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THE DISPLAY LOCALE OF A COSHEAF

by J. FUNK

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXVI-1 (1995)

R6sum6 On montre que la cat6gorie des antifaisceaux sur un
locale X arbitraire est équivalente à la sous-cat6gorie réflexive
pleine de la cat6gorie des locales localement connexes sur X .
Il s’agit de la sous-cat6gorie des complete spreads (cf. [5]) sur
X . On accorde une attention particuli6re au cas d’un espace
topologique, et l’on montre comment construire 1’antifaisceau
associe a un préantifaisceau arbitraire dans un espace m6trique
complet. On donne un contre-exemple qui montre qu’en general,
les antifaisceaux ne constituent pas un topos.l

0 INTRODUCTION

Partial results (cf. [1]) have been obtained concerning the represen-
tation of a cosheaf on a topological space X as a locally connected space
over X . The principal aim of this paper is to show that an arbitrary
cosheaf on a locale X can be uniquely represented as the cosheaf of con-
nected components of a complete spread over X with locally connected
domain. This is accomplished by exhibiting a (fully faithful) functor
from cosheaves on X to locally connected locales over X which is right
adjoint to the ’connected components’ functor, and then by recognizing
those objects in the essential image as the complete spreads over X .

1 M. Bunge (cf. [2]) has shown that the category of cosheaves on an arbitrary site
is the category of points of a topos. This topos is called the symmetric topos in [2]
where it is shown to exist as the classifying topos of the notion of cosheaf.
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The explanation of the right adjoint centers on a locale called the
display locale of a precosheaf. This locale is defined in § 1. After some

preliminaries on locally connected locales are presented in §2, the main
adjunction is established in §3. The first part of the main result, that
the right adjoint is fully faithful, can then be proved.

Thus, the category of cosheaves on a locale X is equivalent to a full
reflective subcategory of locally connected locales over X , i.e., those for
which the unit is an isomorphism. Let us call such a locale a cosheaf

locale over X . We show in §4 that the notion of a cosheaf locale over
X is equivalent to the notion of a complete spread over X . The latter
notion comes from [5], and was introduced there as an encompassing
notion of branched and folded covering spaces (cf. [18]).

The spatial case is given special consideration in §5. We describe the
display space, its relation to the display locale, and the connection with

(spatial) complete spreads. This prepares us for the concluding section
which considers the case of a complete metric space. It is shown (as
stated in [1], p. 204) that on a complete metric space X , every cosheaf
arises as the cosheaf of connected components of a locally connected
space over X . This result can be combined with the locally connected
coclosure to give a construction of the associated cosheaf of an arbitrary
precosheaf on a complete metric space.

To summarize, the category of cosheaves on an arbitrary locale is
equivalent to the category of complete spreads over the locale. This

equivalence cannot in general be expected to hold in the spatial context;
however, when the base space is a complete metric space the category of
cosheaves is equivalent to the category of T1 complete spreads over the
base space.

Throughout, FRM denotes the category of f ram es.2 The category
of locales is by definition the opposite of FRM, and is denoted by Loc.
If X denoted an object of Loc, then the same object considered as a
frame is denoted by O(X) . A morphism of locales X-f Y is written as
O(Y) f*- O(X) when regarded in FRM. An element of O(X) is referred

2A comprehensive account of the theory of frames can be found in [10].
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to as an open of X . Opens are typically denoted by U, with 0 and
X being reserved for the bottom and top elements of O(X) . 3 A cover
of an open U of a locale X is a down-closed subset {Ua  U} such that
the supremum B/ Ua is equal to U . A precosheaf D on a locale X is a
functor

A precosheaf D is a cosheaf (coseparated precosheaf) if D has the prop-
erty that for any open U E O(X) a.nd any cover f (1,,  U}, {DUa--+DU}
is a colimiting cone (epimorphic family).’

Let coSh(X) denote tlie full subcategory ol’ Set"(’) determined by
those objects which are cosheaves. Let Cocts(Sh(X), Set) denote the cat-
egory of Set-valued cocontinuous (i.e., sinat) colirnit preserving) functors
on the topos of sheaves on the locale X (with all natural transformations
as morphisms).’ The following important fact is well known (cf. [16]).

0.1 Theorem. For any locale X , composition with the Yoneda em-

bedding Yon : O(X) - Sh(X) yields an equivalence

0.2 Corollary. Let X -f Y be an arbitrary locale morphism, and C a
cosh ea f o n X. Th e n C . f* is a cosh ea f o n Y .

Proof. By Theorem 0.1, there is a cocontinuous cp : Sh(X)-Set such
that C = p. Yonx . Hence,

where f denotes the geometric morphism dctermined by f . But cp. f*
is a cocontinuous functor (on Sh(Y) ), so C. J** is a, cosheaf. 0

3These conventions follow [12]. See also [11].
40ne can speak of cosheaves on an arbitrary site, i.e., on a small category equipped

with a Grothendieck topology. In this paper, we shall restrict our attention to locales;
however, the reader is referred to [2] where the study ofcosheaves on a site is reduced
to that of cosheaves on a locale plus the action of a localic groupoid. This is by
analogy with the structure theorem of [11] for sheaves on a site.

5The objects of this category have also been referred to as distributions (cf. [2]).
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1 THE DISPLAY LOCALE

We need some prelimilary notation before proceeding to the defini-
tion of the display locale. If P is a partially ordered set, then we shall
denote by P the locale corresponding to the frame O(P) of down-closed
subsets of P . The principal down-closed sets 1 p constitute a base for
P. A poset map P -f Q induces a locale morphism f ; P-Q such that
for a down-closed subset A of Q ,

We will also use f -1 , but meaning inverse image in the context of posets.

1.1 Remark. We distinguish between a discrete opfibration on P ,
which can be realized as a functor P-Set , and a precosheaf on P, i.e.,
a functor O(P) -Set . Composition with the poset map P-O(P) ,
p -&#x3E; !p, gives an equivalence coSh(P) = Setp . One way to prove this is
to use Theorem 0.1, and the fact that Sh(P) = Set pop

Let X denote an arbitrary locale. The total poset of a precosheaf
D on X has as its elements all pairs (U, d), d E DU , and (U,d)  (V, e)
if U  V and d H e under DU-&#x3E; DV . This poset will also be denoted by
D . The locale D will be referred to as the total locale of the precosheaf
D . A base for D is the set of principal down-closed sets 1 (U,d). If

D t E is a natural transformation between precosheaves, then there is
a morphism of total locales t : D-&#x3E;E induced by the poset map (U, d) H
(U, tu(d)) . 
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Let Tx denote the terminal precosheaf on X . There is a unique
natural transformation D-Tx .

