CAHIERS DE
TOPOLOGIE ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

J. FUNK
The display locale of a cosheaf

Cahiers de topologie et géométrie différentielle catégoriques, tome
36,n°1 (1995), p. 53-93

<http://www.numdam.org/item?id=CTGDC_1995__36_1_53_0>

© Andrée C. Ehresmann et les auteurs, 1995, tous droits réservés.

L’acces aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique I’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=CTGDC_1995__36_1_53_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

CAHIERS DE TOPOLOGIE ET Volume XXXVI-1 (1995)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

THE DISPLAY LOCALE OF A COSHEAF
by J. FUNK

Résumé On montre que la catégorie des antifaisceaux sur un
locale X arbitraire est équivalente a la sous-catégorie réflexive
pleine de la catégorie des locales localement connexes sur X .
Il s’agit de la sous-catégorie des complete spreads (cf. [5]) sur
X . On accorde une attention particuliere au cas d’un espace
topologique, et ’'on montre comment construire I’antifaisceau
associé a un préantifaisceau arbitraire dans un espace métrique
complet. On donne un contre-exemple qui montre qu’en général,
les antifaisceaux ne constituent pas un topos.

0 INTRODUCTION

Partial results (cf. [1]) have been obtained concerning the represen-
tation of a cosheaf on a topological space X as a locally connected space
over X . The principal aim of this paper is to show that an arbitrary
cosheaf on a locale X can be uniquely represented as the cosheaf of con-
nected components of a complete spread over X with Jocally connected
domain. This is accomplished by exhibiting a (fully faithful) functor
from cosheaves on X to locally connected locales over X which is right
adjoint to the ‘connected components’ functor, and then by recognizing
those objects in the essential image as the complete spreads over X .

IM. Bunge (cf. [2]) has shown that the category of cosheaves on an arbitrary site
is the category of points of a topos. This topos is called the symmetric topos in [2]
where it is shown to exist as the classifying topos of the notion of cosheaf.
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FUNK - THE DISPLAY LOCALE OF A COSHEAF

The explanation of the right adjoint centers on a locale called the
display locale of a precosheaf. This locale is defined in §1. After some
preliminaries on locally connected locales are presented in §2, the main
adjunction is established in §3. The first part of the main result, that
the right adjoint is fully faithful, can then be proved.

Thus, the category of cosheaves on a locale X is equivalent to a full
reflective subcategory of locally connected locales over X | i.e., those for
which the unit is an isomorphism. Let us call such a locale a cosheaf
locale over X . We show in §4 that the notion of a cosheaf locale over
X is equivalent to the notion of a complete spread over X . The latter
notion comes from [5], and was introduced there as an encompassing
notion of branched and folded covering spaces (cf. [18]).

The spatial case is given special consideration in §5. We describe the
display space, its relation to the display locale, and the connection with
(spatial) complete spreads. This prepares us for the concluding section
which considers the case of a complete metric space. It is shown (as
stated in [1], p. 204) that on a complete metric space X , every cosheaf
arises as the cosheaf of connected components of a locally connected
space over X . This result can be combined with the locally connected
coclosure to give a construction of the associated cosheaf of an arbitrary
precosheaf on a complete metric space.

To summarize, the category of cosheaves on an arbitrary locale is
equivalent to the category of complete spreads over the locale. This
equivalence cannot in general be expected to hold in the spatial context;
however, when the base space is a complete metric space the category of
cosheaves is equivalent to the category of T; complete spreads over the
base space.

Throughout, FRM dernotes the category of frames.? The category
of locales is by definition the opposite of FRM, and is denoted by Loc.
If X denotes an object of LOC, then the same object considered as a
frame is denoted by O(X) . A morphism of locales X 2, Y is written as

oY) £ O(X) when regarded in FRM. An element of O(X) is referred

2A comprehensive account of the theory of frames can be found in [10].
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to as an open of X . Opens are typically denoted by U, with 0 and
X being reserved for the bottom and top elements of O(X) .3 A cover
of an open U of a locale X is a down-closed subset {U, < U} such that
the supremum V U, is equal to U . A precosheaf D on a locale X is a
functor

D :O(X) —Set .

A precosheaf D is a cosheaf (coseparated precosheaf) if D has the prop-
crty that for any open U € O(X) and any cover {U/, < U}, {DU,—DU}
is a colimiting cone (epimorphic family).*

Let coSh(X) denote the full subcatcgory of Set?X) determined by
those objects which are cosheaves. Let Cocts(Sh(X), Set) denote the cat-
cgory of Set-valued cocontinuous (i.c., small colimit preserving) functors
on the topos of sheaves on the locale X (with all natural transformations
as morphisms).5 The following important fact is well known (cf. [16]).

0.1 Theorem. For any locale X , composition with the Yoneda em-
bedding Yon : O(X)— Sh(X) yields an equivalence

Cocts(Sh(X), Set) = coSh(X) .

0.2 Corollary. Let X LY be an arbitrary locale morphism, and C a
cosheaf on X . Then C - f* is a cosheaf on Y .

Proof. By Theorem 0.1, there is a cocontinuous ¢ : Sh(X)— Set such
that C~¢ - Yonx . Hence,

C- f*=p-Yonx - f*=p - Yony ,

where f denotes the geometric morphism determined by f. But ¢ - f*
is a cocontinuous functor (on Sh(Y)), so C - [* is a coshcal. o

3These conventions follow [12]. See also [11].

4One can speak of cosheaves on an arbitrary site, i.e., on a small category equipped
with a Grothendieck topology. In this paper, we shall restrict our attention to locales;
however, the reader is referred to [2] where the study of cosheaves on a site is reduced
to that of cosheaves on a locale plus the action of a localic groupoid. This is by
analogy with the structure theorem of [11] for sheaves on a site.

5The objects of this category have also been referred to as distributions (cf. [2]).
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1 THE DisPLAY LOCALE

We need some preliminary notation before proceeding to the defini-
tion of the display locale. If P is a partially ordered set, then we shall
denote by P the locale corresponding to the frame O(P) of down-closed
subsets of P . The principal down-closed sets | p constitute a base for
P. A poset map R @ induces a locale morphism f ;: P—Q such that
for a down-closed subset A of @,

ffA=A{p| f(p)eA}.
We will also use f~! , but meaning inverse image in the context of posets.

1.1 Remark.  We distinguish between a discrete opfibration on P |
which can be realized as a functor P—Set , and a precosheafon P, i.e.,
a functor O(P)—Set . Composition with the poset map P—O(P) ,
p—lp, gives an equivalence coSh(P) = Set” . One way to prove this is
to use Theorem 0.1, and the fact that Sh(P) = Set”™

Let X denote an arbitrary locale. The total poset of a precosheaf
D on X has as its elements all pairs (U,d), de DU , and (U,d) < (V,e)
ifU <V and d+— eunder DU— DV . This poset will also be denoted by
D . The locale D will be referred to as the total locale of the precosheaf
D . A base for D is the set of principal down-closed sets | (U,d) . If
D4 E is a natural transformation between precosheaves, then there is
a morphism of total locales ¢ : D—E induced by the poset map (U, d) —

(U,tu(d)) .
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Let Tx denote the terminal precosheaf on X . There is a unique
natural transformation D—Tx .

