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TOPOLOGICAL TOTALLY CONVEX SPACES, II
by Heinrich KLEISLI and Hans-Peter KÜNZI

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XXXVI-1 (1995)

Resume: La cat6gorie des espaces complets totale-
ment convexes et des morphismes continus est equi-
valente a la cat6gorie des espaces de Saks complets et
de leurs morphismes. Contrairement à une croyance
r6pandue elle n’est pas auto-duale. Pour obtenir une

cat6gorie auto-duale il faut se borner à ne considerer

que la sous-cat6gorie pleine des espaces totalement con-
vexes qui sont complets et cocomplets. La question si
la derni6re est d6jh une cat6gorie fermee s’impose mais
reste ouverte.

1. Introduction

The authors consider it as a privilege to dedicate this paper to Professor
D. Pumplun. It was Nico Pumplun who together with Helmut R6hrl
started the study of the algebraic part of the category of Banach spaces
and contracting linear maps in a series of fundamental papers centered
around the algebraic concept of a totally convex space. They also sug-
gested to study topologies on totally convex spaces in the same way as
it has been done for Banach spaces, endowing them with a Saks space
structure.

We have already investigated topologies on a totally convex space in a
previous paper (see [7]) and have chosen the name "topological totally

This paper was written while the second author was supported by the Swiss
National Science Foundation under grant 21-30585.91. The first author acknowledges
partial support under grant 21-36185.92.
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convex space" for the topologized algebraic objects which were studied
there. It has been found that the introduction of topologies not only
allowed generalizations of classical theorems, but also rendered some
constructions in the category of totally convex spaces more transparent.

In this paper we investigate some full subcategories of the category of
topological totally convex spaces (abbreviated TTCS) and continuous
morphisms in view of establishing a duality theory. First, we study
complete TTCS and show that the corresponding full subcategory is
equivalent to the category of complete Saks spaces and their morphisms
(Corollary (3.5)). Unfortunately that category is not self-dual as it is

claimed in [5] and in [6]. Two counter-examples are given at the end of
the paper (in Section 5), namely an example of a complete TTCS whose
dual space is not complete (Example 1) and an example of a complete
TTCS which is not reflexive (Example 2).

In order to understand those counter-examples better, we introduce a
generalization of compact TTCS, called cocomplete spaces. It turns out

that the dual spaces of complete TTCS are cocomplete, and vice versa
(Propositions (4.9) and (4.10)). Finally, we study bicomplete spaces,
i.e., TTCS which are complete and cocomplete, and observe that the
corresponding full subcategory is a self-dual category (Theorem (4.12)).
That category does not seem to be large enough in order to be a closed
category and thus a *-autonomous category in the sense of Barr [1].
However, at the time being we do not know an appropriate counter-
example. Many of the open problems listed in this paper are related to
that problem.

2. The category of topological totally convex spaces

In order to make the paper reasonably self-contained, we first recall
some of the definitions and theorems of [7], however, without repeating
all proofs.

Let Ban1 denote the category of complex Banach spaces and contracting
linear maps, and let 0 : Ban,1---&#x3E; Set be the unit ball functor. It

has been shown in [9] that the category of Eilenberg-Moore algebras
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of the functor 0 is equationally presentable. Its objects are given by
non-empty sets X together with operations ax : X IN ---&#x3E; X for every
a = (an)n&#x3E;0 in 0l1IN (i.e., cx is a sequence of complex numbers such

oo 

that £ an|  1). If we write the operations ax as infinite formal sums
n=0

°° 

ax (x) =E an xn for all z = (xn)n&#x3E;o in X IN, then the defining relations
n=0

are given by

and all

in and

in

Definitions. The objects introduced above are called totally convex
spaces, abbreviated TCS. Given two TCS X and Y, a morphism f :
X - Y is a map between the underlying sets satisfying the condition

for all a in OliN and z in XIN. The resulting category is called the
category of totally convex spaces and will be denoted by TC.

The full and faithful comparison functor 6 : Ban1--&#x3E; TC associates with
each Banach space B its unit ball OB, and the infinite sums E an Xn, in

n=0

OB are defined as convergent series with respect to the norm-topology
of B. We shall call the resulting totally convex spaces OB Banach balls.

Definitions. Let X be a TCS. A function cp : X - OIR = [-1, 1] is

called a sem2-norm if it satisfies the following conditions:

for all a in OC and x in X,
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(2.4) cp(¿ an) xn cp(xn) for all a in Ol 1IN and x in XN.
n=0  n=0

A semi-norm cp is said to be a norm if, in addition, we have

for all

Observe that conditions (2.3) and (2.4) imply that

whenever x, y in X.

Example 1. If cp is a semi-norm on a Banach space (B, |||) (i.e.,
if (2.3) is replaced by cp(ax) _ lalcp(x) for all a in C and (2.4) by
cp(a1x1 + a2x2)  a1|cp(x1 ) + la2Icp(x2) for all ai, a2 in C and Xl, X2
in X) and if cp(x)  llxll for all z in X, then the restriction cp|OB is a

semi-norm on OB. It can be shown that every semi-norm on a Banach
ball OB can be obtained that way (see Lemma (3.2) below).

Definitions. Let S be a family of semi-norms on a TCS X. For any
cp in S, define a pseudo-metric do on X by setting

for all x, y in X.

The uniformity on X determined by the family (dcp);cpES of pseudo-
metrics and its induced topology are called the uniformity and the topo-
logy generated by the famidyS of semi,-norms, respectively. A topology
on a TCS X is called locally convex provided that it can be generated
by a family of semi-norms on X (cf. Proposition (2.6) below).

By a topological totally convex space, abbreviated TTCS, we understand
a TCS endowed with a locally convex topology. The TTCS together
with the continuous morphisms form a category which will be denoted
by TTC.

The following propositions will be stated without proof.
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(2.6) Proposition. Let cp be a semi-norm on a TCS X, Xo an element
of X and E &#x3E; 0. Then, the open balls

are convex sets, and the open balls BE,cp(0) centered at the origin
0 are totally corzvcx subspaces.

(2.7) Proposition. Let X and Y be TTCS. The following properties
of a morphisms f’ : X ---&#x3E; Y are equivalent:

(i) f is uniformly continuous,
(ii) f is continuous,
(iii) f is continuous at 0.

(2.8) Proposition. The operations on a TTCS are continuous.

(2.9) Remark. On every TTCS X there is a largest family of semi-
norms which generates the topology T on X, namely the family
of all continuous semi-norms. Therefore, the uniformity does not
depend on the particular family of semi-norms generating T.

Examples

2. For each TCS X, there is a coarsest and a finest locally convex
topology. The first is given by the semi-norm cp0 with constant
value 0, the second by the family of all semi-norms (in [7] that
topology was referred to as the strong topology).
It is important to note that the strong topology on a TTCS X
can be induced by a single semi-norm, namely

On the other hand, there exist TTCS whose topologies are gen-
erated by a single semi-norm, but which do not carry the strong
topology:
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We define a TTCS X by setting

for all

and by endowing the set X with the pointwise totally convex
structure and the topology generated by the semi norm cp(f ) =
sup f (n) for all f in X .
nEIN

Observe that, for all integers n &#x3E; 0, the semi-norms CPn, given by

for all f in X,

are continuous.

Assume that the semi-norm || ||S of X were continuous. Then

there exists a 6 &#x3E; 0 such that, for all f in X, w( f)  6 implies
|| f ||.S  1. Let m be an integer &#x3E; 0 such that 1 m+1  6 and
consider the element f in X given by

if n = m,

otherwise .

Then cp( f)  6 so that Ilflls  1. On the other hand, cpm( f) = 1.
Hence, Ilf 11,  cpm( f ) in contradiction to the definition of the

semi-norm II lis.

