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CAHIERS DE TOPOLOGIE ET Volume XXXVI-2 (1995)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

ALGEBRAIC DE MORGAN'S LAWS FOR

NON-COMMUTATIVE RINGS
by Susan B. NIEFIELD and Shu-Hao SUN

Résumé. Les analogues algébriques (dans un anneau commutatif)
de principes logiques connus comme la loi forte et la deuxi¢me loi
de Morgan sont donnés par les équations entre idéaux (I : J) +
(J:I)=Ret Ann(INJ) = Ann(I) + Ann(J). Les propriétés
des anneaux qui satisfont ces lois ont été étudiées par Niefield et
Rosenthal [8], [9]. Dans le present article, cette étude est prolongée
et de nouveaux résultats sont obtenus dans le cas non commutatif.

Introduction.
The logical principles
-(AAB)=-AV-B and (A= B)V (DB = A) = true

known as second de Morgan’s law and strong de Morgan law, respectively,
are not in general valid in intuitionistic logic. Johnstone [4] showed that in
the topos Sh(X) of set-valued sheaves on a topological space X (and hence
in the locale O(X) of open subsets of X) second de Morgan’s law holds if
and only if X is extremally disconnected, and strong de Morgan’s law holds
if and only if every closed subspace of X is extremally disconnected.

The algebraic analogues of these laws for ideals of acommutative ring R
with identity were investigated by Niefield and Rosenthal in [8] and [9]. First,
in [8], they proved that a Noetherian domain R satisfies the strong algebraic
de Morgan’s law

(I:J)y+(J:I)=R

if and only if R is a Dedekind domain. Then, in [9], they showed that a re-
duced (i.e. with no nontrivial nilpotents) ring R satifies the algebraic de Mor-
gan’s law

Ann(INJ) = Ann(I)+ Ann(J)
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if and only if R is a Baer ring if and only if R satisfies the weak de Morgan’s
law
Ann(rs) = Ann(r) + Ann(s)

for all , s € R, and Ann(I) is principal for all ideals I. Using these results,
they characterized those R for which Spcc(R) is extremally disconnected,
and those for which every closed subspace of Spec(R) is extremally discon-
nected.

Weak de Morgan’s law has also been related to a weakened form of the
definition of a Baer ring, which we will call a weak Baer ring. In [12], Sim-
mons showed that a reduced commutative ring R with identity is a weak Baer
ring if and only if the distributive lattice L( R) generated by radicals of prin-
cipal ideals is a Stonian lattice. Recently, Belluci [1] partially extended this
result to the noncommutative case by showing that if R is a semiprime gc ring
with unit (i.e. a ring for which Spec(R) is a spectral space), then R is weak
Baer if and only if L(R) is a Stonian lattice.

The goal of this paper is to extend the main results of [8] and [9], as well
as the Simmons/Belluce theorem, to the general noncommutative case.

1. Ring Theoretic Preliminaries.

Thoughout this paper R is a (not necessarily commutative) ring with
identity, all ideals are 2-sided, (r) is the principal ideal generated by r € R,
and Id(R) denotes the set of ideals of R. If I and J are ideals, then

ItJ={reRlrJ CI} and I..J={reR|Jr CI}

are the usual left and right residuated ideals, respectively. It is not difficult
to show that K C I:; J ifand only if KJ C I, and K C I:, J if and only if
JK C I. Note thatif I:; J = I:,. J, then we will write I': J for their common
value and say that I: J is well-defined. In the special case where I = 0, I:; J
and I:, J are the left and right annihilator ideals Ann;(J) and Ann.(J),
respectively. As in the case of residuated ideals, we write or Ann(J), if they
are equal, and say that Ann(J) is well-defined.

Recall that an ideal I of R is called semiprime if J? C I implies J C I,
for all ideals J. If R is commutative, then these are just the radical ideals. It
is well know that an ideal is semiprime if and only if it is an intersection of
prime ideals. Also, itis not difficult to show that the set SId( R) of semiprime
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ideals of R is closed under arbitrary intersections. Thus, if I is any ideal of R,
then the smallest semiprime ideal of R containing I is defined and is denoted
by V1. Also, SId(R) is a locale which is isomorphic to the open set lattice
of Spec(R),with INJ =INJandIVJ = +/I+ J. Infact, SId(R) is
the largest localic quotient of the quantale Id(R) (c.f. Corollary 3.6 in [10]).
As such, one obtains the following proposition (c.f. [10]), which can also be
verified directly if the reader so desires.