1.2 Definition. The display locale of a precosheaf D will be denoted
by disD , and is defined to be the pullback

in Loc, where TX is the total locale of Tx .

The frame O(Tx) is the set of down-closed subsets of O(X) , and the
frame morphism O(Tx)--+O(X) which corresponds to X---+Tx carries a
down-closed subset to its supremum. X is a sublocale of TX (cf. [3]),
and therefore disD is a sublocale of D. This inclusion will always be
denoted by 7r . The structure map of disD over X will be denoted by
7D , as indicated in the above diagram. The display locale construction
obviously constitutes a functor

A description of the display locale in terms of generators and rela-
tions now follows. Some facts will become apparent from this description
which will be used in §3.

Let D denote an arbitrary precosheaf. For R E O(Tx) and d E D(VR) ,
let

such t,hat, e - d under

Then R-1d E O(D), and the congruence relation generated by the set of
pairs 

yields the frame 0(disD) as the set (cf. [11], p. 24)

with
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Also, 7T* is calculated as

and the right adjoint 7r. is inclusion.
A locale morphism X -f Y is said to be dense if VU, f*U = 0 =&#x3E;

U = 0 . This is equivalent to the condition f * 0 = 0 .

1.3 Theorem. Let D denote an arbitrary precosheaf. If D is cosep-
arated, then disD I D is dense. If D is a cosheaf, then 1r * preserves

disjoint suprema (and 0 since cosheaves are coseparated).

Proof. The 0 of O(D) is the empty set 0 . If D is coseparated, then
for any R E O(Tx) and d E D(VR) , we have R-1d #0 . In fact, that

{DV - D(VR) |V E R} is an epimorphic family means that there is a
V0 E R and a d0 E V0 such that do H d under DVo-+D(V R) . Therefore,
0 E O(disD) (R-1 d C 0 = (VR, d) E 0 is vacuously satisfied). Conse-

quently, 0 is the bottom element of O(disD) as well, and hence, 7r* 0 = 0 .
Assume now that D is a cosheaf. We will show that 7r* preserves

disjoint binary suprema, leaving the general case to the reader. It must

be shown that for any A, A’ E O( disD) with A n A’ = ø ,

Note that (1) follows if A U AE 0(disD) . So given RE O(Tx) and
d E D(VR) , it will be shown that

Since D is a cosheaf, R-1d # ø and R-1d is connected in the sense that
for any (V, e), (V’, e’) E .R-1d , there is in R- 1 d a finite diagram
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which ’connects’ e to e’ . Since A and A’ are down-closed and disjoint,
it follows that either R-1d C A or R-1 d C A’ . Hence, that either

(VR,d)EA or (VR,d)EA’ . 0

We include in this section two results which will not be used in this

paper, but are of independent interest. The first of these concerns the
pullback stability of the display locale, and the second the preservation
of products.

A locale morphism X - f Y is said to be essential if f * has a left
adjoint f! . Intuitively, this means that for every open U in X , there is
a smallest open set containing the image set f U . If, for example, f is
an open map, then f is essential. If X -f Y is essential, and if D is a
precosheaf on Y , then Df! is a precosheaf on X .

1.4 Theorem. Let X -f Y be an essential morphism of locales which
in addition is a surjection. Then for any precosheaf D on Y , there is a
canonical morphism dis(Df!)--+disD , which makes

a pullback in Loc.

We will use the following lemma in the proof of Theorem 1.4.

1.5 Lemma. Let P -s Q be a poset map, and assume that s has a
right adjoint r with s - r = lQ . Assume also that P has finite meets. Let
D - Q be an arbitrary discrete opfibration. Denote by
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the puddback in posets of 6 along s . The map S is (p, x) F- (sp, x) , for
x E 8-1 (SP) . Then

is a pullback in LoC .

Proof. Let Z denote an arbitrary locale, and assume there is given a
commutative square

of locale morphisms. Define p : Z-Ds on principal down-closed subsets
as

For an arbitrary down-closed subset G, let

It is not hard to see that these definitions are consistent. The non-trivial

fact concerning the definition of p is that

It is clear that p* is order preserving, and therefore the left side of (2)
is less than or equal to the right side. To see the reverse inequality, first
observe that for any qeQ, g*(lrq) = g*s* I q = h*f;* lq. Then, since
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we have

where U indicates that the supremum is disjoint. In particular, (3) holds
for q = sp. Hence,

From this is obtained the ’involution’ formula

From this follows

To summarize,

Next, let us calculate the left side of (2). By definition,

where the subscript x H yo, zo means those xE8-1(S(plBp’)) that are
carried both to yo and zo under Ds . Finally, observe that if x -&#x3E; yo, zo ,

then
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But conversely if p* t (pAp’, z ) fl 0 and (6) holds, then by the disjointness
of (5) it must be that z - yo, zo . This observation together with the
equality (5) gives (2). Thus, p* preserves finite infinia of basic opens,
and therefore extends to a frame morphism (morphisms defined in this
manner which preserve finite meets of principal down-closed subsets of
a poset extend uniquely to frame morphisms).

Let us now verify that (6s) . p = g and that S - p = h . The former
follows from the involution formula and since for all p E P ,

That S - p = h is as follows. Observe first that S* 1 (q, y) =1 (rq, y) and
s* 1q =1 rq , for YEÖ-1q = 6-1 (srq) . Then p*S* I (q, y) = p* l(rq,y),
which by definition is equal to h* 1 (srq, y) A g* 1 rq . This is equal to

To conclude the proof of the lemma, observe that

This forces the uniqueness of p . 0

Proof of Theorem 1.4. One can verify immediately that

commutes, where f! denotes the loco,le morphism induced by the poset
map U H f!U . Thus, by the definition of the display loo;ale it suffices
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to show that the commutative square

is a pullback in Loc, where Ft is induced by the poset map (U, x) H
(f! U, X) , X E Df! (U) . This square is a pullback by Lemma 1.5. 0

1.6 Theorem. The functor I preserves finite products, i. e., for any
precosheaves D, E on a locale X ,

is a pullback in Loc, where D x E is the precosheaf product of D and
E.

Theorem 1.6 is a direct consequence of the definition of ¡ and the
following.

1.7 Proposition. Let Q denote art arbitrary poset, and assume that
Q has finite meets (this assumption can be dropped - see Remark 1.8
following the proof). Let D-dQ and E2013cp Q be disCTClc opfibrations.
Then 

7T

is a pullback in Loc, where D x E is the total locale, of the precosheaf
product D x E .
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Proof. A closer examination of the proof of Lemma 1.4 with p replacing
s , reveals the following. First, given a commutative square

in Loc, the definition of p : Z-D x E becomes

Note that if 6 is put into the role of s , then the definition of p remains
the same. Also note that although E may not have finite meets, if Q
does have finite meets, then the argument used for Lemma 1.5 can be

adapted to show that p* preserves finite meets.
Second, the involution formula (see (4))

remains valid. From this one obtains 7r, . p = g . If 6 is put into the role

of s , then in a similar manner 7ro - p = h is obtained. a

1.8 Remark. Proposition 1.7 remains valid without the assumption
that the poset Q has finite meets. Simply regard Q as the locale Q, and
apply (the now established) Theorem 1.6. See also Remark 1.1.