3. Let (B,|| ||, T) be a Saks space, i.e., (B,|| II) is a complex Banach
space and T an additional locally convex Hausdorff topology on
B such that the unit ball OB is closed and bounded (see [4],
page 28, for a slightly more general definition). Then the totally
convex space OB with the trace-topology induced by T is a TTCS,
called a Saks ball. It should be noted that a Banach ball 6B,
when considered as TTCS, always carries the norm-topology and
is therefore a trivial Saks ball. Of course, the norm-topology of
OB is the strong topology on OB.

Observe that the category of Saks spaces and Saks morphisms is
isomorphic to the full subcategory of TTC generated by the Saks
balls. Indeed, a Saks morphism f : B--&#x3E; C is defined as a con-

tracting linear map such that the restriction f|OB is continuous,
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so that f|OB : OB --&#x3E; OC is a continuous morphism of TTCS.
Conversely, every continuous morphism g : 6B--+ OC is of that
form.

4. The dual space X* = ff : X ---&#x3E; ÔC; f a morphism} of a TCS
X has a pointwise defined totally convex structure. A topology
on X* which is weaker than the strong topology is the topology
generated by the family of semi-norms of the form

for all f in X*,

where x1, ... , xk are given points in X. We shall call that topology
the weak *-topology (since it has that name in the case where X*
is the Saks ball of a dual Banach space).

5. The circled absorbing convex subset K of a Waelbroeck space (see
[3], chap. 1, § 2) is an example of a TTCS with compact topology.

Definition. Let X and Y be TTCS. We denote by [X, Y] the set of
all continuous morphisms f : X--&#x3E; Y and endow it with the pointwise
totally convex structure and the topology of compact convergence, i.e.,
the topology T generated by the family of semi-norms of the form

for all f in

where K is a compact subset of X and q a continuous semi-norm of Y.
Observe that T is the compact-open topology.

(2.10) Proposition. [X, Y] is a well-defined TTCS.

Proof. We have to verify that, for any a in OliN and any f in

[X, y]IN, the morphism f = E an fn, given by
n=o

for all x in X,
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is continuous. By Proposition (2.7) it suffices to verify continuity at 0.
Let c &#x3E; 0 andq be a continuous semi-norm on Y. There exists an integer
N &#x3E; 0 such that E an I  E. Moreover, for every n, 0  n  N, there

n&#x3E;N 
- -

exist a continuous semi-norm Çn on X and 6n &#x3E; 0 such that, for all x
in X, zn(x)  6n implies n(fn,(x))  E. We define a continuous semi-

norm z on X, by setting z(x) = max{Zo(x),... gN(z)) for all x in X,
and we set 6 = min {Do, ... , DN}. If Z(x)  6, then gn(z)  6n for all
n = 0; ... , N. Hence,

i.e., f is continuous at 0. 0

(2.11) Proposition. Let X, Y and Z be TTCS and f : X -&#x3E; Y a

continuous morpjaisrrz. Then, the maps
where for all g in

and
where for all g in

are continuous morphisms.

Proof. The verification that the maps [f, Z] and [Z, f] are well-defined
morphisms is straightforward. The continuity of the map f , Z] follows
from the relation

for all g in

where ( is a continuous semi-norm on Z and K a compact subset of X,
and from the fact that the image f (K) is a compact subset of Y. The
continuity of [Z, f] follows from the relation

for all g in [Z, X],

where q is a continuous semi-norm on Y and K a compact subset of Z,
and from the fact that x --&#x3E;n (f (x)) is a continuous se*zni-norm on X.0
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Definitions. For a TTCS X, we denote the TTCS [X, 6C] by X’
and call it the dual space of X. Likewise, for a continuous morphism
f : X ---&#x3E; Y, we denote the continuous morphism ( f , ÔC] by f’ : Y’ - X’
and speak of the dual morphzsm of f. By iteration we obtain the b2dual
space X" and the b2dual morph2sm f " : X" - Y".

A straightforward verification shows that the functions X H X’ and
f H f’ define a contravariant endofunctor of the category TTC, called
the duality functor.

Example 6. Let B and C be Saks spaces. Consider the Saks space
given by the complex vector space Saks(B, C) = {f : B -7 C; f a
bounded linear map such that f| oB is continuous} endowed with the
sup-on-the-unit-ball norm and the topology of uniform convergence on
compact subsets of OB. Observe that the dual space B’ of a Saks

space B is the Saks space Saks(B, C). The map h : ÔSaks(B, C) ---&#x3E;
[6B, 6C], given by h( f ) = restriction floB for all f in 0 Saks(B, C),
is an isomorphism in TTC. That allows us to identify the Saks ball
O(B") of the Saks space bidual B" with the bidual TTCS (6B)".

Definitions. Let X be a TTCS. The evaluation map eX : X ---&#x3E; X" is

given by
eX (x) ( f ) = f (x) for all x in X and f in X’.

It is a morphism. If it is a topological isomorphism (i.e., an isomorphism
in the category TTC), we shall call X a reflexive TTCS; if it is only an
isomorphism, then we shall speak of a semi-reflexive TTCS.

It is readily checked that the dual X’ of any reflexive TTCS X is reflex-
ive.

(2.12) Proposition. Every Banach ball 6B (endowed with the norm-
topology) is reflexive.

Proof. This is a direct consequence of the following well-known result.
If the Banach space is considered as a trivial Saks space (i.e., the "ad-
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ditional" topology being the norm-topology) and if we denote the Saks
space bidual by B", the evaluation map eB : B --7 B" is an isomorphism.
We then identify O(B") and (OB)" by means of the isomorphism h giv-
en in Example 6 above. A "direct proof" of the reflexivity of OB can
be found in [7] (Proof of Lemma 3.3). D

Remark. We hope that our notion of reflexivity is not misleading.
It should not be confounded with the classical notion of reflexive

locally convex vector spaces, where the bidual space is defined

by endowing the dual space with the strong topology (see, for

instance, [10], chapt. IV, 3 5).

We continue to recall two further results from [7] on TTCS carrying the
strong topology.

(2.13) Theorem. Let X be a totally convex space endowed with the
strong topology. Then the dual space X’ is a compact Hausdorff
space.

(2.14) Theorem. Let X be a TTCS for the strong topology. Then the

bidual space X" is a Banach ball OBX . Furthermore, the eval-

uatzon map e : X ---&#x3E; X" zs a generalzzed completion, i. e., for
every continuous morphism f : X - Y into a complete Hausdorff
TTCS Y, there exzsts a unique continuous morphism g : X" - Y
such that the diagram

is commutative. Finally, e(X) is a dense subspace of the complete
Hausdorff TTCS X".

(2.15) Remark. It has been pointed out by D. Pumpliin that the fol-
O 

lowing relation holds for e(X) : OBX C e(X) C OBX. Here is a
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proof. Denote by E the closure of e(X) in ÔBX. Consider an el-
o

ement y in OBX. We construct inductively a sequence (xn)n&#x3E;1
n-1 

in X such that, for each integer n &#x3E; 1, ||-E 21ke(xk)1I 
k=1

2-(n-1) . Observe that the condition is satisfied for n = 1. For
n 2: 1, assume that Xk has been defined for all k  n. Set

n-1 

zn = 2n-1(y- L 21ke(xk)). By the induction hypothesis, ||zn  1.
k=1

Choose en &#x3E; 0 such that ||Zn|| + 4En  1. Since Zn belongs to
o

OBX C E, there is an Xn in X such that Ilzn - e(xn)11  En.

Therefore,

whence That completes the

induction. We conclude that

i.e., y belongs to e(X). D

3. Complete totally convex spaces and Saks spaces

(3.1) From now on, the topology of all TTCS is assumed to satisfy
the Hausdorff axiom. Note that the underlying TCS of such a
TTCS X is separated in the sense of Pumplün and R6hrl: For

a;, y in X and a in C, ax = ay implies x = y or a = 0 (see [9],
Lemma (11.2), where the in the meantime abolished terminology
"separable TCS" is used). Indeed, assume that there exist x, y in
X, x # y and a # 0 such that a:c = ay. Then a|cp(1/2x - 1/2y) -
cp(1/2ac - 1/2ay) =0 for all semi-norms w on X. Hence, X cannot
satisfy the Hausdorff axiom.

