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MODULES OVER A QUANTALE AND MODELS FOR
THE OPERATOR! IN LINEAR LOGIC

by Kimmo I. ROSENTHAL

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XXXV-4 (1994)

Resume. On ddmontre que la catdgorie Mod(Q) des modules sur un quantale Q
(commutatif et unitaire) est un mod6le de la logique lindaire pleine au sens de M.
Barr. Ainsi, c’est une catdgorie *-autonome equippee d’un cotriple ! satisfaisant
!(AxB) ~ (!A)X(!B) et ! 1 ~ Q, ou Q en tant que Q-module est l’unitd pour X
dans Mod(Q). Pour construire Q, on utilise Ie foncteur libre pour les Q-modules
ainsi que des formules originellement donndes par R. Guitart.

INTRODUCTION

*-autonomous categories, originally investigated by Barr [2], have recently be-
come the subject of much interest due to the fact that they provide categorical
models for linear logic. Linear logic is a logic of resources developed by J .Y. Girard
[6] which has potentially significa.nt applications in theoretical computer science.
The precise connection between *-autonomous categories and linear logic was first
clarified by Seely [12]. (Also, see Barr [3] and Blute [4].)

One particular aspect of the development of linear logic was the existence of
the modal operator ’of course’ denoted by !. Seely discussed in [12] some of the
categorical properties that ! should possess and ! has been analyzed further by
Barr [3] in his recent article. Following Barr, we say that a model of ’full’ linear
logic is a *-autonomous category £ with finite products together with a cotriple
(!, c, 6) on £ satisfying that !(A x B) = (!A) 0 (!B) and !1 = T, where T is the unit
for 0 in £.

Models for !, i.e. suitable cotriples on *-autonomous categories, have not been
easy to find. Girard’s original coherent spaces provide a model ([6], [12]) and in [3]
Barr discussed modifying the so-called Chu construction to obtain a model for !.
Another potentially very interesting model has been investigated by Blute, Pana-
gaden and Seely [5], where ! is modelled by the Fock space construction in functional
analysis.

In this article, we provide a new family of models of full linear logic by con-
sidering modules over a commutative, unital quantale. Commutative, unital qua.n-
tales are the commutative monoid objects in the *-autonomous category Sl of sup-
lattices. These quantales and their modules were studied by Joyal and Tierney [8].
(For an overview of the theory of quantales, see [9].)
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If Q is a commutative, unital quantale, the category Mod(Q), of Q-modules,
is a *-autonomous category and we indicate how the free Q-module functor from
,Sets to Mod(Q) extends to a cotriple ! : Mod(Q) -&#x3E; Mod(Q) with the requisite
structure to make Mod(Q) into a model of full linear logic. Our inspiration and
calculations owe a debt to the early work of Guitart [7], where the free Q-module
construction is first described and the category Mod(Q) is analyzed in some detail.
Guitart’s theory of involutive monads deserves further study and may be relevant
to developing other examples along these lines.

We begin by briefly describing a simple example, namely the category of sup-
lattices. This examples serves to illuminate the more general construction in §2.

§1. An example: the case of sup-lattices

The category Sl of sup-lattices is an example of a *-autonomous category. It

was studied in detail by Joyal and Tierney [8] where the *- autonomous structure
is described. The covariant power-set functor P : Sets -&#x3E; Sl is the free sup-lattice
functor. It will give rise to a cotriple ! on Sl, which will make Sl into a model of
full linear logic, in the sense of Barr [3].

If M is a sup-lattice, define ! : Sl -&#x3E; Sl to be the covariant power-set functor.
Thus, !M = P(M), the power set of A4 .

We have the following two maps:
EM : P(M) -&#x3E; M defined by £M(A) = sup A for a subset A C M
8M : P(M) -&#x3E; P(P(M)) given by 8M(A) = {{a}|a E A}.

Proposition: (P,E,8) defines a cotriple on 51. Furthermore, for all sup-lattices
A, B, it satisfies that peA x B) = P(A) 0 P(B).