Proposition 1.1. If I is a semiprime ideal of R, then

(@) Jy---Jn CLiff Jo1)* - Jo(n) C 1, for all permutations o and for all
ideals Jy ... J,.

(b) J1---J. CIiffJiN...0J, C1I forallideals J, ...J,.

(c) I:J is a well-defined semiprime ideal, for all ideals J.

(d) I:/J = I:J, for all ideals J .

(e)J — I =1I:J,forall ideals J, where — is the Heyting implication in
SId(R).

Recall that R is called semiprime if the zero ideal 0 is semiprime, i.e. R
has no nontrivial idempotent ideals. If R is commutative, this says that R has
no nontrivial nilpotent elements, i.e. R is reduced.

Proposition 1.2. If R is semiprime then, for all ideals I,
(a) Ann(I) is a well-defined semiprime ideal.

(b) VI = Ann(I) = Ann(V/T) = \/Ann(I), where — is the locale nega-
tionin SId(R).

The following is easily established using Proposition 1.1.

Proposition 1.3. Suppose R is semiprime. If Ann(I;) = Ann(I2) and
Ann(J,) = Ann(J2), then Ann(I; J1) = Ann(Ir J3).

Now, we turn to the definition of a Baer ring, of which there are many in
the literature. Some pertain to annihilators of subsets of R (c.f. [5]), some to
annihilators of ideals, some to annihilators of elements (c.f. [2]), and some to
annihilators of principal ideals (c.f. [1]). For the purposes of this paper, we
will consider only annihilators of ideals and use the adjective “weak” to dis-
tinguish between the two possible definitions. We begin with a proposition,
part (i.e. (a)=>(b)) of which is similar to one appearing in [5].
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Proposition 1.4. The following are equivalent for a ring R.

(a) Ann(r) is a principal ideal generated by a central idempotent, for all
r € R.

(b) Ann,(r) is a principal ideal generated by a central idempotent, for all
r € R.

(c) R is semiprime, and Ann(r) is a principal ideal generated by a central
idempotent, for all r € R.

Proof. We will show that (a)=-(c). The converse is clear and the proof of
(a)<>(b) is similar. To show that R is semiprime, assume I = O and r € I.
Then Ann;(r) = (e), for some central idempotent e. Since r(r) C I* = 0,
we know that r € Ann(r), and so r = er. But, er = 0, since e € Ann(r),
and so r = 0. Therefore, I = 0, as desired.

A ring satisfying the equivalent conditions of Proposition 1.4 will be
called a weak Baer ring. It is not difficult to show that this proposition re-
mains valid if the annihilators of principal ideals are replace by annihilators
of arbitrary ideals. A ring satisfying the equivalent conditions of this stronger
version of the proposition will be called a Baer ring.

Next, we consider some properties of central idempotents, starting with
their relationship to complemented ideals. Recall that an ideal I is called
complemented in Id(R) if there is an ideal J such that I + J = R and
I1J = JI = 0. Note that if I; and I, are complemented, with complements
Ji and Ja, then so are I + I; and I, I,, and their complements are given by
J1J2 and J; + J2, respectively. Also, any direct summand of R is comple-
mented since IJ C INJ.

Proposition 1.5. I is complemented if and only if I is a principal ideal gen-
erated by a central idempotent.

Proof. Suppose I is complemented and let J be its complement. Then e +
f=1,forsomee € I and f € J, and so clearly e and f are idempotent and
eR C I. Givenr € I, wehaver = er + fr = er since JI = 0. Thus,
r € eR,andso I = eR = (e). Similarly, ] = Re, and so eR = Re. It
remains to show that er = re, for all » € R. Since er € Re, we know that
er = ere since e is idempotent. Similarly, re = ere, and so er = re, as
desired.

For the converse, let I = (e), where ¢ is central idempotent. Then J =
(1 — e) is clearly the complement of 1.
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Note that I + J = Rifand onlyif /I + J = R, and if R is semiprime,
then IJ = 0 if and only if I N J = 0, by Proposition 1.1(b). Thus, for
semiprime ideals, the above notion of complemented in Id(R) agrees with
the lattice theoretic definition of complemented element of SId(R). Actu-
ally, we are really interested in complemented elements of a certain sublattice
of SId(R).