Definition. A TTCS is called complete (from now on) if the underly-
ing space is a complete Hausdorff space.
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Examples

1. Every Banach ball is a complete TTCS.

2. The dual space (6B)’ of a Banach ball has an underlying space
which is a compact Hausdorff space, and thus a complete space.

3. Let Y be a locally compact (Hausdorff) space. We denote by
C°°(Y) the vector space of bounded, continuous C-valued func-
tions on Y and by 11 ||oo the sup-norm. Then, (C-(Y), 11 ||oo) is a

Banach space, and we define X to be the TCS Ô(C°°(Y), || ||°°)
endowed with the topology of compact convergence.
We claim that X is complete. Clearly, the topology of X is Haus-
dorff. Let (fD)DED be a Cauchy net in X. Then (fD) converges
pointwise to a map f : Y --4 OC, the convergence being uni-
form on each compact subset K of Y. Hence, the restriction
f |K : K -&#x3E; OC is continuous. Let U be a closed subset of OC.

Then, ,f -1 (U) n K is closed for each compact subset K of Y.
Since X is locally compact, ,f-1(U) is closed, too. Otherwise,
there would exist an accumulation point x of f -1 (U) which does
not belong to f -1 (U). But then, for a compact neighbourhood
K(x) of x, f -1 (U) n K(x) would not be closed.

We shall now give a characterization of the complete TTCS as limits
of Banach balls in TTC. For Saks spaces such a characterization is

well known (see [4], Proposition 1.3.8) so that we shall proceed by a
reduction to that case.

(3.2) Lemma. Let X be a TCS which is a radial subset of a C-vector
space V. Then every semi-norm w on X can be extended to a
semz-norm cp orL V.

Proof. We define (cp by setting

for every x in V,
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where a is a complex number # 0 such that axx belongs to X . It is easy
to see that we obtain a well-defined map §3 : V - IR. Moreover,

where (

and

where 2axi

(3.3) Lemma. Let E be a bounded absolutely convex subset of a locally
convex space (V, T). We denote by B the subspace of V generated
by E and by- the norm on B given by the Minkowski functional
of E. If E is complete, then (B, || ||) is a Banach space.

For a proof, see [4], Lemma 1.1.2 and Definition 1.1.1.

(3.4) Theorem. Every (Hausdorff) TTCS X is a dense subset of a
complete Saks ball OSX. Moreover, every continuous semi-norm
on X admits a unique extension to a continuous semi-norm on
SX .

Proof. Consider the underlying TCS |X| of X endowed with the finest
locally convex topology. Hence, by Theorem (2.14), the evaluation map
e : v |X| --&#x3E; IXI" is a completion, i.e., |X| is (topologically) isomorphic
to e(|X|) and the latter is a dense subset of the Banach ball IXI" ==
6S(IXI). Let BX be the linear subspace of S(IXI) generated by the
subset e(|X|). Then c(|X|) is a radial subset of BX. By Lemma (3.2),
we can extend every continuous semi-norm ’P on X to a semi-norm of
the C-vector space BX and thus obtain a locally convex topology T
on BX such that X can be considered as a topological subspace of the
locally convex space (BX, T).

Denote by (ÊX, T) the completion of the locally convex space (BX, T)
and write E for the closure of e(|X|) in f3X and SX for the subspace of
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ÊX generated by E. Clearly, E is an absolutely convex subset of B X.
If || || is the norm on SX given by the Minkowski functional of E and
T the locally convex topology induced by T on SX, then (SX,|| ||, T)
is a complete Saks space such that OSX = E. Indeed, the unit-ball
is complete and bounded, and Lemma (3.3) implies that (SX, II II) is
a Banach space (such that the restrictive definition of a Saks space we
are using is satisfied - see Example 2.3). Hence, with the identification
X = e(|X|), X is a dense subset of the complete Saks ball Ô SX.

The second assertion of the theorem follows immediately from the con-
struction of SX given above. D

(3.5) Corollary. The function 6 wtaich associates with each Saks space
(E, || ||,T) its unit ball (ÔE, T|ÔE ) extends to an equivalence ofOE
the category of complete Saks spaces to the category of complete
TTCS.

Indeed, it is obvious how 6 extends to a full and faithfull functor,
and by Theorem (3.4) each complete TTCS X is isomorphic to
OSX in TTC.

(3.6) An explicit construction of the limit of an inverse system.
Let 10 == (paa : XB --&#x3E; Xa) be an inverse system in TTG with
directed index set D. We shall present a standard construction of
a limit X of ID, which will be denoted X = lim ID. The underlying
set of the limit is given by

for all i

The totally convex structure is defined termwise and the result-
ing TCS is endowed with the product topology, i.e., the topology
generated by the semi-norms of the form

in

where j3 is an index in D and cp B a continuous semi-norm on XB.
The continuous morphisms pB : lim ID--&#x3E; XB (BE D) of the
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limit cone are given by the restriction to lim ID of the canonical
projections n Xa - XB. The verification that this way we ob-

aED

tain a limit of the given inverse system ID is straightforward and
therefore left to the reader.

(3.7) Proposition. Let ID = (PaB : XB--&#x3E; Xa)aB (a, B E D) be an
inverse system such that the TTCS Xa (a E D) are complete.
Then, lim ID is a complete TTCS.

Proof. The product uniformity on the product Il Xa of the family
aED

(Xa)aED of complete Hausdorff spaces Xa yields a complete Hausdorff
space. It suffices therefore to verify that lim ID is a closed subset of the
topological space Il Xa. But this follows from the observation that

aED

lim ID is the kernel of the continuous map

where for all in

given by

for all in

(3.8) Corollary. If ID zs an inverse system of Banach ba,lls, then lim ID
is a complete TTCS. D

(3.9) The construction of the completion of a TTCS as the limit
of an inverse system. Let X be a (Hausdorff) TTCS. We shall
present a standard construction of a completion q : X - X , i.e.,
a dense embedding of X into a complete TTCS X .

Let S denote the set of all continuous semi-norms of X directed
with the pointwise ordering. By Theorem (3.4), X is a dense
subspace of the unit ball ÔSX of a complete Saks space, and every
continuous semi-norm cp on X can be considered as the restriction
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x of a continuous semi-norm (cp of the complete Saks space 8X.

Observe that the topology T on SX generated by the semi-norms
(cp is the mixed topology, so that, by Proposition 1.1.26 of [4],
the locally convex space (SX, T) is complete (and not only quasi-
complete). If we denote by Bcp the completion of the normed space
,SX/ ker cp with the norm given by I || x|| I = cp(x ) for all x in 5’X,
then the projection qcp: SX ---&#x3E; Bcp is a continuous, contracting
linear map. If, for each pair (cp, v) of continuous semi-norms on X
such that cp  1/J, we denote by qcp,v the natural contraction from

-B. into B,cp, we obtain an inverse system of Banach spaces such
that the diagrams

are commutative. It follows from a standard argument concerning
limits of locally convex spaces that the cone thus obtained is a

limit cone. By Corollary (3.5), the cone

is still a limit cone. We denote the Banach balls ÔBcp by Xcp, the
morphisms Ocp and Ôcp,v by qcp and qcp,v respectively, and by IB
the inverse system (qcp,v : Xv --&#x3E; Xcp )cpv.
For later use we observe that, since X is a radial subspace of
ÔS(|X|) (2.15), it follows from the construction above that the
dual morphism q’cp is injective for any cp E S.