2 THE CONNECTED COMPONENTS FUNCTOR

An open of a locale is said to be connected if it cannot be non-

trivially partitioned. A locale is said to be locally connected if the set
of all connected opens forms a base. This set could be partitioned into
equivalence classes where two connected opens U, V would be declared
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equivalent if there were connected opens U = Uo, U1,.. , Un-I, Un = V
such that Ui-1 n Ui # 0, i = 1, ... , n . One would say in this case that
U and V are chained together. For a locally connected locale X , let

A(X) denote the set of equivalence classes under chaining. Note that

the supremum of such an equivalence class is again a connected open.
Hence, we will often identify A(X) as a subset of O(X) . The set A(X)
will be referred to as the set of connected components of X .

For any morphism of locales L - X , define a precosheaf Al such
that AI(U) = A(l # U) . The locale l # U denotes the pullback

in LoC, where the frame corresponding to the open sublocale U is ! U =

{V I VU} . It follows that O(l#U) =1 l*U.

2.1 Proposition. Ai is a cosheaf.

We will use the following fact (cf. [17], p. 30) to prove Proposition 2.1.

2.2 Lemma. An open U of a locale is connected if and only if every
cover R of U has the property that every pair of opens V, W E R can be
chained together by opens in R .

Proof of Proposition 2. l . First, note that Ai = A1,. l* . Hence, by
Corollary 0.2, we can assume that V is locally connected, and take L-l
X t,o be X 1 -&#x3E; X Let there be given a. Cover R = {Ua  U} of

an open U # 0 of X . We assume tha.t Ii is (’ounecte() (the general
case immediately reduces to this), and thus, AU=1 . To be shown is
that lim -&#x3E;R AUa = 1 . Let ca E n Ua and CB E AUB bc arbitrary, Ua, UB E R..
We want to show that Ga and CB are equal in the colilnit. ’rlle (down-
closure of the) set {c E R I c is connected } is a cover il’ of U satisfying
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ca, CB E R’ ç R. Since U is connected, by Lemma 2.2 there are opens
(which we can assume to be connected)

such that ci-I A Ci # 0, i = 1, ... , n . We have

which ’connects’ ea to CB . Note: we can choose any ui E A(ci-i A ci ), Z =

1,..., n , since ACi=1, i = 1,... ,n- 1 . This shows that ca and CB are
equal in the colimit. 0

Let LCLOC denote the full subcategory of Loc determined by the
locally connected locales. For any locale X , there is the connected com-
ponents functor

given by

Alternative Description of Connected Components:
For a locale Y and any precosheaf D on Y , define a precosheaf

where the colimit runs over the opens of a given cover R of U, and the
limit runs over the collection JU of covers of U .

2.3 Proposition. There is a natural transformation D+-D through
which every natural transformation C-D , with C a cosheaf, factors
uniquely.



67.

No proof will be given here of this result, but see Example 5.6 for the
case D = TY (this precosheaf sends U # 0 H 1 and 0 H 0). Cosheaves
fall within the general framework of [15] as shown in [7], and the above
construction and result can be established in that setting.

2.4 Definition. Denote by c(D) the precosheaf D++ .

2.5 Example. A typical element of c(Ty)(V) is a consistent vector

(bR) , where R runs over the covers of V and bR denotes an equivalence
class of opens in R under chaining in R . ’Consistent’ means that if

R C R’ , then any non-0 U E bR, U’ E bR, are chained together in R’ . a

2.6 Proposition. For any L -&#x3E;l X E LCLoC/X , Al=c(TL) .l*

Proof. Since Al = AlL - l*, it suffices to show that A1L = c(TL) Let

VEO (L) . We want to show A(V)=c(TL)(V) . Send d E A(Y) to the
consistent vector (dR) (in the notation of Example 2.5) such that for
any cover R of V , dR is the unique equivalence class such that d 
V dR . This map is isomorphism because every consistent vector (bR) is
uniquely determined by bRc , where Rc denotes the cover of V given by
the connected components of V . To see this, observe that for any R ,
V bRc VbR - 0

2.7 Remark. A extends to a functor Loc/X )Set O(x) by defining
for any Y -f X, A j = c(Ty) . f * . In general, the c construction
more resembles quasi-components than it does connected components.
In fact, let Ac denote connected components and let Aq denote quasi-
components. Then for any map Y -&#x3E; f + X of topotogica] spaces, there a.ro
natural transformations of precosheaves

When Y is locally connected these three precosheaves coincide and that
precosheaf is a cosheaf. See Example 5.6, where the display space of

c(Tx) is computed for an arbitrary topological space X .
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3 THE ADJOINTNESS A -i y

3.1 Theorem. The connected components functor A is a partial left
adjoint to 7 . For any L -l X E LcLoc/X , and any precosheaf D on
X , there is a natural bijection

For a cosheaf C , disC is a locally connected locale, and the counit

Aqc--+C is an isomorphism.

The above adjointness is obtained as follows. Observe that for a

precosheaf D , I*D(U) is the disjoint supremum over DU ,

where is the locale inclusion disD--+D . Hence, given f : L--+disD
such that "/D ’ f = I , we have

Define a natural transformation f such that for U E O(X) and c a com-
ponent of laU ,

’ such that

The return passage associates to a natural transformation t : Al-D the

morphism yt . nl , where the unit

is obtained as the universal morphism arising from the commutative
square
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By definition, v* !(U,c) = c , for CEA (l#U) . These two passages give
the expressed bijection.

In the case of a cosheaf C , disC is locally connected. In fact, by
Theorem 1.3, the inclusion disC -&#x3E;p C satisfies the hypothesis of the
following lemma.

3.2 Lemma. Suppose a morphism X i Y of locales has the property
that f* preserves 0 and disjoint finite suprema. Then f * takes connected
opens to connected opens.

Proof. Let B be an arbitrary connected open of Y . To see that f*B
is connected, write

Then

Therefore (say) B  f*V , whence f* B  V . a

Now observe that for any poset P, the basic opens l p of the locale P
are connected. In particular, the basic opens I (U, d) of the total locale
C of the cosheaf C are connected. Thus, by Lemma 3.2, disC is locally
connected.