1.2 Definition.  The display locale of a precosheaf D will be denoted
by disD , and is defined to be the pullback

disD ——D

D

X Tx

in Loc, where Ty is the total locale of T .

The frame O(Tx) is the set of down-closed subsets of O(X) , and the
frame morphism O(Tx)—O(X) which corresponds to X—Tx carries a
down-closed subset to its supremum. X is a sublocale of Tx (cf. [3]),
and therefore disD is a sublocale of D. This inclusion will always be
denoted by m . The structure map of disD over X will be denoted by
D , as indicated in the above diagram. The display locale construction
obviously constitutes a functor

v : Set®X)—Loc/X .

A description of the display locale in terms of generators and rela-
tions now follows. Some facts will become apparent from this description
which will be used in §3.

Let D denote an arbitrary precosheaf. For Re O(Tx) and de D(VR) ,
let

R 'd={(V,e) | VeR, ee DV such that ¢ — d under DV—-D(VR) }.

Then R~'de O(D), and the congruence relation generated by the set of
pairs

{ (B4, L(VR.d)) | ReO(Tx),deD(VR) }
yields the frame O(disD) as the set (cf. [11], p. 24)

{A<O(D) | ¥(R,d) with de D(VR), R™'d C A = (VR,d)e A}.
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Also, 7™ is calculated as
B =(){AeO(disD) | BC A} ,

and the right adjoint =, is inclusion.
A locale morphism X 1, Y is said to be dense if YU, f*U = 0 =
U = 0. This is equivalent to the condition f.0 =0.

1.3 Theorem. Let D denote an arbitrary precosheaf. If D is cosep-
arated, then disD = D is dense. If D is a cosheaf, then w, preserves
disjoint suprema (and 0 since cosheaves are coseparaled).

Proof. The 0 of O(D) is the empty set § . If D is coseparated, then
for any Re O(Tx) and de D(VR) , we have R™'d # § . In fact, that
{DV—-D(VR) | VeR} is an epimorphic family means that there is a
Vo€ R and a do € Vg such that do — d under DVo—D(VR) . Therefore,
0eO(disD) (R™'d C 0 = (VR,d)el is vacuously satisfied). Conse-
quently, @ is the bottom element of O(disD) as well, and hence, 7,0 = 0 .

Assume now that D is a cosheaf. We will show that . preserves
disjoint binary suprema, leaving the general case to the reader. It must
be shown that for any A, A’e O(disD) with AN A" =0,

N{BeO(disD) | AUA'C B} = AUA'. (1)

Note that (1) follows if AU A’eO(disD) . So given Re O(Tx) and
de D(VR) , it will be shown that

R'YdCAUA = (VR d)e AUA’ .

Since D is a cosheaf, R™1d # () and R~1d is connccted in the sense that
for any (V,e), (V',e’)e R™'d , there is in R™'d a finite diagram

SN N

DV’
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which ‘connects’ e to €’ . Since A and A’ are down-closed and disjoint,
it follows that either R™'d C A or R7'd C A’ . Hence, that either
(VR,d)e Aor (VR,d)e A". a

We include in this section two results which will not be used in this
paper, but are of independent interest. The first of these concerns the
pullback stability of the display locale, and the second the preservation
of products.

A locale morphism X 2, Y is said to be essential if f* has a left
adjoint fi . Intuitively, this means that for every open U in X , there is
a smallest open set containing the image set fU . If, for example, f is
an open map, then f is essential. If X Lyis essential, and if D is a
precosheaf on Y , then Df; is a precosheaf on X .

1.4 Theorem. Let X5 Y be an essential morphism of locales which
in addition is a surjection. Then for any precosheaf D on'Y , there is a
canonical morphism dis(D fi)—disD , which makes

dis(D fi) — disD
YD f D —

X

7 Y

a pullback in LoC.

We will use the following lemma in the proof of Theorem 1.4.

1.5 Lemma. Let P2 Q be a poset map, and assume that s has a
right adjoint r with s-r = 1g . Assume also that P has finite meets. Let
D4 @ be an arbitrary discrete opfibration. Denote by

Ds S

D

bs 6

P—7F—Q
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the pullback in posets of § along s . The map S is (p,z) — (sp,x) , for

z €67 (sp). Then
5’

Ds D
és ‘ 6

P

s Q

is a pullback in LocC.

Proof. Let Z denote an arbitrary locale, and assume there is given a
commutative square

7 h

D

P—s—Q

of locale morphisms. Define p : Z—Ds on principal down-closed subsets

as
p* L(p,z)=h" [ (sp,x) Ng" Lp; ze67 (sp).
For an arbitrary down-closed subset G, let
rG=\ o Llipa).

(p,z‘)GG

It is not hard to see that these definitions are consistent. The non-trivial
fact concerning the definition of p is that

p*(L(p,yo)A L (P, 20)) = ™ L(p,y0) A p™ L(P, 20) - (2)

It is clear that p* is order preserving, and therefore the left side of (2)
is less than or equal to the right side. To see the reverse inequality, first
observe that for any g€ @, g*(lrq) = g*s* | ¢ = h*é* | q. Then, since

& le= ] llg ),

€6~ 1q
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we have

gUrg)=r( ] l(g2)= | » lgz), (3)

r€b—1q z€6-1g

where | ] indicates that the supremum is disjoint. In particular, (3) holds
for ¢ = sp. Hence,

g lp<glrs(p (sp,x)
6= l(81)
From this is obtained the ‘involution’ formula
g lp=( L] iGpz)Aaglp= || o lpe). (4)
6 1(sp) 6—1(sp)
From this follows

L] pleAar.e)=g LpAp)= (g Lp)A(g" L)

§=1(s(pAp'))
=( Y riey)nC U o le,2)
6=1(sp) §71(sp')

= L] P Lpy)Ap™ L(P,2) .
5=1(sp) x6=1 (sp")

To summarize,
Ll e leAp,2)= LI iy re L(,2). (35)
§=1(s(prp")) 5=1(sp)x6=1(sp')
Next, let us calculate the left side of (2). By definition,
P (LB yA L 2) =p"( || LpAp,2))= |] »lpAp,2),

Y0520 THY0,20

where the subscript ¢ — yo, 20 means those z€§~!(s(p A p')) that are
carried both to yo and zp under Ds . Finally, observe that if z — yo, 20 ,
then

Pt lpAp,x) <p" L(p,yo) Ap* L(P,20) . (6)
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But conversely if p* | (pAp', z) # 0 and (6) holds, then by the disjointness
of (5) it must be that z — yo, 20 . This observation together with the
equality (5) gives (2). Thus, p* preserves finite infima of basic opens,
and therefore extends to a frame morphism (morphisms defined in this
manner which preserve finite meets of principal down-closed subsets of
a poset extend uniquely to frame morphisms).