Let L(R) denote the distributive lattice generated by {,/(r) | r € R}.
Then, using Proposition 1.1, it is not difficult to show that the typical element
in L(R) is of the form /I; + ... + I, where the I; are finite products of
principal ideals of R.

Lemma 1.6. If e is a central idempotent of a semiprime ring R, then (e) is
semiprime.

Proof. Suppose e is a central idempotent and I? C (e). Toshowthat I C (e),
it suffices to show that I(1 — €) = 0, or equivalently (I(1 — e))? = 0, since
R is semiprime. But, (I(1 — ¢))? = I*(1 —e) = 0, since e is a central
idempotent.

Proposition 1.7. The following are equivalent for an ideal I of a semiprime
ring R.

(a) I is complemented in L(R).

(b) I is complemented in Id(R).

(c) I is a principal ideal generated by a central idempotent.

Proof. Since R is the top element of L(R), (a)=>(b) follows from the remark
after Proposition 1.5. Also, (b)=>(c) holds by Proposition 1.5. For (c)=(a),
since the complement of (e) is (1 —e) and 1 — e is a central idempotent when-

ever e is, it suffices to show that if e is idempotent, then (¢) € L(R). But,
(e) € L(R) since y/(e) = (e), by Lemma 1.6.

2. Algebraic de Morgan’s Law.

In this section, we introduce second algebraic de Morgan’s law (DML)
and weak algebraic de Morgan’s law (WDML), and relate them to Baer rings
and weak Baer rings. We also show that, if R is semiprime, then Spec(R)
satisfies second de Morgan’s law if and only if R satisfies DML.
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Proposition 2.1. The following are equivalent for a ring R.

(a) Anny((r)(s)) = Anny(r) + Anny(s), forallr,s € R.

(b) Ann,((r)(s)) = Ann,(r) + Ann,(s), forallr,s € R.

(c) R is semiprime and Ann((r)(s)) = Ann(r) + Ann(s), forallr,s € R.

Proof. To prove (a)=>(c), we will show that (a) implies that R is semiprime.
The proof for (b) is similar, and the remaining implications are clear. Suppose
(a) holds and I? = 0. Given r € R, we know that (r)2 C I? = 0, and so
R = Ann((r)?) = Anny{r). Thus,r = 0, and so I = 0, as desired.

Definition 2.2. A ring R for which the equivalent conditions of 2.1 hold will
be said to satisfy weak algebraic de Morgan’s law (WDML).

Recall that a distributive lattice L is called Stonian if for every a € L,
there is a complemented b € L such that z < bif and only if & A a = 0.

Theorem 2.3. The following are equivalent for a ring R.

(a) R satisfies WDML and Ann(r) is principal for all v € R.
(b) Ann(r) & Ann(Ann(r)) = R, forallr € R.

(¢) R is semiprime and L(R) is a Stonian lattice.

(d) R is weak Baer.

Proof. (a)=>(b) R is semiprime by Proposition 2.1, and so Ann(r) is well-
defined, for all » € R. Since each Ann(r) is principal, we can write Ann(r)
= (s), for some s € R, and it follows that Ann(r) + Ann(Ann(r)) =
Ann(r) + Ann(s) = Ann({r)(s)) = Ann({r)Ann(r)) = Ann(0) =
R. Since Ann(r)Ann(Ann(r)) = 0 and R is semiprime, it follows that
Ann(r) N Ann(Ann(r)) = 0, and so Ann(r) & Ann(Ann(r)) = R.

(b)=>(c) Note that R is semiprime by Proposition 1.4, since Ann(r) is adirect
summand of R, and hence a principal ideal generated by a central idempo-
tent. Suppose I € L(R). ThenI = /I, + ... + I,,, where each I; is a finite
product of principal ideals. Since R is semiprime, using Proposition 1.1, it is
not difficult to show that VI N v/J = 0if and only if J C Ann(I), and so it
suffices to show that Ann(I) is complemented in L(R). Since each Ann(r)
is a direct summand of R, it is a principal ideal generated by a central idem-
potent. By Proposition 1.3, the same is true for any finite product of principal
ideals. Since Ann(I; +...+1I,) = Ann(I;)N...N Ann(I,), using Propo-
sition 1.2, it follows that Ann([I) is complemented in L(R).
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(c)=>(d) Givenr € R, since \/(r) € L(R) and L(R) is Stonian, there exists
a complemented I € L(R) such that J C I if and only if J N \/{r) = 0, for
all J € L(R),i.e. I = Ann(r). Since Ann(r) is complemented in L(R), by
Proposition 1.7, we know that Ann(r) = (e), for some central idempotent
e. Therefore, R is a weak Baer ring.