Now that we know disC is locally connected, we can define the counit
ec : Ayc-&#x3E;C , and show that it is an isomorphism. For any open U in
X , observe that

Hence, define

as

eC(U)(c) = the unique d such that c e A(Jr* !(U,d)).
This definition is natural in U and in C . ec is a monomorphism (in
precosheaves) because the basic opens 7T* ! (U, d) are connected. Since



70

7r is dense (Theorem 1.3), ec is an epimorphism in precosheaves. This
concludes the proof of Theorem 3.1.

4 COMPLETE SPREADS

It was seen in the previous section that the category of cosheaves on
an arbitrary locale can be represented as a full reflective subcategory of
LCLoC/X . Let us call a locally connected locale L-+X a cosheaf locale
if it arises as the display locale of its cosheaf of connected components.
By definition, L--&#x3E;X is a cosheaf locale if

is a pullback in Loc, where v* I (U, c) = c .
The notion of cosheaf locale will be examined in this section. We

shall see that it is equivalent to the (localic version of the) notion of
complete spread (cf. [5]).

4.1 Definition. An object L --’+ X E LcLoC/X will be called a spread
if the components of the open sets {l*U | U E O(X)} constitute a base
for L .

Let L -&#x3E;l X E LCLoC/X . Let Cs denote the following covering system
of the poset Al, i.e., of the total poset of the cosheaf Al. Recall that a

typical element of the poset Al is a pair (U, c), where c is a component
of 1*U . Declare I (Ua, ca,)  (U,c)} to be a cover if v ca = c . Let us

refer to Cs as the spread coverage of A, .

4.2 Proposition. The image of v coincides with the sublocale of A,
determined by Cs .
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Proof. Denote the surjection-inclusion factorization in Loc of v by
L--+I -+ Al . The local operator, or nucleus, given by v is v*v* , and
the sublocale I is given as the fixed-point set of this operator. The value
of this operator on a basic open l(U,c0) is the down-closed set {(V, c) |
c  C0}. It is clear that I coincides with the sublocale determined by
the coverage Cs . 0

4.3 Proposition. For any L l X E LCLOC/X , the following are
equivalent.

1. 1 is a spread.

2. L is the sublocale of Al determined by C, .

3. L is a sublocale of a cosheaf locale.

4. The unit ni is an inclusion.

5. The morphism v is an inclusion.

6. L is a dense sublocale of a cosheaf locale.

Proof. 3,4 and 5 are clearly equivalent. Observe that v* W = {(V, c) |
c  W} for any open W of L . Then v* v* W = VcWv*. l(V,c) = Vc.
If l is a spread, then this supremum gives back W . Thus, I implies 5.
Conversely, if this supremum gives back W, i.e., if v is an inclusion, then
this says that I is a spread. Next, that 2 implies 5 is a triviality, and
the converse implication follows from Proposition 4.2. The equivalence
of 6 to the other conditions is a consequence of the fact that qi is dense.

To see that qi is dense, observe that v is dense; if v* I (U, c) = 0 , then
c = 0 , whence 1 (U, c) = 0 - Thus, nl is dense since v = 7r . T/l and since

7r is an inclusion. 0

Let Cd denote the covering system on A, that yields the display locale.
This covering system was described in § 1. In general, the spread coverage
is finer than Cd , i.e., Cd C Cs.
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4.4 Proposition. The following are equivalent for L -l X e LCLOC /X

1. Cd = Cs .

2. The unit ni is a surjection.

3. For any (U, c) E Al , and any V  U such that c  l*V , we have
7r * ! (V, c) = 7r. ! (U, c) .

Proof. It is clear that 1 and 2 are equivalent. Assume q is a surjection,
and that there is given ( U, c) E al and V  U such that c  l *V . Then

Hence, Jr* ! (V, c) = Jr* ! (U, c) since 77 is a surjection. Finally, assume
3. It will be shown that q is a surjection, i.e., that for any W  Z,
n*W = q*Z =&#x3E; W = Z . To be a surjection, it suffices that this property
be satisfied on a base. Recall that the opens 1r* ! (U, c) are a base for
dis (al ) . Assume there is given 7r* I (V, d)  7r* I (U, c) such that under
77* these opens are identified. Since 7r - q = v one obtains that d = c .
By the hypothesis 3,

Note that c is a component of l*(V /B U) . 0

4.5 Definition. L l-&#x3E; X E LcLoc/X is said to be complete if any one
of the equivalent conditions of Proposition 4.4 is satisfied.

Propositions 4.3 and 4.4 (and Theorem 3.1 ) irnply the following.

4.6 Theorem. The notions of cosheaf locale and complete spread are
equivalent. For any locale X , the display locale construction establishes
an equivalence between coSh(X) and the category of complete spreads
over X .
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4.7 Remark. If L -&#x3E; X is a complete spread, it has been shown that nl*
is an isomorphism of frames. Its inverse is given, at least on connected
opens c which appear as a component of an I* U (since l is a spread there
is a base for L of such c ), as c H 7r* 1 (U, c) . Note that if V is any other
open of X such that c is a component of I* V, then 7r* ! ( V, c) = 7r* i ( U, c)
by the completeness of I .

This discussion of complete spreads (as cosheaf locales) will be con-
tinued in the spatial context in the next section; however, we include
here the following basic property of complete spreads. Naturally, the
proof will avail itself of Theorem 4.6 (first statement).

4.8 Proposition. Let M £ L - l X be morphisms of locales with M
and L locally connected.

1. If l and m are complete spreads, then so is lm .

2. If 1m and I are complete spreads, then so is m .

The proof of Proposition 4.8 will use the following lemma (compare
Lemma 1.5).

4.9 Lemma. Let P £ Q be an arbitrary poset map, and let D -d Q
denote an arbitrary discrete opfibration. Then the corrtmutative square

is a pullback in LCLOC.

Proof. The geometric morphism s : Sh(P)-Sh(Q) induced by s is es-
sential, i.e., the inverse image functor s* has a left adjoint s, - Therefore
(by Theorem 0.1), composition with s*
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has right adjoint

where

For any L -l P with L locally connected, there are natural bijections

Note that for any q E Q ,

and that therefore, Asl = Al - s* since the principal down-closed subsets
are a base of Q. Also, for any p E P , 

and therefore, A6 - s, = Ass . 0

Proof of Proposition 4.8. 1. Consider the following commutative
diagram in Loc.