Let us now verify that (8s) - p = g and that S-p = h . The former
follows from the involution formula and since for all pe P,

(6s)*lp= | l(px).

6=1(sp)

That S - p = h is as follows. Observe first that S* | (¢,y) =] (rq,y) and

s*lg=|rq,foryes'q=67"(srq) . Then p*S* | (¢,y) = p* L (rq,y),
which by definition is equal to A* | (srq,y) A g* | rq . This is equal to

h* (g, y) AN g(s” Lg)=h" L(g,y) AN h*6" L g

=h*(L(g,y) A& Lq)=h"|(q,y).

To conclude the proof of the lemma, observe that

L(p,z) = S7(L(sp,2)) A (83)°(Lp), z€87"(sp) .

This forces the uniqueness of p . o

Proof of Theorem 1.4.  One can verify immediately that

X

Tx

I

Y

Ty

commutes, where fi denotes the locale morphisin induced by the poset
map U — fiU . Thus, by the definition of the display locale it suffices
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to show that the commutative square

F

Df, - D
T T
X Y
is a pullback in LocC, where Fi is induced by the poset map (U,z) —
(fiU,z), ze Dfi(U) . This square is a pullback by Lemma 1.5. o

1.6 Theorem. The functor v preserves finile products, i.e., for any
precosheaves D, E on a locale X ,

dis(D x E) — disD

D

disE 5 X

is a pullback in Loc, where D x E is the precosheaf product of D and
E.

Theorem 1.6 is a direct consequence of the definition of 4 and the
following.

1.7 Proposition.  Let Q) denote an arbilrary poset, and assume that
@ has finite meets (this assumption can be dropped - see Remark 1.8
following the proof). Let D 4 Q and 5 Q be discrete opfibrations.
Then

Ty

DxE

D

1

é

E 7 Q
is a pullback in LOC, where D x E is the total locale. of the precosheaf
product D x E .
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Proof. A closer examination of the proof of Lemma 1.4 with ¢ replacing
s , reveals the following. First, given a commutative square

z—r .p
; {5
E—(5—Q

in Loc, the definition of p: Z—D x E becomes
p* g y,2) =k [ (q,2) A g™ L(gy); wedlq, yepTlq.

Note that if ¢ is put into the role of s, then the definition of p remains
the same. Also note that although E may not have finite meets, if Q
does have finite meets, then the argument used for Lemma 1.5 can be
adapted to show that p* preserves finite meets.

Second, the involution formula (see (4))

9 lg,y)= ] r Ligy,2); yeplq
5—1q

remains valid. From this one obtains m; - p = g . If § is put into the role
of s, then in a similar manner 7o - p = h is obtained. o

1.8 Remark.  Proposition 1.7 remains valid without the assumption
that the poset @ has finite meets. Simply regard @ as the locale Q, and
apply (the now established) Theorem 1.6. See also Remark 1.1.

2 THE CONNECTED COMPONENTS FUNCTOR

An open of a locale is said to be connected if it cannot be non-
trivially partitioned. A locale is said to be locally connected if the set
of all connected opens forms a base. This set could be partitioned into
equivalence classes where two connected opens U,V would be declared
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equivalent if there were connected opens U = Uy, Uy,:..,Up-1,Up =V
such that U;_; NU; #0, i =1,...,n . One would say in this case that
U and V are chained together. For a locally connected locale X |, let
A(X) denote the set of equivalence classes under chaining. Note that
the supremum of such an equivalence class is again a connected open.
Hence, we will often identify A(X) as a subset of O(X) . The set A(X)
will be referred to as the set of connected components of X .

For any morphism of locales L 4 X, define a precosheaf )\; such
that \(U) = A(I"U) . The locale I*U denotes the pullback

L U

L X

l

in Loc, where the frame corresponding to the open sublocale U is | U =
{V |V <U}. It follows that O(I'U) = I*U .

2.1 Proposition. ); is a cosheaf.
We will use the following fact (cf. [17], p. 30) to prove Proposition 2.1.

2.2 Lemma. An open U of a locale ts connected if and only if every
cover R of U has the property that every pair of opens V,W e R can be
chained together by opens in R .

Proof of Proposition 2.1.  First note that A, = Xy, - {* . Hence, by
Sorollary 0.2, we can assume that X is locally connected, and take JARN
X to be X & X . Let there be given a cover If = {tI, < U} of
an open U # 0 of X . We assume that U is connceted (the general
case immediately reduces to this), and thus, AU~1 . To be shown is
that lim AU ~1 . Let co € AU, and cge AUp be arbitrary, Us,Uge R .
We want to show that ¢, and cg arc cqual in the colimit. The (down-
closure of the) set {ce R | c is connected } is a cover R ol U satisfying
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Cay cg€R' C R . Since U is connected, by Lemma 2.2 there are opens
(which we can assume to be connected)

{ca =C€05€C1:-+3Cn-1,Cn = Cﬁ} - R

such that ¢, A¢; #0,i=1,...,n. We have

A(co A 1) Alcn-1 N cn)
AU, Acy Acn—q AUg
which ‘connects’ ¢, to ¢g . Note: we can choose any a; € A(cio1 A¢), 1 =
1,...,n,since A¢;~1,2=1,...,n — 1. This shows that ¢, and cg are
equal in the colimit. a

Let LCLOC denote the full subcategory of LOC determined by the
locally connected locales. For any locale X , there is the connected com-
ponents functor

A:LcLoc/X —coSh(X)

given by
LY X = (N:Uw— AU)) .

Alternative Description of Connected Components:
For a locale Y and any precosheaf D on Y | define a precosheaf

+. i
DT .U~ &ngU{gPR])

where the colimit runs over the opens of a given cover R of U, and the
limit runs over the collection JU of covers of U .

2.3 Proposition.  There is a natural transformatioh D¥— D through
which every natural transformation C—D , with C a cosheaf, factors
uniquely.
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No proof will be given here of this result, but see Example 5.6 for the
case D = Ty (this precosheaf sends U # 0 +— 1 and 0 — ). Cosheaves
fall within the general framework of [15] as shown in [7], and the above
construction and result can be established in that setting.