Finally we define the TTCS X as the limit lim 18 as constructed
in (3.6). Then X is naturally isomorphic to O,S X in TTC, the
isomorphism being given by the map 4 : O,S’X ---&#x3E; X of the form
4(x) = (qv (x)) vEs for all x E ÔSX. Since the TTCS X is a

dense subspace of OSX , the restriction of 4 to X gives the desired
completion q : X - X . Thus, we have proved the following
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(3.10) Proposition. Let X be a Hausdorff TTCS. Then, the continuous
morphism q : X --&#x3E; X is a completion, i. e., a dense embedding of
X into the complete TTCS X = lim B.

Combining Proposition (3.10) and Corollary (3.8) we obtain the follow-
ing structure theorem for complete TTCS.

(3.11) Theorem. A TTCS is complete if and only if it is the limit of an
inverse system of Banach balls. El

For a complete TTCS X carrying the strong topology, we know that the
evaluation map e : X - X" is a topological isomorphism (see Theorem
(2.14)). If X is an arbitrary complete TTCS, we can only prove the
following result.

(3.12) Theorem. If X is a complete TTCS, then the evaluation map
e : X --- &#x3E; X" is an open isomorphisrn.

Proof. Since X is a complete TTCS, we can write it as the summit
of a limit cone (qcp : X ---&#x3E; Xcp)cpEs (see (3.9)). For every cp in S, the
diagram

is commutative and the morphism e I is a topological isomorphism.
Hence, X" is the summit of the cone (e-1 o 4 // : X" - Xcp) with the
same basis as the limit cone above. Therefore, there exists a continuous
morphism r : X" - X such that, for all cp in S, the diagram
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is commutative, too. Hence,

for all cp in S,

so that r o ex = idX. If we can show that the map r is injective, then
ex = r-1, i.e., ex is an open isomorphism.

It follows from the construction of X (see (3.9)) that the map r can be
given by the formula

for all A in X".

Let r(Ai) = r(A2), i.e., q"cp (L1,)= q"cp (k2), resp. k1 oq’cp= k2oq’cp whenever
cp in S. Now, X’ = U q’(X’cp), so that À1 = k2. Indeed, let f : X--&#x3E; OC

be an element of X’. Then the function x ---&#x3E; |f (x)| is a continuous semi-
norm 0 on X. The morphism 4V, : X---&#x3E; X1jJ used in the construction of
the limit cone of X is then given as follows: Xv is isomorphic to 101 or
OC, and f = jv o q v where jv is the embedding of X1jJ into OC. D

4. Cocomplete totally convex spaces as a
generalization of compact totally convex spaces

Theorem (3.12) implies that a complete TTCS is semi-reflexive. How-
ever, a complete TTCS need not be reflexive (see Example 5.2 below).
Therefore, we try to find additional properties a complete TTCS has to
have in order to be reflexive. Theorem (3.12) says that we must look
for properties of a complete TTCS X which render the evaluation map
e : X --&#x3E; X" continuous.

Definition. A TTCS is called compact if the underlying topological
space is a compact Hausdorff space.

Clearly, every compact TTCS is complete.
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Examples

1. The dual space X’ of a TTCS carrying the strong topology is

compact (see Theorem (2.13)), in particular, if B is a Banach

space, then (6B)’ is compact.
2. Using the same arguments as in the proof of Theorem (3.11) we

can show that a TTCS is compact if and only if it is the limit of
an inverse system of finite-dimensional Banach balls.

We adopt the terminology of R. Brown (see [2]) and call a map f :
X---&#x3E; Y between topological spaces X and Y k- continuous provided
that flK is continuous whenever K is a compact subset of X. Clearly
the composition of two k-continuous maps is k-continuous.

(4.1) Proposition. For any TTCS X the evalnation map ex : X - X"
is k-continuous.

Proof. Let K be a compact subset of X and let (X8)8ED be a net in
K converging to some point E K. Consider an arbitrary compact
subset C of X’. Then the set {f|K : f E C} is compact in K’ and thus
equicontinuous by Ascoli’s Theorem. Therefore, we have convergence
sup fEC |ex (xd) ( f )-ex (x) (f) j 0. We conclude that ex is k-continuous.
M

(4.2) Corollary. Each compact TTCS is reflexive. In fact, any semi-
reflexive TTCS X that is a k-space (i.e., is compactly generated)
is reflexive,.

Proof. Indeed, the evaluation map eX : X - X" is continuous, since
X is a k-space (Proposition (4.1)). Let i : X ---&#x3E; X be the canonical
embedding where X denotes the completion of X. By naturality of e we
have (eX-1 o i" o ex)(d) == i(d) = d whenever d E X. Thus exl = e-1 o i"
by semi-reflexivity. We conclude that the evaluation map of any semi-
reflexive TTCS is open. M
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Let Ban denote the full subcategory of the category TTC consisting
of Banach balls, and Comp the full subcategory of TTC consisting of
compact TTCS. Then the duality functor D : TTCop ---&#x3E; TTC (for
the definition, see Section 2) allows a restriction D : Ban°P - Comp
(Theorem (2.13)). Likewise, it allows a restriction D : Compop ---+ Ban,
since the dual space XI - iX, 6C] of a compact TTCS X is easily seen
to be a Banach ball.

(4.3) Theorem. The functors D : Ban°P - Comp, D : Compop ---+ Ban
defines a dualzty between the categories Ban and Comp.

Proof. By Proposition (2.12) every Banach ball 6B is reflexive, i.e.,
the evaluation map e6B : 6B ---* (6B)" is a topological isomorphism.
By Corollary (4.2), every compact TTCS X is reflexive, so that the
evaluation map ex : X --&#x3E; X" is likewise a topological isomorphism. A
straightforward calculation shows that we obtain that way two natural
isomorphims e : Id(Banop) --&#x3E; D°p o D and e : Id(Comp) - D o DoP.
Hence, the functors D : Banop ---&#x3E; Comp and D°p : Comp - BanoP
define an equivalence between the categories BanoP and Comp. D

(4.4) Remark. Using Corollary (3.5) we could have obtained Theorem
(4.3) also from the well-known duality between the category Ban,
of Banach spaces and contracting linear maps and the category
C1 of compact Saks spaces and their morphisms (cf. [3], 1.2.8,
where compact Saks spaces are presented as Waelbroeck spaces,
or [11], Proposition 13.18, where compact Saks spaces are called
q-compact MT-spaces) .

The following corollary to Theorem (4.3) will be needed in the sequel.

(4.5) Corollary. Let OB be a Banach ball, C a compact TTCS and
g : (6B)’ --+ C’ a continuous. morphism. Then, there exists a

unique continuous morphism f : C ---&#x3E; OB such that g = f’.
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Proof.

- Uniqueness: Let f 1 - f2 for two continuous morphisms fi : C --&#x3E; 6B
( i = 1, 2 ) . The diagrams

are commutative and the morphisms ec and e6B are topological isomor-
phisms. Therefore, it follows from f"1 = f 2 that f = 12.

- Existence: We define f : C ---&#x3E; ÔB by setting f = eoB o g’ o ec. Then
the following diagram is commutative

Dualizing, we obtain the commutative diagrams

and

A direct verification shows that eC = ebl and e6B = e -1 Thus,

The following class of TTCS larger than the class of compact TTCS,
which still has the property that the evaluation map is continuous, sug-
gests itself: colimits of compact TTCS. We shall study such colimits in
the remainder of this section, and we shall call them cocomplete TTCS
(thinking of the characterization of the complete TTCS as limits of
Banach balls) .
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Definition. A Hausdorff TTCS X is called cocomplete if it is the
colimit of a direct system of compact TTCS.

There is a connection between k-spaces (i.e., compactly generated TTCS)
and cocomplete spaces which will be discussed in due course.

(4.6) Theorem. The following properties of a TTCS X are equivalent.

(i) For any TTCS Y and any morphisms f : X-- -&#x3E; Y, the map f is
continuous whenever it is k-continuous.

(ii) For any serni-norrn rp : ---&#x3E; OIR, the map cp is continuous when-
ever it is k-continuous.

Those properties are satisfied in a cocomplete space.