The map p sends (U, d), d a component of m*l*U, to (U, c) where c is
the component of I*U containing the image m(d). Under the same
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terminology, by definition g(U, d) = (c, d) a,nd q(U, c) = c . It is clear

that square 2 commutes. It is not clear that Vm = u . vlm (and in general
it will not be true), but it holds in this case because I is a spread. That

q. VI is equal to the canonical inclusion L-T L also follows from the fact
that I is a spread. To be shown is that 1-3 is a pullback in Loc. By
hypothesis, it suffices to show that 1 is a pullback in Loc. It is not hard

to check that the discrete opfibrations Amq and p are identical. This

puts us in a position to apply Lemma 4.9 (with q as s). We conclude
that 2 is a pullback in LCLOC. Included in the hypotheses is that 1-2
is a pullback in LOC, and hence in LCLOC. Therefore, 1 is a pullback
in LCLOC. But the pullback in Loc of 1 is dis(Alm) , and this locale is
locally connected. Hence, dis(Alm) is the pullback of 1 in LCLOC as well.
Thus, M and dis(Alm) must coincide.

2. This is similar to 1. 0

4.10 Remark. Proposition 4.8 has the immediate consequence that
for any cosheaf C E co,Sh(X ) , the slice category coSh(X)jC is equivalent
to coSh(disC) .

5 THE SPATIAL CASE

Let LCTSP/X denote the full subcategory of TsP/X determined by
those objects L-X with L locally connected. The inclusion of this full
subcategory has a right adjoint as will now be shown. The reader is

reminded of the fact that a quotient space of an locally connected space
is locally connected (cf. [4], p. 125).

5.1 Proposition. The intersection of a set of locally connected topolo-
gies is again a locally connected topology.

Proof. First observe that if X and Y are two locally connected spaces,
then the coproduct X + Y , which has as its underlying set the disjoint
union of X and Y , is locally connected. Next, let T and T’ be two
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locally connected topologies on a set X . Then (X, T ) + (X, T’) is locally
connected as just remarked. Give X the quotient topology with respect
to the codiagonal (X, T ) + (X, T’)-*X . This topology on X is locally
connected as remarked above. Also, observe that it coincides with the

intersection of T and T’ . This establishes the proposition for two locally
connected topologies. The general case can be established in the same
way. a

Given any space (X,T), by Proposition 5.1 there exists a smallest
locally connected topology larger than T. Denote this space by X and
denote the identity map X -X by ex . Let L - l X be an arbitrary
locally connected space over X , and let I denote the image of I . Then
there is a commutative diagram

where the p is a surjection, and I X - denotes the complement of I
carrying the discrete topology. Note that the coproduct L+ I X - I |
is locally connected. Therefore, the quotient topology on X induced
by p is locally connected, and hence finer than the topology on X .
Consequently, p factors through Ex . This gives a unique (because EX is
a monomorphism) factorization of 1 through EX . Thus, X H X is right
adjoint to the inclusion of LCTSP into TSP.

5.2 Definition. X will be referred to as the locally connected coclosrrc
of X .

5.3 Example. The locally connected coclosure of a totally disconnected
space (i.e., no connected subsets other than the singletons) is discrete. a

Let loc : TSP-LOC denote the functor which carries a topological
space X to the locale associated to the frame of open sets of X . Let
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I . I denote its right adjoint, i.e., the ’points’ functor. A locale Y is

said to be spatial (cf. [10, 12]) if the counit loc| Y I --+Y is an isomor-
phism. Observe that a space Y is locally connected if and only if locY is.
Therefore, we have loc : LCTSP-&#x3E; LCLOr , a,nd this functor has right
adjoint f |.|. If a locale Y is spatial and )oca.))y connected, thcii | Y| is

locally connected, and therefore loc( Y ) = loc | Y ) rr Y . Conversely,
if loc Y 1--+ loc I Y | -&#x3E;Y is an isomorphism, then Y is: spatial, being
the locale of opens of some topological space (nétlllcly Y|), and locally
connected, being the locale of opens of a locally connected space. But
then 1 Y I must be locally connected, heuce |Y| =I Y" The following
fact has been established.

5.4 Proposition. For any locale Y , the following are equivalent.

1. Y is spatial and locally connected.

2. loc|Y|--loc I Y I --+Y is, an isomorphism.

3. Y is spatial and I Y is locally connected.

Let X denote an arbitrary topological space. The composite functor

will also be denoted by A , and will be referred to as the connected
components functor for spaces. For a locally connected space L -l X
over X , Àl (U) is the set of connected components of l -1U in the usual
sense. This functor has a right adjoint since it is a composite of functors
with right adjoints. Note: The right adjoint of loc/X is the locally
connected coclosure of the pullback along the unit X - locX An
explicit description of the right adjoint of A for spaces follows. Naturally,
this discussion will center on the display space of a precosheaf. We

remind the reader that for any poset P , the points I P of the locale P
can be identified with the up-closed, down-directed subsets of P .
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5.5 Definition. Associated to any precosheaf D on X is a topological
space disD over X which will be referred to as display space of D . By
definition, it is the pullback

is TSP, where 7rX(X) = {U x E U} .

It will be helpful to write down an explicit description of the space
disD . The underlying set of disD is

where t is a natural transformation, and Ax is the ’point-cosheaf’ defined
by the point 1 X- X ,

if xEU
otherwise.

The set | disD| can also be described as the disjoint union over X of the
costalks Sx = 1j!!!DU , where this limit is taken over those U containing
x . The elements of Sx are the cogerms over x . The map -yD is the

projection (x, t) -&#x3E; X , and 7rD sends a cogerm (x, t) to the up-closed,
down-directed set {( U, d) I (x, t) E (U, d)} . If B denotes a base for the

topology on X , then the sets

and

constitute a base for disD . In particular, a base for the topology on
disD can be taken to be {(U,b) | U EO(X) , bEDU}.

5.6 Example. The display space of the precosheaf c(Tx) (see Example
2.5). Let X denote a topological space. It will be shown in this example
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that dis(c(Tx)) has X as its underlying set, but topologized by taking as
basic opens the quasi-components of the open sets of X . To digress for
a moment, for x EX, let us denote by x the intersection of all closed-

open sets containing x . Then declaring x and y equivalent if x = y is
an equivalence relation, and the equivalence classes of this relation are
called the quasi-components of X .