2.4 Definition. Denote by ¢(D) the precosheaf D** .

2.5 Ezample. A typical element of ¢(Ty)(V) is a consistent vector
(br) , where R runs over the covers of V and bg denotes an equivalence
class of opens in R under chaining in R . ‘Consistent’ means that if
R C R’ , then any non-0 U €bg, U’ €bp: are chained together in R'. o

2.6 Proposition. For any LY Xe LcLoc/X |, Nj~c(Ty) - I* .

Proof. Since A\; = Ay, - I* , it suffices to show that Ay, ~¢(TL) . Let
VeO(L) . We want to show A(V)~c(T1)(V) . Send deA(V) to the
consistent vector (dgr) (in the notation of Example 2.5) such that for
any cover R of V , dp is the unique equivalence class such that d <
V dg . This map is isomorphism because every consistent vector (bg) is
uniquely determined by bg, , where R. denotes the cover of V given by
the connected components of V . To see this, observe that for any R,

Vbr, < Vbr. a

2.7 Remark. . ) extends to a functor Loc/X — Set®X) by defining
for any ¥ 5 X | Ay = ¢(Ty) - f* . In general, the ¢ construction
more resembles quasi-components than it does connected components.
In fact, let A° denote connected components and let A? denote quasi-
components. Then for any map Y 4 X of topological spaces, there are
natural transformations of precosheaves

When Y is locally connected these three precosheaves coincide and that
precosheaf is a cosheaf. See Example 5.6, where the display space of
¢(Tx) is computed for an arbitrary topological space X .
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3 THE ADJOINTNESS A+«

3.1 Theorem. The connected components functor A is a partial left
adjoint to v . For any L L Xe LcLoc/X | and any precosheaf D on
X , there is a natural bijection

locale morphisms l—~p
natural transformations \—D .

For a cosheaf C, disC is a locally connected locale, and the counit
Mec—C s an tsomorphism.

The above adjointness is obtained as follows. Observe that for a
precosheaf D , 75 (U) is the disjoint supremum over DU

7p(U) = =" L(U,d),
DU

where 7 is the locale inclusion disD—D . Hence, given f : L—disD
such that yp - f = [, we have

rU=||f= L(Ud).
DU
Define a natural transformation f such that for U e O(X) and ¢ a com-
ponent of U ,
fu(c) = the unique dg € DU such that ¢ < f*n* | (U, do) .

The return passage associates to a natural transformation ¢ : \;—D the
morphism +; -7 , where the unit

n: L——»dzs(/\[)
is obtained as the universal morphism arising from the commutative
square

L—Y— X

[

X Tx.
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By definition, v* | (U,c) = ¢, for ce A(I'U) . These two passages give
the expressed bijection.

In the case of a cosheaf C , disC is locally connected. In fact, by
Theorem 1.3, the inclusion disC = C satisfies the hypothesis of the
following lemma.

3.2 Lemma. Suppose a morphism x4y of locales has the property
that f, preserves 0 and disjoint finite suprema. Then f* takes connected
opens to connected opens.

Proof. Let B be an arbitrary connected open of Y . To see that f*B
is connected, write

ffB=UVV,UANV =0.

Then
BSf*f*Bzf*va*V; f*U/\f*VzO-

Therefore (say) B < f.V , whence f*B< V. o

Now observe that for any poset P, the basic opens | p of the locale P
are connected. In particular, the basic opens | (U, d) of the total locale
C of the cosheaf C are connected. Thus, by Lemma 3.2, disC is locally
connected.

Now that we know disC is locally connected, we can define the counit
ec : Mec—C , and show that it is an isomorphism. For any open U in
X , observe that

Ae(U) = L A(=* L(U,d)) .

deCU

Hence, define

eo(U) : A(ya(V)~CU

as
ec(U)(c) = the unique d such that ce A(r* | (U,d)) .

This definition is natural in U and in C'. &¢ is a monomorphism (in
precosheaves) because the basic opens 7* | (U,d) are connected. Since
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7 is dense (Theorem 1.3), ec¢ is an epimorphism in precosheaves. This
concludes the proof of Theorem 3.1.

4 COMPLETE SPREADS

It was seen in the previous section that the category of cosheaves on
an arbitrary locale can be represented as a full reflective subcategory of
LcLoc/X . Let us call a locally connected locale L— X a cosheaf locale
if it arises as the display locale of its cosheaf of connected components.
By definition, L— X is a cosheaf locale if

L—Y

X Tx

is a pullback in Loc, where v* | (U,c) =c.

The notion of cosheaf locale will be examined in this section. We
shall see that it is equivalent to the (localic version of the) notion of
complete spread (cf. [5]).

4.1 Definition. An object LY Xe LcLoc/X will be called a spread
if the components of the open sets {{*U | U e O(X)} constitute a base
for L.

Let L5 X eLcLoc /X . Let C, denote the following covering system
of the poset A, i.e., of the total poset of the cosheaf ;. Recall that a
typical element of the poset A; is a pair (U, c), where ¢ is a component
of I*U . Declare {(Ua,ca) < (U,c)} to be a cover if Ve, = ¢ . Let us
refer to C, as the spread coverage of ), .

4.2 Proposition.  The tmage of v coincides with the sublocale of A\,
determined by C, .
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Proof. Denote the surjection-inclusion factorization in LOoC of v by
L—1 — ); . The local operator, or nucleus, given by v is v,v* , and
the sublocale I is given as the fixed-point set of this operator. The value
of this operator on a basic open | (U, ¢p) is the down-closed set {(V,¢) |
¢ < co}. It is clear that I coincides with the sublocale determined by
the coverage C, . a

4.3 Proposition.  For any L 5 X eLcLoc/X , the following are
equivalent.

1. 1l is a spread.

2. L is the sublocale of A; determined by C; .
3. L is a sublocale of a cosheaf locale.

4. The unit m; is an inclusion.

5. The morphism v is an inclusion.

6. L is a dense sublocale of a cosheaf locale.

Proof. 3, 4 and § are clearly equivalent. Observe that v.W = {(V,¢) |
¢ < W} for any open W of L. Then v*v,W =V .cwv* [ (V,c) =Ve.
If | is a spread, then this supremum gives back W. Thus, 1 implies J.
Conversely, if this supremum gives back W, i.e., if v is an inclusion, then
this says that [ is a spread. Next, that 2 implies 5 is a triviality, and
the converse implication follows from Proposition 4.2. The equivalence
of 6 to the other conditions is a consequence of the fact that n; is dense.
To see that 7 is dense, observe that v is dense; il v* | (U,¢) = 0, then
¢ =0, whence | (U,¢) = 0. Thus, 7 is dense since v = 7 - g and since
7 is an inclusion. o

Let Cq denote the covering system on A; that yields the display locale.

This covering system was described in §1. In general, the spread coverage
is finer than Cy , i.e.,Cqy CC, .
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4.4 Proposition.  The following are equivalent forL—l+ XeLcLoc/X .
1. C4=¢C,.
2. The unit n; is a surjection.

8. For any (U,c)e ), and any V < U such that ¢ < "V, we have
7 L(V,e) = 7 L(Uyo)

Proof. It is clear that 7 and 2 are equivalent. Assume 7 is a surjection,
and that there is given (U,c) e \; and V < U such that ¢ < I*V . Then

't L (Vie)=v* [ (V,e)=c=n"r" [ (U,c).

Hence, 7* | (V,¢) = n* | (U, c) since n is a surjection. Finally, assume
3. It will be shown that 7 is a surjection, i.e., that for any W < Z|
W =n*Z = W = Z . To be a surjection, it suffices that this property
be satisfied on a base. Recall that the opens 7* | (U, c) are a base for
dis()\;) . Assume there is given 7* | (V,d) < 7* | (U, ¢) such that under
n* these opens are identified. Since 7 -7 = v one obtains that d = c .
By the hypothesis &,

™ |(V,d)=n" | (VAU-c)=7"|(Uc).
Note that ¢ is a component of I*(V A U) . 0
4.5 Definition. L X e LcLoc/ X is said to be complete if any one
of the equivalent conditions of Proposition 4.4 is satisfied.
Propositions 4.3 and 4.4 (and Theorem 3.1) imply the following.