Proof: The fa.ct that (P, E, 8) satisfies the appropriate diagrams for a cotriple is a
straightforward exercise. The isomorpliism P(A x B) = P(A) X P(B) is discussed
in [8] and follows directly from the fact that P is the free sup-lattice functor.

Corollary : Th.e cat egory Sl of sitp-lattices, t oget h er ivith the cotriple (P, E, 8), is a

model of full linear logic.

§2. The general case: modules over a conmnutative unital quantale

A monoid in the category SI is a sup-lattice Q together with an associative bi-
nary operation o (with an identity element), which preserves sups in both variables.
Such structures have been studied under the name commutative unital quantale
(see [9] for an overview of quantale theory). Quantales are of interest in a variety
of areas, in particular theoretical computer science (e.g. [1]) and linear logic ([9]).
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Definition 2.1. Let Q be a unital, commutative quantale. A Q-module is a sup-
lattice M together with a function. : Q x M -&#x3E; M such that

1) e . m = m ,for all m E M, where e is the identity of Q
2) q - (r - m) = (q o r) - m for all q, r E Q, m E M
3) (supaqa) ’ m sup,,(q. - m) for all {qa} 9 Q, 1n E M.
4) q ’ (supBmB) = supp(q . mp) for all q E Q, {mB} C M.
A sup-lattice morphism V): M -&#x3E; N is a Q-rrrodule morphism iff it satisfies W(q-m) =
q-W(m) for all q E Q, rn E M.

Let Mod(Q) denote the category of Q-n10dules. Tllis ca.tegory was also studied.
in [8] by Joyal and Tierney, and we record the following result.

Theorem 2.1. Mod(Q) is a *-autonomous category.

The tensor product M XQ N is the codolnain of the universal bimorphism of
modules M x N -&#x3E; M Q9Q N, where a bimorphism is a Q-module map in each
variable separately. Q is the unit object for WQ. HomQ (M, N) is the module of Q-
module morphisms M -&#x3E; N with the obvious Q-inodule structure.

We should point out that modules over quantales play a significant role in the
categorical treatment of process semantics by Abramsky and Vickers [1].

When Q = 2, (with 2 the two element Boolean algebra), then it follows that
Mod(2) = Sl. We would like to generalize the cotriple construction of §1 to this
general setting of Q-modules.

We first need to discuss the free n-module functor defined on Sets. The first
details of this appear in the work of G u i ta rt [7]. It is also discussed much more

briefly in [8].
Let M be a set and let [Af, Q] denote the set of all functions (in Sets) from M

to Q. [M, Q] becomes a Q-lnodule under * the action (q - f)(m) = q - f(m) for all
m E M. Define ! : Sets -&#x3E; Mod(Q) by !(M) = [M, Q]. ! becomes a covariant
functor as follows. If F : M -&#x3E; N is a function, then define (!F) : [M, Q] -&#x3E; [N, Q]
by (!F)(f)(n) = sup{f(m)|F(m) = n}.

That !(F) is a Q-module morphism follows directly from the fact that in a
quantale q - ( ) preserves suprema. ! lift.s to a functor M od (Q) -&#x3E; Mod(Q).

We record the following result from G u i tart [7].
Theorem 2.2 ! : Sets -&#x3E; Mod(Q) is the free Q-1nodule functor.

We now wish to endow !, viewed as a functor from Mod(Q) to Mod(Q), with
the structure of a cotriple by generalizing t,he construct,ion for sup-lattices (the case
Q = 2). We shall need to utilize the following functions in [A.,I, Q].

If m E M and e E Q is the identity, define 17m: M -&#x3E; Q by nm(x) = e if X = m
and rln, (x) = 0 if x # m.

To obtain a cotriple structure on !, we need to define appropria.te c and 6.
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Define EM : [M, Q] -&#x3E; M by EM(f) = sup{f(m) ..7nlm E M}.
Define 8M : [M, Q] -&#x3E; [[M, Q], Q] by 8M (f)(g) = f (rn) if g = nm for some in E M
and 8M (f)(g) = 0 otherwise.
Both cm and 6M are easily seen to be Q- module morphisms.