Let us simplify the notation and write cT for c(Tx) . First observe
that for any cosheaf C , there is a unique map C-&#x3E;cT (see Proposition
2.3). Existence: For an open U, u E CU and R E JU , let tU(U)R denote
the Rth-component of the consistent vector tu(u) . Choose V E R such

that there is v E CV with v HC u (i.e., v is carried to u under the map
CV--+CU). Let tU(U)R be the equivalence class of V under chaining
in R . This gives a well-defined natural transformation. Uniqueness:
Denote by t the natural transformation just constructed. Suppose there
is C -&#x3E;s cT which is not equal to t . Then there is an open U and a

U E CU such that the consistent vector sU(u) # tU(u). Hence, there
is a cover R of U such that SU(u)R # tU(u)R. Let Ua # 0 represent
tU(u)R and let U(3 =1= 0 represent sU(u)R . Note that by the definition of
t one can choose Ua such that there is a v E CUa with v - c u . Since

SU(U)R =f:. tU(u)R , UB and Ua are not chained together in R. This

violates at v the commutativity of

Thus, the underlying set of dis(cT) is in bijection with X , i.e.,
q : dis(cT)--+X is a bijection. For x E X , ,-I X is the unique morphisrn
Ax--+cT. Let us use x again to refer to this morphism. Recall that

a base for the topology on dis( cT) is the collection of sets {( U, b) I
U E O(X), b E cT(U)} . Identifying the underlying set of dis( cT) with
X , these are the sets
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It will be shown that these sets are precisely the quasi-components of
the open set U . First, note that for any z E (U, b), (U, b) C i - Next,
note that

where b = (bR), as R runs over the covers JU of U , and where bR
denotes an equivalence class of opens in R under chaining in R . Each
PR is closed-open in U because it is a member of an open partition of U .
Thus, (U, b) is equal to (U, b) , i.e., to the intersection of all the closed-
open sets containing ( U, b) . Whence i C (U, b) , for any z E (U, b) .
Thus, (U, b) is a quasi-component of U . 0

For the following, we shall temporarily denote the display space by
dissD , to distinguish it from the display locale dis D 

5.7 Theorem. The points of the display locale of a precosheaf give its
display space. More precisely, for any precosheaf D , there is a morphism
T which makes the diagram

a pullback of spaces, where the bottom arrow is the unit of loc -I |. I at

X . If X is sober, then dis s D = I dis D | 

Proof. The canonical locale morphism locX-Tx gives rise to a com-
mutative triangle 

-
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in TSP. The theorem follows as

is a pullback in TSP (since|. I preserves limits) . 0

5.8 Remark.. The map T of Theorem 5.7 has the following description.
There is a locale morphism p making

commute. The frame morphism p* sends the basic open set 1 (U, d) to
the open set (U, d) of dissD . Hence, there is an induced morphism
f1 : loc( diss D)--+ disD of which t is the transpose under loc -1 1 I .

For a natural transformation D-&#x3E;s E, define

The function 7, is easily seen to be continuous. The ftiiictor 7 followed by
the locally connected coclosure gives a functor (which should be denoted
by 1 , but will be denoted again by 7 )

Let i denote the full inclusion of coSh(X) into Seto(x) .

5.9 Theorem. 7 is right adjoint to iÀ (compare Theorem 3.1).
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Proof. Maps L-+di7D over X are in bijective correspondence with
maps L-+diss D over X . By Theorem 5.7, such maps correspond to
commutative squares 

which correspond to commutative triangles

These correspond, by Theorem 3.1, to natural transformations Al-+D .
a

5.10 Remark. We will later need concrete descriptions of the unit and
counit of the adjointness A -1 7 for spaces. These descriptions follow.
The unit q : For a locally connected space L -l X, to define a map

it suffices (since L is locally connected) to define a map

(In any case, disal is locally connected - see Proposition 5.14). For a E L ,
let

where ta : Aia -Ai is the natural transformation such that for la E U E O(X) ,
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selects the connected component of l-1 U which contains a . Observe

that 771 is continuous. In fact, let (B, b) is a basic open of disal , where
b E AlB, i.e., b is a connected component of l-1 B . Then nl-1(B,b) = b ,
which is an open set since L is locally connected.
The counit e: Given a precosheaf D , we want to define a natural
transformation

For U E O(X) , define

as follows. Note: A(y-1D U) is referring to connected components in disD .
Send an (x, t) E -Y-1D’U, i.e., Ax -t D, x E U, to tU E DU. This defines

a map -1yD’U-DU which will be shown to factor through connected
components. Let (x, t) and (y, s) be in the same connected component
of -1YD U (in disD). Observe that -1yD U is the disjoint union of opens

Thus, if (x, t) and (y, s) are in the same connected component, then there
is a unique bo E DU such that (U, bo) contains both (x, t) and (y, s) . In

other words, tu = bo = sU . This defines EDU. It is left to the reader to

see that 6D is natural in U , and that e is natural in D .

Our analysis allows us to extract the following information about
the locally connected coclosure.

5.11 Proposition. The quasi-corraponents of the open sets of a space
X are open in its locally connected coclosure X.

Proof. There is a unique map Àt--*cT (see Example 5.6), where X E-
X . Thus, we obtain by adjointness a map 0l- dis(cT) over X . It was

shown in Example 5.6 that if q is a quasi-component of an open of X ,
then -1 y cTq is open (in fact, such sets constitute a base) in dis(cT). Thus,
c-iq is open in X as well. a
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5.12 Definition. A precosheaf D will be said to be a spatial cosheaf
if the counit ED is an isomorphism.

It is shown in the next section that on a complete metric space, every
cosheaf is a spatial cosheaf.

By Theorem 5.9, there is an equivalence between the category of
spatial cosheaves and the category of those L -&#x3E;l X such that nl is a

homeomorphism. We analyse these conditions.

5.13 Proposition. For any precosheaf D , cD is a monomorphism if
and only if the basic opens (B, b) of disD are connected (in which case,
disD is locally connected and is therefore equal to disD ).

Proof. It was observed in Remark 5.10 that -1yD B is partitioned by
the open sets (B, b) , b E DB . If the (B, b)’s are connected, then the
non-0 ones are the connected components of -1yD B . That is, A7DB is in
bijection (via EDB) with those b E DB such that (B, b) # 0 . Conversely,
if some (B, b) is not connected, then 6DB will identify its connected
components, i.e., e DB will not be a monomorphism. a

5.14 Proposition. For any L I X E LCTSP , dis Al is locally con-
nected, and the cosheaf Ai is spatial.

Proof. It will be shown that cÀl is both an epimorphism and a monomor-
phism in Set’(’) . The (U, c)’s of disal are connected. In fact, given a

(U, c) observe that the closure of

in 7-’U is equal to (U, c) , where q is the unit. To see this, let r¡c denote
the closure of qc in ,-1V . (U, c) is closed in y-1 U since its complement
in y-1U is a union of basic opens and hence open. Therefore, Tc C

( U, c) . For the reverse inclusion, let ( x, t ) E ( U, c) and let (V, d) 9 -Y-1 U
be an arbitrary basic open containing (x, t) . To be shown is that (V, d)
meets qc . Observe that
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Therefore, d is a component of l-1 (U n V) and tunv = d . But then the
naturality of t forces d C c . Hence, for any y E d, ny is in both (Y, d) and
qc . Thus, dis Al is locally connected and cÀI is a monomorphism. cÀI is

an epimorphism because for any open U and any connected component
c E A(l-1 U) , one can choose an a E C . Then êÀI(V) sends the component
of 711 (a) to c . a

Let us turn to an analysis of cosheaf spaces. This analysis parallels
and extends the discussion begun in §4 with cosheaf locales.