4.6 Theorem. The notions of cosheaf locale and complete spread are
equivalent. For any locale X |, the display locale construction establishes
an equivalence between coSh(X) and the category of complete spreads
over X .
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4.7 Remark. L5 Xisa complete spread, it has been shown that 7}
is an isomorphism of frames. Its inverse is given, at least on connected
opens ¢ which appear as a component of an [*U (since [ is a spread there
is a base for L of such ¢ ), as ¢ — 7* | (U,c) . Note that if V' is any other
open of X such that cis a component of I*V, then 7* | (V,¢) = 7* | (U, ¢)
by the completeness of [ .

This discussion of complete spreads (as cosheaf locales) will be con-
tinued in the spatial context in the next section; however, we include
here the following basic property of complete spreads. Naturally, the
proof will avail itself of Theorem 4.6 (first statement).

4.8 Proposition. Let M 3 L5 X be morphisms of locales with M
and L locally connected.

1. If l and m are complete spreads, then so is Im .
2. If lm and l are complete spreads, then so ism .

The proof of Proposition 4.8 will use the following lemma (compare
Lemma 1.5).

4.9 Lemma. Let P> Q be an arbitrary poset map, and let D LR Q
denote an arbitrary discrete opfibration. Then the cornmutative square

S

Ds D

és 6

P 3 Q

is a pullback in LCLOC.

Proof. The geometric morphism s : Sh(P)— Sh(Q) induced by s is es-
sential, i.e., the inverse image functor s* has a left adjoint s, . Therefore
(by Theorem 0.1), composition with s*

-+ 8" 1 coSh(P)—coSh(Q)
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has right adjoint
- 81 : coSh(Q)— coSh(P) ,

where

81 : O(P)=0O(Q); W | {sp|peW}.
For any L5 Pwith L locally connected, there are natural bijections

sl—b6 = )X over Q
Asi—As in coSh(Q)

A - 8*— s in coSh(Q)
MN— s - 81 in coSh(P)
ANi—Ass in coSh(P)
[—~Ass = s over P.

Note that for any qe@ ,

Mi(lg) = Al's*(Lg) = M- s"(Lg),

and that therefore, A;; = )A; - s* since the principal down-closed subsets
are a base of Q. Also, for any pe P,

Xs - si(Lp) = As(Lsp) = 67's(p) = Xes(Lp)

and therefore, As - 81 = Ag; . o

Proof of Proposition 4.8. 1. Consider the following commutative
diagram in Loc.
Y

m| 1 p 2
L——\—— T,
l 3
X Tx

The map p sends (U,d), d a component of m*I*U, to (U, c) where c is
the component of [*U containing the image m(d) . Under the same
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terminology, by definition u(U,d) = (¢,d) and ¢(U,c) = ¢ . It is clear
that square 2 commutes. It is not clear that v,, = p- v, (and in general
it will not be true), but it holds in this case because [ is a spread. That
q- vy is equal to the canonical inclusion L—T}, also follows from the fact
that [ is a spread. To be shown is that 1-3 is a pullback in Loc. By
hypothesis, it suffices to show that 1 is a pullback in Loc. It is not hard
to check that the discrete opfibrations A,,¢q and p are identical. This
puts us in a position to apply Lemma 4.9 (with ¢ as s). We conclude
that 2 is a pullback in LcLoOC. Included in the hypotheses is that 1-2
is a pullback in LocC, and hence in LcLoOC. Therefore, 1 is a pullback
in LcLoc. But the pullback in Loc of 1 is dis(\,) , and this locale is
locally connected. Hence, dis(\;,) is the pullback of 1 in LCLOC as well.
Thus, M and dis(Ai,) must coincide.

2. This is similar to 1. o

4.10 Remark.  Proposition 4.8 has the immediate consequence that
for any cosheaf C € coSh(X) , the slice category coSh(X)/C is equivalent
to coSh(disC) .

5 THE SPATIAL CASE

Let LcTsP/X denote the full subcategory of TsP/X determined by
those objects L—X with L locally connected. The inclusion of this full
subcategory has a right adjoint as will now be shown. The reader is
reminded of the fact that a quotient space of an locally connected space
is locally connected (cf. [4], p. 125).

5.1 Proposition.  The intersection of a set of locally connected topolo-
gies is again a locally connected topology.

Proof. First observe that if X and Y are two locally connected spaces,
then the coproduct X + Y , which has as its underlying set the disjoint
union of X and Y, is locally connected. Next, let 7' and T’ be two
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locally connected topologies on a set X . Then (X, T)+(X,T") is locally
connected as just remarked. Give X the quotient topology with respect
to the codiagonal (X,T) + (X,T")—X . This topology on X is locally
connected as remarked above. Also, observe that it coincides with the
intersection of T and T” . This establishes the proposition for two locally
connected topologies. The general case can be established in the same
way. o

Given any space (X,T), by Proposition 5.1 there exists a smallest
locally connected topology larger than 7. Denote this space by X and
denote the identity map X—X by ex . Let L L4 X be an arbitrary
locally connected space over X , and let I denote the image of I . Then
there is a commutative diagram

L—L+|X-I|—X
|
\ p €x

!

X
where the p is a surjection, and | X — I | denotes the complement of I
carrying the discrete topology. Note that the coproduct L+ | X — I |
is locally connected. Therefore, the quotient topology on X induced
by p is locally connected, and hence finer than the topology on X .
Consequently, p factors through ex . This gives a unique (because €y is

a monomorphism) factorization of [ through ex . Thus, X — X is right
adjoint to the inclusion of LCTSP into TsP.

5.2 Definition. X will be referred to as the locally connected coclosure
of X .
5.3 Ezample. Thelocally connected coclosure of a totally disconnected

space (i.e., no connected subsets other than the singletons) is discrete. o

Let loc : TSP— LOC denote the functor which carries a topological
space X to the locale associated to the frame of open sets of X . Let
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| - | denote its right adjoint, i.e., the ‘points’ functor. A locale Y is
said to be spatial (cf. [10, 12]) if the counit loc | Y | =Y is an isomor-
phism. Observe that a space Y is locally connected if and only if locY is.
Therefore, we have loc : LCTSP—1L.CLOC , and this functor has right
adjoint m . If a locale Y is spatial and locally connected, then | Y | is
locally connected, and therefore loc|/Y\[ =loc|Y | ~Y . Conversely,
if loc|?|——>loc | Y | =Y is an isomorphism, then Y is: spatial, being
the locale of opens of some topological space (namely l?|), and locally
connected, being the locale of opens of a locally connected space. But
then | Y | must be locally connected, hence | Y | =| YV | . The following
fact has been established.