(d)=(a) Givenr, s € R, write Ann(r) = (¢) = Ann(l — ) and Ann(s) =
(f) = Ann(1 — f), where e andf are central idempotents. Since R is semi-
prime, applying Proposition 1.3, we get Ann((r)(s)) = Ann((1 — e)(1 —
f)) = Ann(l — e) + Ann(l — f) = Ann(r) + Ann(s), as desired.

Note that the equivalence of (c) and (d) in the commutative case ap-
peared in [12]. Bulluce [1] generalized the equivalence to the case where
R is a gc ring, i.e. a ring for which Spec(R) is a spectral space. In [14],
Sun showed that the free ring R on two generators is not a gc ring. Since
R is clearly a prime ring and hence weak Baer, it follows that Theorem 2.3
(c)<(d) is an extension of Belluce’s result.

Also, using Theorem 2.3 and a characterization by Sun [13; Theorem
2.6], one can show that the minimal prime ideal space MinSpec(L(R)) is
compact, whenever R is weak Baer. Since L(R) is a distributive lattice, we
know MinSpec(L(R)) is zero-dimensional, and so MinSpec(L(R)) is a
Stone space. By aresult given in Sun’s forthcoming paper [15], we also have
that, for a weak Baer ring R with no non-zero nilpotents, the minimal prime
ideal space MinSpec(R) of R is homeomorphic to MinSpec(L(R)), and
hence is a Stone space.

Next, we consider second de Morgan’s law. Unlike for WDML, R is not
necessarily semiprime, and so one must distinguish between left and right an-
nihilators. Our definition will be in terms of left annihilators. Similar ones
can be made using right annihilators. Now, one can consider the two alge-
braic de Morgan’s laws Ann;(I + J) = Anni(I) N Anny(J) and Anng(IN
J) = Anny(I) + Anny(J). As in the case of locales, the first de Morgan’s
law holds for all ideals I and J.

Definition 2.4. A ring R satifies second algebraic de Morgan’s law (DML)
if
Anni(INJ) = Anny(I) + Anny(J)

for all ideals I and J.
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Theorem 2.5. The following are equivalent for a ring R.

(a) R is semiprime and satisfies DML

(b) Ann(1J) = Ann(I) + Ann(J), for all ideals I and J .

(c) Ann(I) & Ann(Ann(I)) = R, for all ideals I.

(d) Ann(I) is a direct summand of R, for all ideals I.

(e) R is a Baer ring.

() R is weak Baer and Ann(I) is principal, for all ideals 1.

(8) R satisfies WDML and Ann(I) is principal, for all ideals I.

Proof. (a)=>(b) since Ann(IJ) = Ann(I N J)in a semiprime ring.
(b)=(c) Note that R is semiprime by Proposition 2.1, since (b) implies that
WDML holds. Thus, Ann(I)N Ann(Ann(I)) = Ann(I)Ann(Ann(I)) =
0. Also, Ann(I) + Ann(Ann(I)) = Ann(IAnn(I)) = Ann(0) = R, as
desired.

(¢)=(d) is clear.

(d)=(e) by Proposition 1.5.

(e)=(f) is clear.

(f)=(g) by Theorem 2.3.

(g)=(a) Since R is semiprime (by Proposition 2.1), it suffices to show that for
every ideal I, Ann(I) = Ann(r), for some r € R. Since Ann(I) is princi-
pal, we can write Ann(I) = (s) and Ann(s) = (r), for some r,s € R. Then
using the fact that Ann3=Ann, we get Ann(r) = Ann?(s) = Ann®(I) =
Ann(I), as desired.

Recall that open sets of Spec(R) are of the form
D(I) = {P € Spec(R)|I £ P}
where I € Id(R). The complement of D(I) is denoted by V'(I).
Proposition 2.6. D(I) = V(1/0:1).

