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Topop IS A QUASI-VARIETY
by Michael BARR and M. Cristina PEDICCHIO

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume,XXXVI-1 (1995)

Nous montrons que l’oppos4 de la cat4gorie des espaces topologiques
est une quasi-vari4t6, c’est à dire une sous-cat4gorie d’une variete
ferme4 par rapport aux produits et sous-objets. Nous identifions la
cat4gorie vari4tale ainsi que la clause simple de Horn qui d4termine
les objets de la sous-catgorie.
We show that the opposite of the category of topological spaces is a
quasi-variety, that is a sub ob ject and product closed subcategory of
a varietal category. We identify the varietal category as well as the
simple Horn clause that determines the objects of the subcategory.

1 Introduction

The category of topological spaces is usually thought rather poorly of
qua category. Although it is complete and cocomplete and the under-
lying set functor even has both adjoints, the free and cofree functors
produce spaces without interesting structure and the triple and cotriple
on Set produced by the adjoints are the identity. The category is far
from exact, or even regular. Thus the properties of topological spaces
seem rather far removed from those involved in the usual equational
theories.

Thus it came as some surprise to us to discover that the situation is
quite different when it comes to the dual category. It turns out that that

category is at least regular (not that hard to prove, once you suspect it),
although not exact and is, in fact quasi-varietal. In this paper we show
that it is quasi-varietal, identify the variety and alsb the simple Horn

In the preparation of this paper, the first author has been assisted by a grant
from the NSERC of Canada and the FCAR du Quebec.
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clause that distinguishes the algebras that are the duals of topological
spaces.

2 Quasi-vareties
Definition. Recall that a varietal category or variety is one that is

tripleable over the category of sets. A quasi-variety is a full subcate-
gory of a varietal category that is closed under subobjects and products.
Equivalently, it is a surjective-reflective, or regular-epi-reflective subcat-
egory of a variety.

The following theorem is found in [Pedicchio, to appear].
2.1 Theorem A category E is quasi-varietal if and only if

QV-1. E is regular;

QV-2. £ has coequalizers of equivalence relations;

QV-3. E has a regular projective generator P with the property that
arbitrary (Small) sums of copies of P exist in E.

A regular projective generator is understood to be both regular pro-
jective and a regular generator. It is shown in [Barr, 1989] that such a
quasi-variety is a full subcategory of a variety consisting of those objects
that satisfy a class of generalized Horn clauses that take the form

where the Oi, oi, 0 and V are operations in the theory and the con-
junction may be infinite. These clauses are found by imposing the an-
tecedent equations as an equivalence relation on a free algebra and the
consequent is an additional equation necessary to reflect the quotient
algebra into the subcategory (of which there may be many; each such
gives an additional Horn clause).

As an application, we can see that opposite of the category of topo-
logical spaces satisfies these conditions and is thus a quasi-variety. We
need a regular injective cogenerator in the category of topological spaces.
The simplest such space is the space we call P that has three points,
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say a, b and c. Aside from P and 0, the only open set is {a, b}. If
X is a topological space, a map f : X - P is determined by three
subsets A = f-1 {a}, B - f -1 {b} and C = f -1 {c} We must have
A U B U C = X so that such a map is uniquely determined by giving
two sets A and B. Continuity is equivalent to U = A U B being open.
Thus a continuous map X --&#x3E; P determines a pair (U, A), where U C X
is open and A C U is arbitrary. Conversely, it is clear that such a pair
determines a unique continuous map that takes points of A to a, points
of U - A to b and all others to c.

There is no problem in proving directly that P is, a regular injective
cogenerator, but it will also follow from the results of the next section.

3 Grids

Definition. Recall that a frame is a lattice with arbitrary supremums
that are preserved by finite infimums. By a grid, we mean a frame with
an additional unary operation we denote ’ satisfying some equations.
The equations are best expressed using derived unary operations xl =
xVx’ and xi = x/Bx’. The equations (in addition to the frame equations)
are:

Gr-2. t and i are V homomorphisms.

Gr-3. t is a A homomorphism, wllile 1 satisfies (u A v)i = u A vi.

Gr-4. The interval [ul, ul] is a complete atomic boolean algebra with
the operations of V and ’.