5.4 Proposition. For any locale Y , the following are equivalent.
1. Y is spatial and locally connected.
2. loc]?]—doc | Y | =Y is.an isomorphism.

3. Y is spatial and | Y | is locally connected.
Let X denote an arbitrary topological space. The composite functor
LeTsp/X X LeLoc/loe X = coSh(X)

will also be denoted by A , and will be referred to as the connected
components functor for spaces. For a locally connected space L Lx
over X , \(U) is the set of connected components of {~!U in the usual
sense. This functor has a right adjoint since it is a composite of functors
with right adjoints. Note: The right adjoint of loc/X 1is the locally
connected coclosure of the pullback along the unit X— | locX | . An
explicit description of the right adjoint of A for spaces follows. Naturally,
this discussion will center on the display space of a precosheaf. We
- remind the reader that for any poset P , the points | P | of the locale P
can be identified with the up-closed, down-directed subsets of P .
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5.5 Definition. Associated to any precosheaf D on X is a topological
space disD over X which will be referred to as display space of D . By
definition, it is the pullback

disD "2+ | D |

1D

X

7 | Tx |

is Tsp, where mx(z) = {U | zeU} .

It will be helpful to write down an explicit description of the space
disD . The underlying set of disD is

| disD |= { pairs (z,t) | ze X, \,—> D},

where t is a natural transformation, and ), is the ‘point-cosheaf’ defined
by the point 15 X |

1 ifzelU

0 otherwise.

)\z:Ul—»{

The set | disD | can also be described as the disjoint union over X of the
costalks Sy = imDU , where this limit is taken over those U containing
z . The elements of S, are the cogerms over x . The map 7p is the
projection (z,t) — z , and mp sends a cogerm (z,t) to the up-closed,
down-directed set {(U,d) | (z,t)e(U,d)} . If B denotes a base for the
topology on X , then the sets

(B,b) ={(z,t) |zeBand tg =b}; BeB, be DB,

constitute a base for disD . In particular, a base for the topology on
disD can be taken to be {(U,b) | UeO(X), be DU }.

5.6 Ezample.  The display space of the precosheaf ¢(Tx) (see Example
2.5). Let X denote a topological space. It will be shown in this example
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that dis(c(T'x)) has X as its underlying set, but topologized by taking as
basic opens the quasi-components of the open sets of X . To digress for
a moment, for z € X, let us denote by & the intersection of all closed-
open sets containing z . Then declaring z and y equivalent if £ = § is
an equivalence relation, and the equivalence classes of this relation are
called the quasi-components of X .

Let us simplify the notation and write ¢TI for ¢(Tx) . First observe
that for any cosheaf C' , there is a unique map C—cT (see Proposition
2.3). Existence: For an open U, ueCU and ReJU , let ty(u)r denote
the R*-component of the consistent vector ty(u) . Choose V € R such
that there is ve CV with v —¢ u (i.e., v is carried to v under the map
CV—CU). Let ty(u)r be the equivalence class of V under chaining
in R . This gives a well-defined natural transformation. Uniqueness:
Denote by ¢t the natural transformation just constructed. Suppose there
is C = ¢T which is not equal to t . Then there is an open U and a
u€CU such that the consistent vector sy(u) # ty(u) . Hence, there
is a cover R of U such that sy(u)r # tu(u)r . Let U, # 0 represent
tu(u)r and let Ug # 0 represent sy(u)r . Note that by the definition of
t one can choose U, such that there is a ve CU, with v —¢ u . Since
su(u)r # tu(u)r , Ug and U, are not chained together in R . This
violates at v the commutativity of

cu,——CU
SUq Su

cT(Uy) —cT'(U).

Thus, the underlying set of dis(cT) is in bijection with X, i.e.,
v : dis(cT)—X is a bijection. For z€ X , y~'z is the unique morphism
Az—cT. Let us use z again to refer to this morphism. Recall that
a base for the topology on dis(cT’) is the collection of sets {(U,b) |
UeO(X), becT'(U)} . Identifying the underlying set of dis(cT') with
X , these are the sets

(U,b)={zeU | ay=0b}.
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It will be shown that these sets are precisely the quasi-components of
the open set U . First, note that for any z€(U,b), (U,b) C 2 . Next,
note that
(U,b)=(Pr, PR=UV,
JU bR

where b = (bg), as R runs over the covers JU of U , and where bg
denotes an equivalence class of opens in R under chaining in R . Each
Pr is closed-open in U because it is a member of an open partition of U .
Thus, (U, b) is equal to ((j,vb) , 1.e., to the intersection of all the closed-
open sets containing (U,b) . Whence z C (U,b) , for any z€(U,b) .
Thus, (U, b) is a quasi-component of U . a

For the following, we shall temporarily denote the display space by
dis®D | to distinguish it from the display locale disD

5.7 Theorem. The points of the display locale of a precosheaf give its
display space. More precisely, for any precosheaf D , there is a morphism
7 which makes the diagram

dis*D T~ | disD |

D | |
X — | locX |
a pullback of spaces, where the bottom arrow is the unit of loc |- | at

X . If X is sober, then dis’D =~ | disD | .

Proof. The canonical locale morphism loc X —T x gives rise to a com-

mutative triangle
X

TX

| locX | — | Tx |
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in TSP. The theorem follows as

| disD | !—W—»l | D |
| locX | — | Tx |
is a pullback in TSP (since | - | preserves limits). a

5.8 Remark. The map 7 of Theorem 5.7 has the following description.
There is a locale morphism g making

loc(dis*D) £~ D
loc(a)

locX

Tx

commute. The frame morphism p* sends the basic open set | (U, d) to
the open set (U,d) of dis°’D . Hence, there is an induced morphism
i : loc(dis® D)—disD of which r is the transpose under loc+ |- |.

For a natural transformation D= F, define
vs : disD—disE; (z,t) — (z,st) .

The function +; is easily seen to be continuous. The functor 7 followed by
the locally connected coclosure gives a functor (which should be denoted
by 4 , but will be denoted again by v )

v : Set®X)—1cTsp/X , D — disD3 X .
Let i denote the full inclusion of coSh(X) into Set®X)

5.9 Theorem. ~ is right adjoint to i\ (compare Theorem 3.1).
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Proof. Maps L—dis’D over X are in hijective correspondence with
maps L—dis’D over X . By Theorem 5.7, such maps correspond to
commutative squares

L —— | disD |
o
X —— | locX |
which correspond to commutative triangles
locL — disD
loc(l)
locX .

These correspond, by Theorem 3.1, to natural transformations \;—D .
o

5.10 Remark. We will later need concrete descriptions of the unit and
counit of the adjointness A 4 v for spaces. These descriptions follow.
The unit n : For a locally connected space LLx , to define a map

m: L—)dZS\/\l
it suffices (since L is locally connected) to define a map
o L—dis) .