Proof. If P is prime and I € P, then /0:I C P, since (v0:1)I C /0 C
P. Thus D(I) C V(v/0:I) and so D(I) C V(\/0:I). We will show that
if P € V(V/0: I), then every open neighbourhood of P meets D(I). Let
D(J)besuchaset,ie. J € P. Since J € P and \/0: I C P, it follows that
J ¢ V0:1,and hence IJ € /0. Therefore D(I) N D(J) # 0, as desired.
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Corollary 2.7. If R is semiprime, then D(I) = V(Ann(I)).

Recall that a space X is called extremally disconnected if the closure of
every open subset of X is open.

Theorem 2.8. If R is semiprime, then Spec(R) is extremally disconnected if
and only if R satisfies DML.

Proof. Since every open set of Spec(R) is of the form D(I), for some ideal I,
by Corollary 2.7, Spec( R) is extremally disconnected iff V( Ann(I)) is open
for all I. But, V'(J) is open for some ideal J if and only if J is a direct sum-
mand of R, and so the desired result follows from (a)<>(d) of Theorem 2.5.

Since Spec(R) = Spec(R/+/0), we get the following corollary.

Corollary 2.9. The following are equivalent for any ring R.
(a) Spec(R) is extremally disconnected.
(b) R/\/0 satisfies DML.
(c) R/\/0 is a Baer ring.
Note that Niefield and Rosenthal [9] proved versions of Theorem 2.5,

Corollary 2.7, Theorem 2.8, and Corollary 2.9 for commutative rings. On
the other hand, the commutative version of Theorem 2.3 did not appear in

[9].

3. Strong de Morgan’s Law.

In this section we introduce algebraic strong de Morgan’s law, and relate
it to strong de Morgan’s law for the locale O(Spec(R)). As in the case of
DML, we will consider only left annihilators. Similar results can be obtained
for right annihilators.

Definition 3.1. A ring R satisfies algebraic strong de Morgan's law (SDML)
if

(I:[J)+(J21I) =R
for all ideals I and J.

Proposition 3.2. The following are equivalent for a ring R.
(a) R satisfies SDML.
(b)(I+J)uK =Iu4K)+ (JuK), forallidealsI,J I\.
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(c)I4(JNK)=(Iq4J)+ (I K), forallideals I, ], I\.

Proof. (a)=-(b) First, (I} K) + (Juy ) C (I + J): L. For the reverse
containment, since (I + J)y K = (I1; J)[(I+ J)u K]+ (Ja DI+ J): K]
by (a), it suffices to show that (I:; J)[(I+ J): '] C (I;; K)and (J:; I)[(I+
J)u K] € (Jq K). But,

(IaDNI+NaKIKCTuyH)(I+J)CI+(IyJ)JJCI+ICI
and so (I:; )[(I + J):u K] C (I K). Similarly, (J:; D[(I + J)u K] C
(J:u K), as desired. ’
b)=@Clearly, R=(I+ )+ J)=Tq(I+I))+Ta(I+J)=
(IanJd)+ (Jal).
(@)= (c) First, (I:; J)+ (I:1 K) C Iy (J N K). For the reverse containment,
since It (J N K) = I (J N K| (K J) + [T (J N K))(J2 K, it suffices
to show that [I;; (JNK)|(K: J) € I:y J and [T (J N K))(J: K) € I K.
But,

Ty(JNK)(Ky NI C[Ia(JNK)(JNK)C I

andso (I (JNK)](K: J) C Ity J. Similarly, [I: (JOAR)])(J: K) C I K.
©=@)Clearly, R = (INJ)y(INnJ)y=InNnJ)yI+{InJ)] =
Jul+14J.

Note that (a)=>(c) says that SDML implies DML. Also, the proof we
have given is valid in an arbitrary quantale. The equivalence of (a) through
(c) for commutative quantales was first proved by Ward and Dilworth in [16].

Theorem 3.3. The following are equivalent for a ring R.

(a) Every closed subspace of Spec(R) is extremally disconnected.

(b) O(Spec(R)) satisfies strong de Morgan’s law.

(¢) (VI:J)+ (VT:I)= R, forall ideals I and J.

(d) (VI+VI):K = (VT:K)+ (VT :K), forall ideals I, J. K.

() VI:(INK)=(VI:J)+ (VI:K), forall ideals I, J, I

(H R/ VI satisfies the algebraic second de Morgan’s law, for all ideals I.
Proof. (a)< (b) follows from a theorem in [4].