Proof.

(ii) =&#x3E; (i): Let f : X --&#x3E; Y be a k-continuous morphism. By (ii), for
any continuous semi-norm v on Y, 0 o f is a continuous semi-norm on
X.

(i) =&#x3E; (ii): Every semi-norm rp : X --&#x3E; OIR can be factored as follows:

where qcp is the canonical projection onto the quotient-space X. for the
equivalence relation

for all xl, X2 in X,

and endowed with the norm

for all x in X,

where [x] denotes the equivalence class of x. Clearly, the semi-norm w
is continuous if and only if the morphism qcp is continuous.
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Let X be cocomplete and let (pa : Xa --&#x3E; X )aED be the colimit cone of
a basis consisting of compact TTCS Xa. Then X is also the colimit of
the direct system consisting of the compact subspaces Ca = pa (Xa) of
X, whence the stated properties follow, since X can be identified with
the TCS generated by U,,,CDP,(X,)- D

Definition. For any TTCS X, the x-modification Xk of X denotes
that TTCS with underlying TCS X the topology of which is generated
by the set of all k-continuous semi-norms on X. Obviously X and X’
have the same compact subsets. In particular (Xk) = Xk. Further-

more, for any k-continuous morphism f : X ---&#x3E; Y, it is readily verified
that fk : Xk ---&#x3E; YK is continuous, where f and fk denote the same set
map.

Clearly X - Xk for any cocomplete TTCS X . The authors do not
know whether the converse obtains.

(4.7) Corollary. For any TTCS X, the evaluation map ex, : Xk--&#x3E;

(Xr-)" is continuous. In particular, ifXk is semi-reflexive, then it
is reflexive. Thus, any cocomplete and complete TTCS is reflexive.

Proof. See the proof of Corollary (4.2) and use Proposition (4.1) and
Theorem (4.6). D

(4.8) Proposition. Let X be a TTCS having at least one of the follow-
ing properties:
(i) Any compact subset of X is contained in some compact sub-
space of X .
(ii) Any sequentially continuous morphism f : Xk ---&#x3E; Y into an

arbztrary TTCS Y is continuous.
Then Xk is cocomplete.

In the proof of Proposition (4.8) we shall make use of the following
simple, but useful lemma.
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(4.8.1) Lemma. Let (xn)n&#x3E;0 be a sequence in a TTCS X converging to 0.
Then the totally convex subspace K of X generated by {xn; n &#x3E; 0}
is compact.

Proof. Let (yd )dE D be a net in h where yd = E ai8xi and (aid )i&#x3E;0 in
i=o

Ol1N for d E D. The auxiliary net (Cd)dED where Cd = (a08,aI8,...)
whenever 8 E D has a cluster point (ai)i&#x3E;0 in the product space 0(C .

00

We want to show that z := E aixi is a cluster point of (yd)dED in K.
i=o

00

Since E |ai |  1, z is clearly a well-defined element of K. Let cp be
i=o

an arbitrary continuous semi-norm on X, é &#x3E; 0 and 8 E D. There is

no E IN such that cp(xi)  é/2 whenever i E IN and i &#x3E; no. Furthermore,
there is 8’ E D such that d’ &#x3E; 8 and such that aid’-ai  no+1 whenever
i  no, since (ai)i&#x3E;0 is a cluster point of (cd)dED. Then

We have shown that z is a cluster point of (Yb)6CD. Thus K is compact.
D

Proof of (4.8). Let K denote the set of all compact (totally con-
vex) subspaces of X. Observe first that in an arbitrary TTCS the
totally convex subspace generated by the union of finitely many com-
pact totally convex subspaces is compact. Hence the set K is directed
for the ordering by inclusion, and the embeddings pKL : CK --&#x3E; CL
(K  L) form a direct system ID of compact TTCS. Moreover, the em-
beddings PK : Ck--&#x3E; XN form a cone with summit XK and basis ID.
We claim that it is a colimit cone. Since X = U CK, for every cone

KEK

( fK : CK---&#x3E; Y)KEK with the same basis ID, there exists a unique map
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f : X6 ---&#x3E; Y such that f o px = fK for all K in IC. Clearly f is defined
by f(x)= fx(x) for any K E K such that x E CK.

We next show that f is a morphism. Let (xn)n&#x3E;o in X IN and (an)n&#x3E;o
in OIBIN. For each n &#x3E; 0 consider the subspace Kn of X generated

00

by f XO xl, ... , Xn, L aizi, 01. Furthermore, let K denote the subspace
i=0

°°  En

generated by the sequence (1/2 E aixi - 1/2 E aixi )n&#x3E;o. Since K and eachi=0 i=0 

Kn (n &#x3E; 0) are compact (Lemma (4.8.1)), we have

00 00

and thus f (E aixi ) = E axi f ( xi ) .
i=o i=o

Note that f is sequentially continuous: If xn - z in X , then

f (1/2xn - 2x) - 0, i.e., f(xn) ---&#x3E; f (x), by Lemma (4.8.1). There-
fore f is continuous under assumption (ii) . Under assumption (i) f is
k-continuous. Hence, f is continuous by Theorem (4.6) . D

The following two propositions support our terminology "complete
TTCS" and "cocomplete TTCS" since they show that the duality func-
tor transports complete TTCS to cocomplete TTCS, and vice versa.

(4.9) Proposition. If X is a complete TTCS, then the dual space X’
is cocomplete.

Proof. Since X is a complete TTCS, we can write it as the summit
of a limit cone (qcp : X ---&#x3E; Xcp)cpES of an inverse system ID of Banach
balls (cf. (3.9)). We claim that the family (q’cp)cpES of dual morphisms
q’cp : X’cp--&#x3E; X’ is a colimit of the dual direct system ID’. Since the

objects of the latter are compact TTCS (Theorem (2.13)), the TTCS
X’ is cocomplete.

Let (gcp : X’---&#x3E; Y)cpES be another cone with basis ID’ and summit Y.
We have seen that X’ = U q’v(Xv) (cf. proof of Theorem (3.12)), so

vES
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that we can define a map g : X’ - Y by setting

g(f) = gcp ( fcp ) for any V C S and any fcp in X’cp such that q’cp (fcp ) = f .
Since each 4’ is inj ective, g is a well-defined map satisfying g o q’v gp
for all1/; in S, and even the only one.

It remains to be shown that g is a continuous morphism. Observe that
it suffices to verify this when Y is a Banach ball 6B. Indeed, g is a
continuous morphism if and only if the composition q o g : X’ ---&#x3E; Y --+ Y,
where q : Y - Y is the completion of Y, is a continuous morphism, and
by Theorem (3.11) Y is a limit of an inverse system of Banach balls.

By Theorem (4.3), we may write Y = C’ for a compact TTCS C, and
0l, = 6Bp for a Banach space Bp. By Corollary (4.5), each continuous
morphism gv : (ÔBv )’ ---&#x3E; C’ is of the form gv- f’v for a unique
continuous morphism fp : C--&#x3E; ÔBV. The uniqueness implies that the
family ( fv)vEs defines a cone with basis ID and summit C. Therefore,
there exists a unique continuous morphism f : C - X such that qv of =
fv for all 0 in S. By the definition of g and the results obtained so far,
we have

for all cp in S.

Since X’ - U q’(X’v), we conclude that 9 = f’, and hence g is a
1/JES 

vES

continuous morphism. D

Example 3. A classical result of R.C. Buck for the Banach space
C°°(Y) of Example 3.3, endowed with the mixed topology associated
with the topology of compact convergence TK, says that the dual of the
resulting locally convex space is the space M(Y) of bounded C-valued
Radon measures on the locally compact space Y (cf. [4], 11.3.). The
mixed topology is the strongest locally convex topology among those
which coincide with TK on OC°°(Y). Hence, 6m(y) (ÔC°°(Y))’
and, since 6C’(Y) is a complete TTCS, the Radon measures on Y of
norm  1 form a cocomplete TTCS (which in general is not compact).