5.15 Definition. L I X E LCTSP/X is said to be a cosheaf space if
the unit qi : L--+disAl is a homeomorphism. (Note: the locally connected
coclosure does not play a role - see Proposition 5.14).

5.16 Example. The terminal cosheaf space. If X is locally connected,
then clearly the unit X-&#x3E;disAx is a homocomorphism. This follows be-
ca.use disax is locally connected. More geii(,,i-a,lly, for any topological
space X , the locally connected coclosure k --’4 X is the terminal cosheaf
space. Again, this follows because disA, is locally connected. One uses
the universal properties of both c and Îc to obtain that qe is a homeo-

morphism. a

Recall from §4 the notion of a complete spread over X . The spatial
version of the notion of spread remains unchanged; however, complete-
ness will be defined’ as the requirement that for all X E X , every con-
sistent choice of components CUE l-1 U over all neighbourhoods U of x
satisfy ncuo 0 . Here, ’consistent’ rncans Il C V =&#x3E; qii C c’v .

5.17 Theorem. Assume that the base space X is 7’1 . For any
L -l X E LCTSP/X, the following are equivalent.

1. 1 is a complete spread and L is Tl .

6This is the original definition given in [5]. Fox constructs the completion of a
spread 1 : L-&#x3E;X , which in our notation is 77 : L-&#x3E;dis Al.
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2. Z is a cosheaf space.

Proof. Assume 1. For any given natural tr ansformation Àz -t Al, com-

pleteness says there exists a E n tU . Every open containing z must con-
tain la and so z = la since X is T, . Thus, na = (z, t), i.e., n is onto.
To see that q is injective, let Ra = nb = (x,s). Then = l b = x , and,
in the notation of Remark 5.10, for every open U of X containing x , we
have

comp. of I-’U containing a = tU = tbU = comp. of l-1 U containing b .

The spread property of says that there is a base {ca} for L such that
every ca appears as a component of some l-1U . Hence, for all V E O(L) ,
a E V if and only if b E V . Since L is assumed to be T1 , we conclude
that a = b . Finally, observe that 71 is an open map. In fact, since
77 is bijective, nca = (U, ca) , which is an open set. Therefore, 77 is

open on the base {ca} , and consequently is an open map. Thus, q is a
homeomorphism.

Assume that I is a cosheaf space. First, it is not hard to see that

display spaces are T1 if the base space is. Second, the definition of the

display space says clearly that such spaces are spreads. Finally, a con-
sistent choice of components cU E 1-1 U over all U containing x obviously
defines a cogerm (x, c). Then there is an a E L such that (x, c) = qa
Hence, a EnCU. 0

A fundamental fact is that covering spaces are cosheaf spaces. In-

deed, it is immediate that a covering space is a spread, but we are adopt-
ing a ’cosheaf space’ approach; so we will give a direct explanation of
the relationship between covering spaces and cosheaf spaces (i.e., one not
depending on Theorem 5.17). For the following definitions let L -p X
denote an arbitrary map of topological spaces, with L locally connected.
An open U of X is said to be admissible (with respect to p) if p-1 U has
a partition {Va} of open sets such that p maps each Va homeomorphi-
cally onto U . L -P X is said to be a covering space7 if X has a base of

7Generalizations of this notion will not be considered here, but the interested
reader may wish to see [6].
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admissible open sets. Note that a covering space L -p X is necessarily a

surjection, and X has a base of connected opens such that for each U of
that base, each component of p-1U is rmapped holneomorphically onto
U.

5.18 Proposition. Let L-P X denote an arbitrary covering space.
Then the unit r¡p is a homeomorphism, i. e., p is a cosheaf space.8

Proof. Let t denote an arbitrary cogerm over x E X . Choose a con-

nected admissible open set B containing x . Then there exists a unique
y E tB such that py = x . It follows that rly = (x, t) , which shows that q
is surjective. Assume now that y, Z E L determine the same cogerm over

x , i.e., that qy = ?7z . Let U be an admissible neighborhood of x . y

and z must be in the same component of p-’U, and therefore, since that
component maps homeomorphically onto U, must coincide. Thus, q is a
bijection. It is clear that L has a base of connected sets c that appear as

components of opens of the form p-1U, i.e., that p is a spread. For such
c, qc = (U, c) . Thus, q is an open map, whence a homeomorphism. a

We are thus presented with the following picture when the base space
X is locally connected.

8If in the definition of covering space, ’X has a base of admissible open sets’ is

replaced with ’for every a E L and every open V in X such that pa E V , there is an
admissible open set U satisfying pa E U C V ’, then the conclusion of Proposition
5.18 becomes np is an open, dense inclusion’. In this case, the completion disaP is

not in general a covering space. In fact, it may not even be a local homeomorphism
as the following simple example shows. Take X to be the real plane, and p : L--+X
the complement of the y-axis as a subspacc. The completion disAp is the cut (see
footnote 10) along the y-axis. This consists of two closed half-planes mapped to X by
Igluing’ them along the y-axis.
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Cosheaf spaces over X are a full reflective subcategory of LCTSP/X
(whereas sheaf spaces are a full coreflective subcategory). Covering
spaces are both cosheaf and sheaf spaces.9 Examples of cosheaf spaces
that are not sheaf spaces are not difficult to produce. A simple such
example is the projection of a 2-sphere onto a disk. Cuts also provide
such examples.10

6 COMPLETE METRIC SPACES

6.1 Theorem. Let X denote an arbitrary complete metric space. The
display locale of a cosheaf on X is spatial. The display space of a cosheaf
on X is locally connected. Every cosheaf on X is spatial (see Definition
5.12) .

Proof. (sketch) Let C denote an arbitrary cosheaf on X . Start with

W, Z EO(disC) , i.e., W, Z E O(C) and closed under covers, such that
WIZ . To be exhibited is a point 1 P-&#x3E; disC such that p* W = 1 and

p*Z = 0 . To do this, build a sequence

,if we wish to include non-surjective covering spaces, then we must enlarge
coSheaf /X so as to include open, dense subspaces of cosheaf spaces - see footnote 8.
"Cuts were introduced by Michael (cf. [14]). See footnote 8 for an example of a

cut.
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with radius(Bn)-0 , and also such that every (Bn, cn)$ Z . This can

be done since Z is closed under covers and since C is a cosheaf. The

intersection of the Bn consists of a single point z . The following square
can now be completed with q making it commute and thus giving the
desired point p . 