We record the following simple lemma, which we shall need.

Lemma 2.1 (1) If M is a Q-7nodule and m E AT, then we have dM(nm) = nnm.
(2) Given g E [M, Q], we have g = supm {g(m) - nm}.

Theorem 2.3. (!, f, 6) is a cotriple on 1B1 ode Q). Furthermore, we have for all
Q-modules M and N that (!M) (6) (!N) =!(M x N) , and !1 = Q.

Proof: First, to obtain a cotriple structure, we must, verify that several equations
hold. Given a Q-module M, we first of all need to obtain the identity function on
[M, Q] from the following two maps.
C(M,QL 06Af : [M, Q] [[All, Q], Q] -&#x3E; [M, Q]
(!Em) o 8M : [M, Q] -&#x3E; [[M, QJ, Q] [M, Q]. 
To see the first of these, E[M,Q](8M)(g) = siip.f {(8M(g)(f)- f}. But, if f#nm
for some in. E M, then (8M(g)(f) = 0. Therefore, our supremum now becomes
supm {(8M(g)(nm)- nm} = supm{g(m)- nm}, by Lemma 2.1.
For the second equality, note that upon applying the functoriality of !, we obtain
that (!EM)(8M)(g)(m) = supf {(8M)(g)(f) |EM (f ) = m}. But, (8M)(g)(f) takes on
the value 0 unless f = qm, in which case we get g(1n). Since EM(nm) = m, it follows
that (!EM)(8M)(g)(m) = g(?n), as desired.
The remaining conditions that need to be verified in checking that (!, C, h) defines a
cotriple is that the two composites
!(bM) o 6M : [M, Q] -&#x3E; [[Af, Q], Q] -&#x3E; [[[M, nJ, Q], Q] and

8[M,Q] o 8M : [M, Q] -&#x3E; [[M, Q], Q] - [[[M, Q], Q], Q] are, in fa.ct, equal.
The latter map is most easily analyzed. For a function k E [[M, Q], Q], we have
that (8(M,Q])(8M)(g)(k) = (8M)(g)(f) provided k = nf and is 0 otherwise. But,
(bm)(g)(f) = g(m) if f = nm and is 0 otherwise. Piecing these facts together,
(8M)(8M)(g)(k) = g(m) provided that k = ’J11m and is 0 otherwise.
We must now obtain this calculation for !(8M) 0 8M. By definition, we have that
!(8M)(8M)(g)(k) = supf{(8M)(g)(f)|(8M)(f) = k}. Since (6M))(f) = 0 unless
f = 7Jm, this equals supm{g(m)|(8m)(nm) = k}. But, by Lemma 2.1., we have that
8M(nm) = nnm and if k = 8M(nm) = nnm, i t. must he for a unique in. Thus, we have
shown that !(8M)(8M)(g)(k) = g(111) if k = nnm and is 0 otherwise, proving that
!(8M)(8M)(g) = (8[M,Q])(8M)(g) for all ,g, as desired. This finishes the verification
that (!,!, 6) forms a cotriple on Mod(Q).

The assertion (!M)X(!N) =!(M x N) follows from the fact that ! is the free Q-
module functor and that XQ is left adjoint, to HomQ. For any Q-module L, we have
the following isomorphisms : HomQ(!MXQ!N, L) = HomQ(!M, H0771Q(!N, L)) =
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Sets(M, HomQ (!N, L)). This , in turn, is isomorphic to Sets(M, Sets(N, L)) =
Sets(M x N, L)) = HomQ (1(M x N), L). This proves that (!M) 0 (!N) =!(M x N)
and we are done

It may be possible to generalize this construction further as follows. By a
quantaloid we mean a category Q enriched in Sl. These are a natural generalization
of unital quantales, which are quantaloids with one object. Much of the theory of
quantales generalizes to quantaloids (see [11]), and it was recently shown in [10] that
the notion of Q-bimodule leads to a cyclic (non-symmetric) *-autonomous category.
A natural question to consider next is whether one can obtain a suitable model for
! on the category of Q-bimodules, where Q is a quanta.loid.
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