(4.10) Proposition. For any TTCS X, the dual space (X")’ is complete.
In particular, the dual of a cocomplete TTCS is complete.
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Proof. Let (f8)8ED be a Cauchy net in (X")’ with respect to the uni-
formity of compact convergence. The net converges pointwise to a mor-
phism f : JXk--&#x3E; OC, the convergence being uniform on each compact
subset K of X. Hence, the restriction f|: K--&#x3E; OC is continuous.
The result follows from Theorem (4.6). D

(4.11) Remark. We shall see later that it is not necessary for a (com-
plete) TTCS X to be cocomplete in order that the dual space X’
is complete (see Example 5.2).
Clearly X’ is also complete for a TTCS X that is a k-space. Hence,
a reflexive TTCS X that is a k-space is cocomplete, since X" is
cocomplete. This observation suggests the following problem.

Problem. Is there a TTCS that is a k-space, but not cocomplete?
(By Proposition (4.8) any sequential TTCS is cocomplete.)

Definition. A TTCS is called bicomplete if it is complete and cocom-
plete.

Example 4. Any complete TTCS that is a k-space is bicomplete.
Indeed it is a semi-reflexive k-space and thus reflexive and cocomplete
(see Corollary (4.2) and Remark (4.11)).

Let V denote the full subcategory of the category TTC consisting of
bicomplete TTCS. By Propositions (4.9) and (4.10), the duality functor
D : TTC°P - TTC allows a restriction D : V°P - V.

(4.12) Theorem. The functor D : V°P - V defines a self-duality of the
category V.

Proof. By Corollary (4.7) every bicomplete TTCS X is reflexive, i.e.,
the evaluation map ex : X ---&#x3E; X" is a topological isomorphism. We
obtain therefore natural isomorphisms e : I d(VOP) ---&#x3E; D°P o D and
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e : Id(V) - D o D°p. Hence, the functor D : VoP -&#x3E; V defines an

equivalence between the categories V°p and V. M

(4.13) Compact subsets and compact subspaces in a complete
TTCS.

Definition. Let X be a TCS and M a subset of X. We define the
convex circled jaull F(M) of M in X as the set

for n = 0, - - ., N and N E Ni.

(4.13.1) Proposition. Let X be a T TCS. If M is a precompact subset of
X, then r(M) zs again a precompact subset.

Proof. In the special case where M is a finite set, say M ={xo, ... , xN},

T( M ) is the image of the compact subset A- N = {a E CN+1 ,E |an |  1
n=O

N

of CN+1 by the continuous map (a0,...., aN)---&#x3E;E anxn, and therefore
n=o

compact. Let now M be any precompact subset of X, i.e., for each E &#x3E; 0

and every continuous semi-norm ’p on X, there exists a finite set Mo
such that M C U BE,’p (m), where BE,’p (m) {x E X;dcp(m,x)  E}.

m E M0

Since T ( M0) is compact, we have IF(MO) C U BE,’p(m) for a finite set
mENo

N N

No. Consider y = Z anxn with N E IN, E |an|  1 and xn E M for
n=0 n=0

n = 0, ... , N. For each n there exists Yn E Mo such that xn E BE,cp(Yn).
N

Furthermore, there is a z E No such that 2cp(1 2 Z aznYn - 1 2z)  6. Thus,
n=0
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We conclude that r(M) is precompact. D

(4.13.2) Corollary. Let X be a complete TTCS. If M is a compact subset
of X, then the closure T(M) of r(M) in X is again a compact
subset. D

(4.13.3) Proposition. Let X be a TTCS and M a subset of X. Then the
closure F(M) of r(M) in X is a totally convex subspace.

Proof. We have to verify that, for every a in Of 1 N and x in r(M)IN,
00 _______

the sum E anxn belongs to the closure F(M). Let E &#x3E; 0 and cp be a
n=0 

continuous semi-norm on X. There exists an integer N &#x3E; 0 such that

F- lanl  E. Hence,
n&#x3E;N

L

Furthermore, there exist points ?/i,..., yN in r(M) (i.e., yn = Z f3nmzm,
m=0

where zo, ... , zL are points in M) such that CP(1 2Xn - 1 2 yn)  E 2. Hence,

and is an element

belongs to

Problem. Let K be a compact subset of a TTCS X. When is the
closure of the totally convex subspace generated by K compact in X?
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(4.14) Proposition. For any complete TTCS X, the x-modification
XK zs cocomplete. In particular any complete TTCS X satisfying
X = X’ is bicomplete.

Proof. The assertion follows from (4.8), (4.13.2) and (4.13.3). We
shall give a different proof of this result later (Proposition (5.4)). 0

Example 5. A bicomplete TTCS whose underlying space is not a k-
space.

Let B be an infinite dimensional complex Banach space and I an un-
countable set. Set X = (6B), endowed with the pointwise totally con-
vex structure and the product topology. Then X is a complete TTCS.
Since each factor of (6B), is a first countable space, by Theorem 5.6
of [8], every map into a regular space whose restriction to each com-
pact subset is continuous is already continuous. Hence, by Proposition
(4.14), X is a bicomplete TTCS. Since no factor of (6B), is countably
compact, by Proposition 5.5 of [8], the underlying space of X is not a
k-space.

Problem. The product of finitely many bicomplete TTCS is readily
seen to be bicomplete. What can be said about products of infinitely
many such spaces?

5. Completion and duality

In the sequel we shall use the notation X* for the dual space (xn
of the K-modification X’ of a TTCS X (cf. Section 4). Moreover
we distinguish between the evaluation map ex : X - X" and the
evaluation map 6x : X - X** which is similarly defined by setting

for all x in X and f in

An obvious modification of the proof of Proposition (4.1) establishes
that eX : X - X** is k-continuous for an arbitrary TTCS X.
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It will follow from the results presented below that 6x : X - X** is a
homeomorphism if and only if the TTCS X is bicomplete.

(5.1) Lemma. Let X be a TTCS and let i : X’ - X* be the obvious

embedding. Then 6x(X) C X*’ and i’(6x(x)) = ex(x) whenever
xEX.

Proof. Let x E X. Suppose that (f8)8ED is a net in X* converging
to 0. Then ê x (x) (f8) == f8 (x) --+ 0, since {x} is a compact subset of
X". Thus 6x(x) E X*’, and therefore i’(eX(:x)) = êx(x) o i E X".
We conclude that 6x (x) o i = ex (x), because (êx(x) o i) (h) = h(x)
eX (x) (h) for any h E X’. 0

(5.2) Lemma. Let X be a TTCS containing a dense subset D such
that the restriction to D of the evaluation map ex : X - X" is
continuous. Then the completion X of X is reflexive.

Proof. By Theorem (3.12) the evaluation map eX : k - (k)" is an
open isomorphism, since X is complete. Let i : X - k be the canonical
embedding. By our assumption i" o ex) D is continuous on D. Since

(X)" is complete, there exists a continuous extension f : X ---&#x3E; (X)" of
i" O ex D to X . It suffices to show that (eX-1 of) (x) = x whenever x E D,
because then, by continuity of f and e-1, and by the density of D in X
it follows that c o f = idx and thus eX = f . Let x E D and h E (X)’.
We have ex(x)(h) = h(x) and [(i" O ex)(x)] (h) = (ex (x) o i’)(h) ==
ex (x) (h o i) = h (x). Therefore e x (x) = (i" o ex) (x) and thus, by the
definition of ,f, (e-1 X o f)(x) = e-1 X’ [(i" O ex)(x)] = x. We have shown
that X is reflexive. D

5.2.1) Corollary.

(a) The completion, of any reflexive TTCS is reflexive. 

(b) For any TTCS X, the completion of X’ is reflexive,. D
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(5.3) Theorem. Let X be a semi-reflexive TTCS. Then X* is the

completion of X’.