(In any case, dis); is locally connected - seec Proposition 5.14). Forae L ,
let

771(0) = (la,ta) )

where % : A\;;—\; is the natural transformation such that for lae U € O(X) ,

th  1—=A(I7I)
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selects the connected component of ["!U which contains a . Observe
that 7 is continuous. In fact, let (B,b) is a basic open of dis); , where
be\ B, i.e., bis a connected component of {"'B . Then n;(B,b) = b,
which is an open set since L is locally connected.
The counit € : Given a precosheaf D, we want to define a natural
transformation

€D : /\’)’D —D.

For UeO(X) , define
epU : A(yp'U)—DU

as follows. Note: A(yp'U) is referring to connected components in disD .
Send an (z,t)eyp'U, ie., Ay L4 D, zeU, to tye DU. This defines
a map v5'U—DU which will be shown to factor through connected
components. Let (z,t) and (y, s) be in the same connected component
of v5'U (in dZS\D). Observe that v5'U is the disjoint union of opens

75U = L] (U,b).

beDU
Thus, if (z,t) and (y, s) are in the same connected component, then there
is a unique bg € DU such that (U, by) contains both (z,t) and (y,s) . In

other words, ty = by = sy . This defines epU . It is left to the reader to
see that €p is natural in U , and that ¢ is natural in D .

Our analysis allows us to extract the following information about
the locally connected coclosure.

5.11 Proposition.  The quasi-components of the open sets of a space
X are open in its locally connected coclosure X .

Proof. There is a unique map A.—cT" (see Example 5.6), where X5
X . Thus, we obtain by adjointness a map X —dis(cT) over X . It was
shown in Example 5.6 that if ¢ is a quasi-component of an open of X ,
then 77 ¢ is open (in fact, such sets constitute a base) in dis(cT'). Thus,
¢1q is open in X as well. o
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5.12 Definition. A precosheaf D will be said to be a spatial cosheaf
if the counit ep is an isomorphism.

It is shown in the next section that on a complete metric space, every
cosheaf is a spatial cosheaf.

By Theorem 5.9, there is an equivalence between the category of
spatial cosheaves and the category of those L 4 X such that M is a
homeomorphism. We analyse these conditions.

5.13 Proposition.  For any precosheaf D , ep is a monomorphism if
and only if the basic opens (B,b) of disD are connected (in which case,
disD 1is locally connected and is therefore equal to disD ).

Proof. It was observed in Remark 5.10 that y5'B is partitioned by
the open sets (B,b) , be DB . If the (B,b)’s are connected, then the
non-0 ones are the connected components of v5' B . That is, Ayp B is in
bijection (via epB) with those be DB such that (B, b) # 0. Conversely,
if some (B,b) is not connected, then epB will identify its connected
components, i.e., ep B will not be a monomorphism. o

5.14 Proposition.  For any L 4 XeLcTsp , dis); is locally con-
nected, and the cosheaf \; is spatial.

Proof. It will be shown that ¢, is both an epimorphism and a monomor-
phism in Set®X) . The (U,c)’s of dis); are connected. In fact, given a
(U, c) observe that the closure of

me=nc={na|aec}

iny~1U is equal to (U, c) , where 7 is the unit. To see this, let 7¢ denote
the closure of ncin 72U . (U, ¢) is closed in y~'U since its complement
in y7!U is a union of basic opens and hence open. Therefore, ¢ C
(U,c) . For the reverse inclusion, let (z,t) € (U, c) and let (V,d) C 471U
be an arbitrary basic open containing (z,t) . To be shown is that (V,d)
meets nc . Observe that

d=n"Y(V,d) Cnp 'y 'U = 17U .
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Therefore, d is a component of ["}(U N V) and tyqy = d . But then the
naturality of ¢ forces d C ¢ . Hence, for any y € d, ny is in both (V, d) and
nc . Thus, disA; is locally connected and €y, is a monomorphism. €y, is
an epimorphism because for any open U and any connected component
ce A(I"'U) , one can choose an a€c . Then ¢, (U) sends the component
of mi(a) to c. o

Let us turn to an analysis of cosheaf spaces. This analysis parallels
and extends the discussion begun in §4 with cosheaf locales.

5.15 Definition. L -5 X eLCTSP/X is said to be a cosheaf space if
the unit 7, : L—dis); is a homeomorphism. (Note: the locally connected
coclosure does not play a role - see Proposition 5.14).

5.16 Exzample.  The terminal cosheaf space. If X is locally connected,
then clearly the unit X —disAy is a homcomorphism. This follows be-
cause dishy is locally connected. More generally, for any topological
space X , the locally connected coclosure X < X is the terminal cosheal
space. Again, this follows because dis), is locally connected. One uses
the universal properties of both ¢ and 7, to obtain that 7. is a homeo-
morphism. o

Recall from §4 the notion of a complete spread over X . The spatial
version of the notion of spread remains unchanged; however, complete-
ness will be defined® as the requirement that for all ze X , every con-
sistent choice of components cy €/~1U over all neighbourhoods U of z
satisfy Necy # 0 . Here, ‘consistent’ means U CV = ¢y Cey .

5.17 Theorem. Assume that the base space X is 1y . For any
LLXx eLCTSP/X, the following are equivalent.

1. 1 is a complete spread and L is T .

6This is the original definition given in [5]. Fox constructs the completion of a
spread ! : L—X , which in our notation is n : L—dis]; .
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2. 1 is a cosheaf space.

Proof. Assume I. For any given natural transformation A, 4 Al, com-
pleteness says there exists a € (\ty . Every open containing z must con-
tain la and so z = la since X is Ty . Thus, na = (z,t), i.e., n is onto.
To see that 7 is injective, let na = nb = (z,s). Then la = lb= z , and,
in the notation of Remark 5.10, for every open U of X containing z , we
have

comp. of I7'U containing a = t§ = t};, = comp. of {~'U containing b .

The spread property of [ says that there is a base {c,} for L such that
every c, appears as a component of some ("'U . Hence, forall VeO(L) ,
aeV if and only if beV . Since L is assumed to be T; , we conclude
that a = b . Finally, observe that 7 is an open map. In fact, since
n is bijective, ncy = (U,cn) , which is an open set. Therefore, 1 is
open on the base {c,} , and consequently is an open map. Thus, 7 is a
homeomorphism.

Assume that [ is a cosheaf space. First, it is not hard to see that
display spaces are T, if the base space is. Second, the definition of the
display space says clearly that such spaces are spreads. Finally, a con-
sistent choice of components ¢y € [7'U over all U containing z obviously
defines a cogerm (z,c). Then there is an a€ L such that (z,¢) = na .
Hence, ae Ney . o

A fundamental fact is that covering spaces are cosheaf spaces. In-
deed, it is immediate that a covering space is a spread, but we are adopt-
ing a ‘cosheaf space’ approach; so we will give a direct explanation of
the relationship between covering spaces and cosheaf spaces (i.e., one not
depending on Theorem 5.17). For the following definitions let L & X
denote an arbitrary map of topological spaces, with L locally connected.
An open U of X is said to be admissible (with respect to p) if p~1U has
a partition {V,} of open sets such that p maps each V, homeomorphi-
cally onto U/ . L5 X is said to be a covering space” if X has a base of

"Generalizations of this notion will not be considered here, but the interested
reader may wish to see [6].
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admissible open sets. Note that a covering space L - X is necessarily a
surjection, and X has a base of connected opens such that for each U of
that base, each component of p~!U is mapped homeomorphically onto

U.