Define, for a basic open I (U, d) of O(C),

if there is a Bn  U with cn - d
otherwise.

This proves the first statement of the theorem.

The second statement follows from the first because the display lo-
cale of a cosheaf is always locally connected. See Theorem 5.7 (metric
spaces are sober) and Proposition 5.4. The last statement follows from
the first because in the context of locales, the counit AyC-C is always
an isomorphism for any cosheaf C . a

Theorems 5.17 and 6.1 combine to give the following.

6.2 Theorem. On a complete metric space X , the display space
construction yields an equivalence between the category of cosheaves on
X and the category of Tl complete spreads over X .

Since all cosheaves on a complete metric space are spatial, the asso-
ciated cosheaf of an arbitrary precosheaf can be constructed.

6.3 Theorem. On a complete metric space, the associated cosheaf of
an arbitrary precosheaf D exists, and can be constructed as the cosheaf
of connected components of the locally connected coclosure of the display
space of D .



90

6.4 Remark.. The general existence of the associated cosheaf is a fact.
For any site, i.e., for any small category equipped with a Grothendieck

topology, the inclusion of the category of cosheaves on that site into its

corresponding category of precosheaves has a right adjoint. This can be
established as follows. The category of cosheaves on an arbitrary site has
all small colimits and is locally small. It is also cowell-powered as shown
in [8], and has a small generating family. The existence of a generating
set can be established as an application of the downward L6wenheim-
Skolem theorem (for infinitary logic) .11 (The interested reader is referred
to the monograph [13]). The Special Adjoint Functor Theorem now gives
the right adjoint since the inclusion of cosheaves into precosheaves is

colimit preserving.

This section is concluded with a counterexample. It depends on the

following.

6.5 Proposition. If X is a complete metric space, then the set of
point-cosheaves {Ax I x EX} generate coSh(X)

Proof. The points 1 x-&#x3E; X generate LCTSP/X . 0

6.6 Remark. We will in the following example make use of the obser-
vation that a space X has the T1 separation property if and only if for
all 1 x-&#x3E; X, the unit nx : x-&#x3E;yLx is an isomorphism (see the description
of q in Remark 5 .10) .

6.7 Example. Let X denote a complete n’tctric space which is locally
connected and not discrete (e.g., the real numbers) . Then coSh(X) is not
a Grothendieck topos. Indeed, if in this case coSh(X) were a topos, then
the full subcategory determined by any generating set could be taken
as a site of definition for coSh(X) (cf. [9]), and coSh(X) would be a full
subcategory of the category of presheaves on that (small) full subcate-
gory. The full subcategory of coSh(X) determined by the generating set

11This argument was shown to the author by Bill Boshuck.
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x E X} is discrete, i.e., there are no morphisms Ax -&#x3E; Ay , for x and
y distinct. In fact, if there were a morphism Ax-&#x3E;Ay, then there would
be x =yAx-&#x3E;yAy = y (see Remark 6.6) as spaces over X , i.e., x = y .
Thus, I X| = {Lx X E X } , and one concludes that coSh(X) is a full

subcategory of Setlxl via the functor

Let X ) I X denote the discrete space over X . Then the mor-

phism Ajd is not -an isomorphism because X is assumed not discrete;
however, (D(Aid) is an isomorphism. To see this, observe that for any x
there is exactly one natural transformation Lx-&#x3E;Àlxl (Existence: ’qid(X) -
Uniqueness: X is Tl and I is faithful). But Ax is the terminal object
in coSh(X ) - in particular, there is exactly one natural transformation
Ax-&#x3E;Ax . Thus, P(Aid) is an isomorphism - a contradiction. a

REFERENCES

[1] G. M. Bergman, Co-rectangular bands and cosheaves in categories of
algebras, Algebra Universalis 28 (1991), 188-213.

[2] M. Bunge, Cosheaves and distributions on toposes, to appear in Al-
gebra Universalis, Alan Day Issue.

[3] C. H. Dowker and D. Papert, Quotient frames and subspaces, Proc.
Lond. Math. Soc. (3) 16 (1966), 275-96.

[4] J. Dugundji, Topology, Allyn &#x26; Bacon, 1966.

[5] R. H. Fox, Covering spaces with singularities, in: R. H. Fox et al

(editors), Algebraic Geometry and Topology A Symposium in Honor of(editors), Algebraic Geometry and Topology: A Symposium in Honor ofS. Lefschetz, Princeton University Press, Princeton, 1957, 243-257.



92.

[6] R. H. Fox, Shape theory and covering spaces, in: R. F. Dickman

Jr. et al (editors), Topology Conference, Virginia Polytechnic Inst. and
State Univ. 1973, Lecture Notes in Math. 375, Springer-Verlag, Berlin-
Heidelberg-New York, 1974, 71-90.

[7] J. Funk, Descent for Cocomplete Cotegories, Ph. D. Thesis, McGill
University, 1990.

[8] J. Funk, The cocontinuous dual of a topos, Reports of the Dept. of
Math. &#x26; Stats. no. 91-25, McGill University, 1991.

[9] P. T. Johnstone, Topos Theory, L. M. S. Mathcma,tical Monographs
no. 10, Academic Press, London-New York-San Francisco, 1977.

[10] P. T. Johnstone, Stone Spaces, Cambridge University Press, Cam-
bridge, 1982.

[11] A. Joyal and M. Tierney, An extension of the Galois theory of

Grothendieck, Mem. of the Amer. Math. Soc. 51, Amer. Math. Soc.

(1984), no. 309.

[12] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, Sringer-
Verlag, Berlin-Heidelberg-New York, 1992.

[13] M. Makkai and R. Paré, Accessible Categories: The Foundations

of Categorical Model Theory, Contemporary Mathematics 104, Amer.
Math. Soc., 1989.

[14] E. Michael, Cuts, Acta Math. 111 (1964), 1-36.

[15] R. Paré, Indexed categories and generated topologies, J. Pure Appl.
Alg. 19 (1980), 385-400.

[16] A. M. Pitts, On product and change of base for loposes, Cahiers Top.
Géom. Diff. Cat. XXVI-1 (1985), p. 43-61.

[17] I. K0159í017E and A. Pultr, Peculiar behavior of connected locales, Cahiers
Top. Géom. Diff. Cat. XXX-1 (1989), p. 25-43.

[18] A. W. Tucker, Branched and folded coverings, Bull. Amer. Math.
Soc. 42 (1936), 859-862.



93.

Dept. of Mathematics and Statistics
Burnside Hall, McGill University
805 Sherbrooke St., West
Montreal, Quebec, Canada H3A 2K6
funk@triples.math.mcgill.ca