Proof. Since X and XK, have the same compact subsets, X’ is clearly
a subspace of X*. Let E be the closure of X’ in X*. Since X* is

complete (Proposition (4.10)), E is the completion of X’. Hence, the
evaluation map eE : E - E" is an open bijection (Theorem (3.12)). Let
p : X’ - E be the embedding. Note that p’ : E’ - X" is a bijection.
Moreover, let 6x : X - X** denote the evaluation map. Since X is

semi-reflexive, the evaluation map ex : X - X" is an open bijection
(see the proof of Corollary (4. 2) ) . 
Consider f E X*. Since exl o p’ is continuous, f o e-1X o p’ : E’- OC is
k-continuous. Because E’ is cocomplete (Proposition (4.9)), we see with
the help of Theorem (4.6) that f o exI o p’ E E". Since eE is bijective,
there is h E E such that eE(h) = f o exl o p’. Fix x E X . Note that

On the other hand, since by Lemma (5.1) eX(x) is a continuous exten-
sion of ex (x) to X*, we have

Thus f = h E E and E = X * . D

(5.3.1) Corollary. If X is a complete or a reflexive TTCS, then X* is

the completion of X’. In either case X* is reflexive,. 0

(5.3.2) Corollary. For any reflexive TTCS X, the space X’* yields the
completion of X with canonical embedding i 0 CX, where ex : X -
X" denotes the evaluation map and i : X" - X’* the obvious

embedding. D
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Problem. Find an example of a reflexive TTCS that is not complete.
(Note that the dual of such a space would be a reflexive space that is
not cocomplete.)

(5.4) Proposition. If X is a semi-reflexive TTCS, then Xk and X *’
are isomorphic (Under the isomorphism ekX defined below). In par-
ticular, X’ is cocomplete.

Proof. As above, eX : X - X" denotes the evaluation map and
i : X’ - X* the obvious embedding. It will be helpful to remember that
X*’ is cocomplete (Propositions (4.9) and (4.10)). Since the corestric-
tion eX : X - X *’ of the evaluation map eX : X - X** is k-continuous,
ekX : Xk --+ X *’ is continuous. By Theorem (5.3) Z" : X*’ - X" is a bi-

jection. We recall that i’oex = ex (Lemma (5.1) ) . Since ex is bijective,
eX is bijective. Furthermore 6xl = exl o i’ : X*’ - X is continuous and
by the cocompleteness of X *1, we see that (ekX)-1 : X*’ - Xk is con-
tinuous. Thus, ekX : Xk - X *’ is an isomorphism for any semi-reflexive
TTCS X. o

(5.4.1) Corollary. For any reflexive or complete T T CS X , the space Xk
is reflexive,. D

Remark. It follows from Proposition (5.4) that for a semi-reflexive
TTCS X, the family of all semi-norms cpK (x) = sup eX (x) (f)| , where

f EK
K is a compact subset of X *, generates the topology of the space X’.

(5.5) Lemma. If X is complete, X* is bicomplete, and if D is a dense
subset of X such that the restriction of the evaluation map eX :
X - X** to D zs continuous, then X is bicomplete..

Proof. Since X is semi-reflexive, by the proof of Proposition (5.4)
the corestriction ex : X ---+ X*’ of the evaluation map eX : X - X**
is an open k-continuous bijection. By our assumption, the restriction
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eX | D is continuous. The continuous extension e : X - X *’ of eX|D
exists, because X*’ is complete. Since e-1x o eX|D = idD, we see that
exI o e = idx by the density of D in X. Therefore

We conclude that eX is a homeomorphism and thus X is cocomplete,
since X*’ is cocomplete. D

(5.6) Proposition. Let X be a complete TTCS. Then the following
conditions are equivalent:

(i) X** is bicomplete.
(ii) X* is bicomplete..
(iii) X" is bicomplete..

Proof.

(i) = (ii): Apply the preceding lemma to X* and D = X’ and use
that D is cocomplete.

(ii) ====&#x3E; (iii): The dual X*’ of X* is bicomplete. But X*’ is isomorphic
to Xk.

(iii) ===&#x3E; (i): Xk is isomorphic to X*’ and X** is the completion of X*’.
a

Problem. Let X be a complete TTCS. Is X* always bicomplete? By
Lemma (5.5), this question is easily seen to be equivalent to the problem
whether the completion of each cocomplete TTCS is bicomplete.

(5.7) Remark. We are finally ready to answer the following questions:
Is there a complete TTCS which is not reflexive? (Cf. the as-
sertion preceding Theorem (3.12).) Is there a complete TTCS X
such that the dual space X’ is not complete? The following two
examples, each of which gives a positive answer to one of those
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questions, are due to the second author. He thus saved the first
author, who believed that the category of complete TTCS was a
*-autonomous category, from a major embarrassment.

Example 1. A complete TTCS X such that the dual space X’ is not
complete.

Let Y be an uncountable set. For each subset C of Y, we denote by
0(C) the set of finite subsets of C. Then we define a TTCS X by
setting 

and by endowing that TCS with the topology generated by the semi-
norms of the form

I for all g in X,

where C is a countable subset of Y.

(5.8.1) The T TCS X is complete.

Proof. Clearly, the topology on X is Hausdorff. Let (g8)8ED be a
Cauchy net in X , i.e., for 6; &#x3E; 0 and a,ny countable subset C of Y, there
exists a 60 in D such that, for all 6’, 6" &#x3E; 6o, sup 1 2 g6, (y) - 1 2 g6,, (y)| 

FC.F(C) yEF 
 6’. Then for any point y in Y, (g8 (y) )8ED is a Cauchy net in OC and
thus converges to some element g(g) in OC. It follows that, for E &#x3E; 0

and any countable subset C of Y, there exists a 60 in D such that

whenever 6 &#x3E; 60 in D,

i.e., the net (g8)8ED converges to the function y- g(y). It remains to be
shown that the latter belongs to X, i.e., L Ig(y)1  1 for all F in F(Y).

yEF 
Assume the contrary: there is an F in 0(Y) such that r- lg(y) I &#x3E; 1.

yEF
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Since g5 (y) converges to g(y) whenever y belongs to F, there exists a 6
in D such that E |gz(y)| &#x3E; 1, which contradicts that gg belongs to X.

yEF
D

Definition of an "unpleasant" morphism / : X - UC.

Observe that F(Y) is a directed set for the ordering by inclusion, and
consider the net ( £ g(y))FeFy&#x3E; where g E OCY. It is a Cauchy net in

yEF

OC. Indeed, given E &#x3E; 0, we choose Fo in 0(Y) such that £ Ig(y)1 | &#x3E;
yEFo

sup |g (y)| -E 2. Then for all F’, F" in F(Y) such that Fo C F’, F"
FEF(Y) yEF 

(i.e., Fo  F’, F" in F(Y)),

We define now f (g) as the unique limit of that Cauchy net and thus
obtain a function f : X - OC .

(5.8.2) The function f zs a morphism.

Proof. Fix a = (an)n&#x3E;o in Of 1 IN and _g = (gn)n&#x3E;o in XIN. The net

(( Z gn(Y))n&#x3E;0)FC-F(Y) in the topological product OCIN converges to
yEF

(f (gn))n&#x3E;0. Since the operation
IN 00

aOC : OC - OC is continuous, the net ( ¿ an( £ gn (y))) FEF(Y) con-
n=0 yEF

00

verges to £ anf (gn) - On the other hand, the latter net can be writ-
n=O
00 00

ten (E Y- angn(Y)))FCF(Y), and therefore converges to f(Y angn).
yEF n=0 n=0

00 00

Hence, f ( E angn) = Y anf(gn). 0
n=0 n=0

(5.8.3) The morph2sm f is not contznuous.
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Proof. Assume that f were continuous at 0. Then, there exists a
p &#x3E; 0 and finitely many countable subsets Cl, ... , CN of Y such that,
for all g in X with
max{PC1(g),...,PCN(g)}  p we have I (g) I  1. We choose a point

N

yo in Y B U Cn and define an element g in X by setting
n=1

if and g(y) = 0 otherwise.