(b)=>(c) follows from Proposition 1.1, since (VT:J) + (V7 :I) = R if and

only if \/(VI:J) + (VT:1) = R,
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(c)&<(d)+(e) follows from Porposition 1.1(d) and the remark preceding this
theorem.

(e)=(f) follows from that fact that every ideal of R/ /T is of the form J/ VI,
where J is an ideal of R containing v/, and the left annihilator of J/+/T in
R/VTis (VI J)/VI.

(H) < (a) follows from the fact that every closed subspace of Spec(R) is home-
omorphic to Spec(R/I), for some semiprime ideal I of R.

Note that Niefield and Rosenthal [8] proved a commutative version of
Theorem 3.3.

Recall that the locale Spec( R) is called Noetherian if the semiprime ide-
als of R satisfy the ascending chain condition. If R is a Noetherian ring, then
Spec(R) is Noetherian, but the converse does not hold (c.f [6]). On the other
hand, as in the commutative case, if Spec(R) is Noetherian, then the num-
ber of minimal primes is finite (cf. [3, Theorem 2.4]). Moreover, if Spec(R)
is Noetherian, so is Spec(R/I), for every semiprime ideal I, and it follows
that every semiprime ideal is a finite intersection of primes. Motivated by
the characterization of Noetherian domains in [7], Niefield and Rosenthal [8]
showed that if R is commutative and Spec(R) is Noetherian, then the condi-
tions of Theorem 3.3 are equivalent to the distributivity of SId(R), as well
as the property P C @, Q C P,or Q+ P = R, for all prime ideals P and Q).
Although this result does not seem to generalize to the noncommutative case
(if the two additional conditions are taken separately), we have the following
theorem.

Theorem 3.4. The following are equivalent for a ring R such that Spec(R)
is Noetherian.

(a) Every closed subspace of Spec(R) is extremally disconnected.

(b) O(Spec(R)) satisfies strong de Morgan’s law.

(c) (NI:J)+ (VT:I)= R, forall ideals I and J.

(d) (VT +VI):K =(VT:K)+ (VJT:K), forall ideals I, J, K.
(e)VI:(JNK) = (VI:J)+ (VI:K), forall ideals I, J, K.

(N R/ satisfies the algebraic second de Morgan’s law, for all ideals I.

(g) The conjunction of:
(i) IN(J+ K)=(INJ)+ (INK),forall semiprime ideals I, J, I
(i) PC Q,Q C P,orQ+ P =R, for all prime ideals P and Q.
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Proof. The equivalence of (a) through (f) is clearly Theorem 3.3. We will
show that (b) is equivalent to (g).

(b)=(g) Since O(Spec(R)) satisfies strong de Morgan’s law, we know

VUI:I)+(J:I)=R

orequivalently (I:J)+ (J:I) = R, for all semiprime ideals I and J. Thus,
if I, J, and K are semiprime ideals, then I N (J + 1) = (Jy K)(IN(J +
K))+ (I J)(IN(J + K)), and so it suffices to show that (J:; K)(IN(J +
K)CInJand(KyJ)(IN(J+K))CINK.But, (JyK)(J+K)C
J+(J4 K)K CJ+J C Jandso (J: K)(IN(J+K)) C INJ. Similarly,
(K J)Y(IN(J+ K)) C INK. Next, suppose P and Q are prime ideals of
Rsuchthat P Z Q and Q@ € P. Then (Q:; P) C @, since (Q: P)P C Q.
Similarly, (P:; @) C P. Thus, R = (P:1 Q)+ (Q:1 P) C P+ Q, as desired.
(=) GivenI,J € SId(R),write [ = P,N...NP,andJ =Q:N...N
Qm, where all P; and Q; are primes. Then

(I: )4 (D) = (PO N Py TV 4+ (Q1 AN Qe 1)
:((Plj)nn(Pvtt]))+((Q1[)mm(QmI))

=((Pi:7) +(Q;:D) 2 {(Pi:Q;) +(Qj: P)
1,j )

Thus, it suffices to show that (P: Q) + (Q: P) = R, for all primes P and @

of RIfPCQorQ C P,thenwehave Q: P = Ror P:(Q = R, and the

desired conclusion follows. If P € @ and Q € P, then
R=P+QCP:Q+Q:P

as desired.
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