — Y be morphisms
in a category C. A pullback complement of the pair (f,s) is a pair
(s', f') in such a way that

is a pullback square with the property that for every other pullback
square
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T———Y
9
and any morphism h : V — A with f - h = g, there is a unique

k' : T — P such that f'-h' =g’ and s’- h=h'-t.

THEOREM 2.3. Leta : A — X be an embedding that is saturated
with respect to rx. Then a is an r-embedding’ if and only if the pair
(ra,r(a)) is a pullback complement of (a,rx).

PRrROOF: Assume that a is a saturated r-embedding with respect to
rx; then the following diagram is a pullback:

A—2 X

ml 1rx

r(4) 7 * )

Suppose there is another pullback square

v—4

tj lrx

and amap h:V — Awitha-h=g.

By commutativity it follows g* -t =rx -g=rx-a-h =r(a)-ry4 -
h. Because of Theorem 1.4(3) we know that r(a) is an embedding.
Moreover, t as a pullback of the onto map rx is onto as well. Now
the fact that onto maps and embeddings form a factorization system
implies the existence of the required h* : T — r(A); it arises as a
”diagonal fill-in”. This concludes the first half of the proof.
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Conversely, assume that a : A — X is a saturated embedding such
that the first square is a pullback complement.
Consider the following diagram

A = X

\\1A }/
~N

Ix|A A rx

where a* is the inclusion.

By the universal property of the reflection there is a unique s : r(A) —
rx (A) such that s-r4 = rx|4; by the universal property of the pullback
complement, there is a unique ¢ : rx(A) — r(A) such that r(a)-t = a*.
Then r(a)-t-rx|4 = a*-rx|4 = rx-a; by the universal property of the
right outer pullback square, it follows that 14 must be the unique map
which renders the left outer square commutative, that is, ra = t-rx|a.
Finally, the composition ¢ - s must be the identity, hence s is an onto
map having a left inverse; s is a homeomorphism, and this concludes
the proof.

Let now X and Y be two topological spaces. One says that
the epireflector r preserves their product and writes r(X x Y) =
r(X)xr(Y), whenever the unique map tx xy : r(XxY) — r(X)xr(Y)
such that txxy.rxxy = rx X ry, which is induced by the universal
property of the reflection, is a homeomorphism. This happens, e.g.,
whenever X and Y are r-compact spaces.

In [12] it was shown that r preserves the product of X and Y if and
only if every r-open subset of X x Y is union of subsets of the form
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A x B, where A C X and B C Y are r-open.

THEOREM 2.4. Let X and Y be topological spaces r-embedded
in r-compact spaces X* and Y*, respectively. Then r(X xY) =
r(X) xr(Y) iff X x Y is r-embedded in the product space X* x Y*.

PROOF: Let us assume that X x Y is r-embedded in the product
X*xY* Let P C X XY be an r-open subset, then there is a r-
open subset @ C X* x Y* such that P = (X xY) N Q. For every
q € Q, there exists a rectangular r-open set A; x By in X* x Y*
such that ¢ € Ay x By. It follows that Q) = UgegAq X By, therefore
P =Ugeq(X xY)N(Ag X Bg) = Uge((X NAq) x (Y N By)), where
(XNA,) and(Y N B,) are r-open subsets in X, Y, respectively. Hence
P can be written as a union of rectangular r-open sets of X x Y.
Conversely, assume that r(X x Y) = r(X) x r(Y), then every r-
open subset of X X Y is a union of rectangular r-open subsets. Let
P C X xY be an r-open subset; there are r-open subsets A; C X and
B, C Y,i € I, such that P = U;¢c;A; X B;. By assumption there are
r-open subsets A} C X* and B C Y* with A; = XNA], B; =YNB;.
Now P* = U;er A} x B; is an r-open subset of X* x Y™ with the prop-
erty that P= (X xY)N P* .

COROLLARY 2.5. Assume that r is total with respect to the class
of open embeddings and let X, Y be r-compact spaces. For any pair
of r-open subsets A C X and B C'Y, we haver(Ax B) =r(A) xr(B).

REMARKS 2.6. (a)The category of w — compact spaces, defined
and studied in [5,6], is contained in T — Comp. Since T is total with
respect to the open embeddings, because of Proposition 1.9, Corollary
2.5 applies to any two (unions of) cozero sets A C X and B C Y,
whenever X and Y are w-compact.

The same is true, e.g., when A, B are Lindeloff subspaces of X,Y,
respectively, since then they are z-embedded [1], hence T-embedded.
(b) The corollary above applies to most of the usual situations; see, in
fact, [2] for a list of topological epireflectors that are total with respect
to the class of open embeddings.
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