This last requires some explanation to see why it is equational. First,
if v is arbitrary, Let v’ denote (ul l V v) A ul = u l V (v A ul). Then
v" E [ul,ul] and v" = v if v E [ul,ul]. It follows immediately that
any sentence of the form v E [ul, ull =&#x3E; 0(v) = 0(v) is equivalent to
the equation o(vu) = V)(vu) and that is true for operations of any arity
by replacing v by any string of elements. Finally, a complete atomic
boolean algebra is characterized by satisfying the cornplete distributive
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law which can be stated, if awkwardly, in terms of B/ and ’ as follows.
u u

Let us denote by V and A the operations of the form

and

Then we want equations of the form vu V (vu)’ = ul, vu A (vu), = vi
u

that force [u i, ul] to be a boolean algebra, evidently complete, with uv is
u

infinite join and, by duality, A its meet. Then the complete distributive
law will state that for all sets I and J and I x J indexed families Vij

This equation is imposed on the whole algebra, but of course is equiva-
lent to the assumption that [u j , ul] is a completely distributive complete
boolean algebra, which is equivalent to its being atomic (see, for exam-
ple, [Johnstone, 1982], V II.1.16, page 285).

We denote by Grid the category of grids and homomorphisms.
3.1 Proposition A grid has the following properties:

Proof.

1. Since [ul, ul] is a boolean algebra and ’ is the complement oper-
ation, the complement of the top element is the bottom and vice
versa.
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2. This is immediate since, for example, u’ 1 = u’ A u" = u’ A u = ul.

3. (u A v)l = u A vi and also (u 1B v)l = ulnv so that (ulA v)l -
u A vi A ul A v = ul n vi since evidently u l  u and vl  v.

and similarly for the other two.

a

The following is true because [u¡, uT] is a boolean algebra.
3.2 Proposition Let G be a grid, u E G and v, w E [ul, ul]. Then

0

3.3 Corollary A grid G is partitioned by sets of the form [ul, ul] .

4 The main theorem

4.1 Theorem The category of topological spaces is dual to the full
subcategory of grids defined by the Horn clause

Proof. Define O : Topop -+ Grid by lcttiug O(X) be the set of all pairs
(U, A) where U is an open subset of X and A is an arbitrary subset of U.
The order relation is the restriction of the product order and both V and
A are coordinatewise. (U, A)’ = (U, U - A). The derived operations are
(U, A) T = (U, U) and (U, A)l = (U, 0). It is clear that this is a grid and
also satisfies the Horn clause. We define a functor W : Grid°p --&#x3E; Top.
Suppose G is a grid. Then [11, 1] is a complete atomic boolean algebra
whose set of atoms we denote by X. Then the interval [11, 1] can be
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thought of as the set of subsets of X. We will use capitals to denote
elements of [11, 1]. Say that U E [11, 1] is open if there is a u (E G such
that ut V 1, = U. It follows from the fact that I commutes with V that
the union of open sets is open and from the fact that I commutes with

A and the distributivity that an intersection of two open sets is open.
Thus we have a topology on X . The set X wi th this topology is W (G).
If f : G - G’ is a grid homomorphism, then f ( 11 ) = f ( 1 ) 1 = 11 so
that f takes the interval [1l, 1] of G to the corresponding interval of G’.
Moreover, since f preserves V and ’, it is a morphism of CABAs, which
is induced by a function we denote V ( f ) : X’ --&#x3E; X , the set of atoms of
[11, 1] in G’ and G, resp. Moreover, the duality of CABAs and sets is
such that the inverse image function of W ( f ) is f itself, so that showing
that W( f) is continuous is equivalent to showing that f takes open sets
to open sets. But if U = ul V 11 is open in X, then f (U) - f (u) l V 11
is open in X’.

It is clear that W°O~ Id in any case. We finish the argument by
letting G be a grid that satisfies (*) and showing that O(W(G)) = G.
Let X = W(G). Define 0 : G ---&#x3E;  O(X ) by 0(u) = (u’ V1l, u V1l). First
we show that 0 is a grid morphism.

for arbitrary index sets I, and

To see that 0 preserves ’, we use the fact that u’ is the complement of
u in the lattice [ul, ul] and show that 0(u’) is the complement of 0(u)
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in [O(u)l, O(u)l]. Then

since that is how T works in O(X).

Thus 0 is a morphism of grids. I claim that 0 is an isomorphism. In

fact, if 0(u) = 0(v), then uT V 11 = vl V 11 which implies that ul = vl.
Then

(uV1l )Auf = (uAul) V (1l Aul) = uV (1 Aul )l = u V ul i = uVuj = u

and similarly (v V 1l Aul = v so that u = v and O is monic. Let

(U, A) E O(X). Then U = ut V 11 for some u E G, by definition of the
topology on X. Then O(A A ul)= ((A A ul) 11, (A A uT) V 1). We
have

and

Thus O is surjective.
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