Then PCn (g) = 0 for n = 1, ... , N and f (g) = 1, which is absurd. 0 .

(5.8.4) For all compact subsets K of X, the restriction flK is continuous.

Proof. For any g in X and every integer n &#x3E; 1, we consider the set

Observe that each set An(g) is finite. Let K be a compact subset of X
and let (g8)8EÐ be a net in K converging in X to g. For every integer
n &#x3E; 1, we introduce the set

for sorme 6 E D}.

We claim that each set Mn is finite, too. Assume the contrary, i.e., that
Mno is infinite for some integer no 2: 1. Then we define inductively a
sequence (gn)n&#x3E;0 in Mno and a sequence (gn)n&#x3E;0 in K in the following
way. _Suppose that Ym and gm are defined for each m  n such that gm
belongs to An0 ( 1 2 gm - 1 2 g) . Then choose Y in Mno B U Ano (1 2 gm -1 2 g) and

mn

an index b in D such that |1 2 g5 (y) - 1 2 g(y) &#x3E; 1 n0. Set yn = y and gn = g8.
Hence, yn belongs to An0 (1 2gn -1 2g), so that Yn =1= ym whenever m  n.

Furthermore, gn # gm for all m  n, because (1 2 gm (yn) - 1 g (gn ) |  1 n0.
Since K is compact, the sequence (gn)n&#x3E;0 has a cluster point in K, say

00

p. Since Z 1 4 p (yn ) - 4 g (gn ) |  1, there is an integer s &#x3E; 1 such that
n=0

E 1 4p(gn) - 1 4g(yn)  1 . We consider the set E = {YS+k; k E IN}.
n&#x3E;s 

n0n&#x3E;s
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Since E is countable and p a cluster point of the sequence (gn)n&#x3E;o, there
is an integer t &#x3E; s such that cpE (1 4p -1 4 gt)  1 Hence,4no

which is in contradiction to the choice of the sequence (gn)n’20.
00

We consider now the countable set C = U Mn . Observe that, for any
n=1

8 in D, g5(y) = g(y) for all y in V B C, so that we have

The net ( E (1 2 g5(y) - 1 2 g(y)))FEF(Y) converges to f (1 2 gb - 1 2 g), and there-
yEF 

fore, (I 1:(’96(Y)- 1 2 g (Y)) |) FCF(Y) converges to |f (1 2 g6 -1 2 g)|. Hence,
yEF 

Since cp(1 2.gd - 1 2 g) converges to 0, we conclude that f (g6) converges to
f (g). Thus, the restriction f|K is continuous. D

Summing up, Example 1 provides us with a complete TTCS X having
a dual space X’ which by Theorem (5.3) is not complete. Besides, the
space X is not cocomplete (by Proposition (4.10) or by Theorem (4.6)).

Problem. Is X" cocomplete for the space X of Example 1?

Example 2. A complete TTCS which is not reflexive.

We regard the same totally convex space X as in Example 1 but endowed
with another topology. Observe that, for every subset C of Y, the
function, given by CPc(g) == sup Ig(y)1 | for all g in X, is a semi-norm on

yEC
X. We choose the semi-norms CPc, where C is a countable subset of Y,
as generating family for the topology on X.
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(5.9.1) The TTCS X is complete.

Proof. Clearly, the topology on X is Hausdorff. Let (ga)6ED be a
Cauchy net in X. Then for any point y in Y, (96(Y))b,D is a Cauchy net
in OC and thus converges to some element g(y) in OC. It follows that
the net (g8)8ED converges to the function y - g(y), so that it remains
to verify that the latter belongs to X. D

(5.9.2) The dual space X’ is complete.

Proof. We shall use Theorem (5.3). Let f E X*. For every point yo
in Y, let y,,o be the element of X given by

9yo (y) - 1 if y = yo, and gyo (y) = 0 otherwise.

We consider the set

and claim that it is countable. Assume the contrary. Then there exists
an integer no &#x3E; 1 and an injective sequence (Yn)n&#x3E;1 in Y such that
one of the following four conditions hold: For all n &#x3E; 1, we distinguish
1) Re(f(gYn)) &#x3E; ;0’ 2) Im(f(gYn)) &#x3E; ;0’ 3) Re(f(gYn))  - 1 no,

4) I m(f (gYn))  - 1 no We consider only the first case, the treatment of
the other cases is similar. 

m

For every integer m &#x3E; 1, set gm = 1 m Z gVn. Then (gm)m&#x3E;1 is a se-
n=1 

quence in X converging to 0. Hence, the set K = {gm; m &#x3E; 1} U {0}
1 
m

is compact, so that IlK is continuous. Therefore, f (gm) = ’ m E f (gYn)
n=1

converges to 0, in contradiction to Re(f (gm)) = 1 m Z Re( f (gyn)) &#x3E; 1 n0n=1 n0

for all m &#x3E; 1. We conclude that the set C is countable.

Now, we show that f is continuous. Assume the contrary: There is

a net (g8) 8ED in X such that (,g6) converges to 0 but f (g6) does not.
Hence, there is an E &#x3E; 0 such that, for all 6 in D, there exists a 6’ in D
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with b’ &#x3E; b and |f(g5, ) | &#x3E; E. We define a sequence (6n)n&#x3E;1 as follows.
For every integer n 2: 1, there exists a b* in D such that cp.C (gd’)  1 n
whenever b’ &#x3E; b* in D. We choose b" in D such that b" &#x3E; b* and
| f(g5,,) | 2: E. Then we set bn = b" . Thus, cpC (gsn )  1 n and |f(g5n) | 2: E
for all n &#x3E; 1.

For every g in X, we introduce the following elements gC and g6 of X:

if y (E C,
otherwise.

if y E YBC,
otherwise.

Observe that gC == L g(y)gy in X. Since f is a morphism and since
yEYBC

f(gy) = 0 whenever y e YBC, we have f (gC) = 0. Since 2g =1 2gC+2gc,
we deduce that f(g) = f(gC). The sequence (gCdn)n&#x3E;1 converges to 0,
because cp (gCbn)  1 n for all n &#x3E; 1. Hence, the set K = {gCdn; n &#x3E; 1}U{0}
is compact, so that f|K is continuous. Therefore, f(gCdn) converges to
0, in contradiction to |f(g8n)| &#x3E; E for all n &#x3E; 1. We conclude that f is
continuous. D

(5.9.3) The semi-norm CPY, given by cpY(g) = sup |g(y)| for all 9 in X, is
yEY

not continuous.

(5.9.4) For all compact subsets K of X, the restriction CPylK is continu-
ous.

The proofs of (5.9.3) and (5.9.4) use the same arguments as those of
(5.8.3) and (5.8.4), respectively, and are therefore left to the reader.

Remark. Since locally convex topologies generated by a single semi-
norm are cocomplete, it is clear by (5.9.4) that the space X" is obtained
by equipping the TCS X with the semi-norm cpY. Thus X" is a closed
subspace of a Banach ball. Moreover, the space X" is isomorphic to
X *’ = X".

(5.9.5) The TTCS X is not cocomplete,.
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Indeed, the validity of (5.9.3) and (5.9.4) forbids X to be cocomplete
(cf. Theorem (4.6)).

(5.9.6) The TTCS X is not reflexive.

Proof. The dual space X’ is complete (5.9.2). By Proposition (4.9)
the bidual space X" is therefore cocomplete. If X were reflexive, then
it would be cocomplete, which contradicts (5.9.5). D

Summing up, Example 2 provides us with a complete TTCS X which is
not reflexive and in particular not cocomplete. On the other hand, X’ is
complete by Theorem (5.3). That shows that the validity of that prop-
erty is not a sufficient condition for the bicompleteness of a complete
TTCS.
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