5.18 Proposition.  Let L5 X denote an arbitrary covering space.
8

Then the unit n, is a homeomorphism, i.e., p is a cosheaf space.
Proof. Let t denote an arbitrary cogerm over z € X . Choose a con-
nected admissible open set B containing « . Then there exists a unique
y etg such that py = z . It follows that ny = (z,t) , which shows that 7
is surjective. Assume now that y,z € L determine the same cogerm over
z , i.e., that ny = nz . Let U be an admissible neighborhood of z . y
and z must be in the same component of p~1U, and therefore, since that
component maps homeomorphically onto U, must coincide. Thus, 5 is a
bijection. It is clear that L has a base of connected sets ¢ that appear as
components of opens of the form p~!U, i.e., that p is a spread. For such
¢, nc = (U, ¢) . Thus, n is an open map, whence a homeomorphism. o

We are thus presented with the following picture when the base space
X is locally connected.

81f in the definition of covering space, ‘X has a base of admissible open sets’ is
replaced with ‘for every a € L and every open V in X such that paeV , there is an
admissible open set U satisfying pae U C V ’°| then the conclusion of Proposition
5.18 becomes ‘7, is an open, dense inclusion’. In this case, the completion dis), is
not in general a covering space. In fact, it may not even be a local homeomorphism
as the following simple example shows. Take X to be the real plane, and p : L—X
the complement of the y-axis as a subspace. The completion dish, is the cul (sec
footnote 10) along the y-axis. This consists of two closed half-planes mapped to X by
‘gluing’ them along the y-axis.
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LcTsp/X

coSheaf /X Sheaf/X

Cov/X

Cosheaf spaces over X are a full reflective subcategory of LCTSP/X
(whereas sheaf spaces are a full coreflective subcategory). Covering
spaces are both cosheaf and sheaf spaces.® Examples of cosheaf spaces
that are not sheaf spaces are not difficult to produce. A simple such
example is the projection of a 2-sphere onto a disk. Cuts also provide
such examples.!®

6 COMPLETE METRIC SPACES

6.1 Theorem. Let X denote an arbitrary complete metric space. The
display locale of a cosheaf on X is spatial. The display space of a cosheaf
on X s locally connected. Every cosheaf on X is spatial (see Definition
5.12).

Proof. (sketch) Let C denote an arbitrary cosheaf on X . Start with
W,Z e O(disC) , i.e., W,ZeO(C) and closed under covers, such that
W<4Z . To be exhibited is a point 1 % disC such that p*W = 1 and

p*Z = 0. To do this, build a sequence

(Bn+1,Cn+1) S (Bn,cn)EW, n = 1,2,3,...

°If we wish to include non-surjective covering spaces, then we must enlarge
coSheaf /X so as to include open, dense subspaces of cosheaf spaces - see footnote 8.

1%Cuts were introduced by Michael (cf. [14]). See footnote 8 for an example of a
cut.
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with radius(B,)—0 , and also such that every (Bp,c,)¢ Z . This can
be done since Z is closed under covers and since C'is a cosheaf. The
intersection of the B, consists of a single point z . The following square
can now be completed with ¢ making it commute and thus giving the

desired point p .
q

C

X Tx
Define, for a basic open | (U, d) of O(C),

. 1 ifthereisa B, < U with ¢, — d
¢ L(U,d) = { 0 otherwise.

This proves the first statement of the theorem.

The second statement follows from the first because the display lo-
cale of a cosheaf is always locally connected. See Theorem 5.7 (metric
spaces are sober) and Proposition 5.4. The last statement follows from
the first because in the context of locales, the counit X,.—C' is always
an isomorphism for any cosheaf C' . a

Theorems 5.17 and 6.1 combine to give the following.

6.2 Theorem. On a complete metric space X , the display space
construction yields an equivalence between the category of cosheaves on
X and the category of Ty complete spreads over X .

Since all cosheaves on a complete metric space are spatial, the asso-
ciated cosheaf of an arbitrary precosheaf can be constructed.

6.3 Theorem. On a complete metric space, the associated cosheaf of
an arbitrary precosheaf D exists, and can be constructed as the cosheaf
of connected components of the locally connected coclosure of the display
space of D .
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6.4 Remark. The general existence of the associated cosheaf is a fact.
For any site, i.e., for any small category equipped with a Grothendieck
topology, the inclusion of the category of cosheaves on that site into its
corresponding category of precosheaves has a right adjoint. This can be
established as follows. The category of cosheaves on an arbitrary site has
all small colimits and is locally small. It is also cowell-powered as shown
in [8], and has a small generating family. The existence of a generating
set can be established as an application of the downward Léwenheim-
Skolem theorem (for infinitary logic).! (The interested reader is referred
to the monograph [13]). The Special Adjoint Functor Theorem now gives
the right adjoint since the inclusion of cosheaves into precosheaves is
colimit preserving.

This section is concluded with a counterexample. It depends on the
following.

6.5 Proposition. If X is a complete metric space, then the set of
point-cosheaves {)\,; | z€X} generate coSh(X) .

Proof. The points 1 X generate LCTsp/X . a

6.6 Remark. We will in the following example make use of the obser-
vation that a space X has the T, separation property if and only if for
all 15 X, the unit 7, : z—+), is an isomorphism (see the description
of n in Remark 5.10).

6.7 Ezample.  Let X denote a complete metric space which is locally
connected and not discrete (e.g., the real numbers). Then coSh(X) is not
a Grothendieck topos. Indeed, if in this case coSh(X) were a topos, then
the full subcategory determined by any generating set could be taken
as a site of definition for coSh(X) (cf. [9]), and coSh(X) would be a full
subcategory of the category of presheaves on that (small) full subcate-
gory. The full subcategory of coSh(X) determined by the generating set

1This argument was shown to the author by Bill Boshuck.
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{Az | zeX} is discrete, i.e., there are no morphisms A,—J, , for z and
y distinct. In fact, if there were a morphism A;— A, . then there would
be z~y\,—vA,~y (see Remark 6.6) as spaces over X , i.e., z = y .
Thus, | X | 2{X; | e X} , and one concludes that coSh(X) is a full
subcategory of SetX! via the functor

®:Cw— (z+~ hom(A;,C)).

Let | X | 24 X denote the discrete space over X . Then the mor-
phism );; is not ‘an isomorphism because X is assumed not discrete;
however, <I>.(‘/\,'d) is an isomorphism. To see this, observe that for any z
there is exactly one natural transformation A\;— A x| (Existence: n;4(z) .
Uniqueness: X is Ty and « is faithful). But Ax is the terminal object
in coSh(X) - in particular, there is exactly one natural transformation

Ae—Ax . Thus, ®();4) is an isomorphism - a contradiction. o
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