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AN APPROACH TO A DUAL OF REGULAR

CLOSURE OPERATORS

by C. CASTELLINI*, J. KOSLOWSKI &#x26; G.E. STRECKER

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XXXV-2 (1994)

Resume. Nous introduisons des techniques nouvelles pour obtenir, dans un contexte cat6gorique, un
analogue complètement sym6trique de la fermeture reguliere de Salbany. Pour cette etude nous utilisons des
correspondances de Galois et des structures de factorisation criblée. Nous obtenons des factorisations pour
les correspondances de Galois les plus importantes qui repr6sentent des constructions de fermeture, et nous
donnons des formules detaillees pour construire une fermeture idempotente canonique et une fermeture
falblement h6r6ditaire a partir de classes arbitraires d’objets et de classes sp6ciales de morphismes.

Introduction

There are two standard (and in some sense dual) ways to construct the closure of a
subset A of a topological space X . The first way is to form the intersection (or infimum in
the lattice of subobjects of X) of the family of all closed sets that contain A. The second way
is to add limit points to A, i.e., to form the union (or supremum in the lattice of subobjects
of X) of the family of all sets that contain A as a dense subset. In general a given closure

operator on a category X cannot be reconstructed using either of the above approaches, since
these two processes usually yield different results. In the case of a weakly hereditary and

idempotent closure operator, however, (as is the case with the usual closure in topology) both
processes do recover the original closure operator. In fact, weakly hereditary and idempotent
closure operators may be characterized by this fact; i.e., they can be reconstructed from the

corresponding class of "closed" subobjects as well as from the corresponding class of "dense"

subobjects.

Both constructions described above generalize to arbitrary classes of subobjects. For

classes of subobjects induced by a class of objects in a specific way, closure operators that
result from the first (or infimum) procedure are called "regular" or closure operators of

"Salbany" type. In this paper we continue to investigate them and also concentrate our
attention on closure operators that arise from object-induced classes of subobjects via the
second (or supremum) approach. It turns out that in an (E, M)-category for sinks the crucial
new notion needed for this analogue is that of E-sink stability.

In Section 1 we present preliminary definitions and results that are necessary for the
remainder of the paper.

* Research supported by the University of Puerto Rico, Mayagüez Campus during a sabbatical
visit at Kansas State University (KS) and at the University of L’Aquila (Italy).



110

Section 2 contains our main results. A canonical idempotent closure operator is obtained
from any pullback-stable family of M-subobjects. Also this construction is shown to give
rise to a natural factorization of the global Galois connection the coadjoint part of which
associates to each idempotent closure operator its class of closed M-subobjects. Similarly,
a canonical weakly hereditary closure operator is obtained from any E-sink stable family of

M-subobjects. This construction is shown to be symmetric to the first construction in that
it gives rise to a natural factorization of the global Galois connection the adjoint part of
which associates to each weakly hereditary closure operator its class of dense M-subobjects.
Finally, in a slightly more special setting a new Galois connection is introduced that relies on

squares of objects and diagonal morphisms. It turns out that this connection is the key link
between objects in our category and the canonical weakly hereditary closure construction
discussed above. Surprisingly, its dual turns out to be its own symmetric analogue, which
fits as the link between objects in our category and the Salbany regular closure construction.

Section 3 contains applications of the theory.
Notice that some of the results presented in this paper can be obtained from the general

theory developed in [6]. However, to keep this paper reasonably self-contained we have
included the corresponding proofs.

We use the terminology of [1] throughout the paper 1.

1 Preliminaries

We begin by recalling the following

1.1 Definition A category X is called an (E, M)-category for sinks, if there exists a col-

lection E of X-sinks, and a class M of X-morphisms such that:

(0) each of E and M is closed under compositions with isomorphisms;

(1) X has (E, M)-factorizations (of sinks); i.e., each sink s in X has a factorization s = m o e
with e E E and m E M, and

(2) X has the unique (E, M)-diagonalization property; i.e., if B -J4. D and C m- D are

X-morphisms with m E M, and e = (At F B)1 and s = (At s2- C), are sinks in X with
e E E, such that m o s = g o e, then there exists a unique diagonal B fl C such that for
every i E I the following diagrams commute:

1 Paul Taylor’s commutative diagrams macro package was used to typeset the diagrams.
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That X is an (E, M)-category implies the following features of M and E (cf. [1] for the
dual case):

1.2 Proposition (0) Every isomorphism is in both .M and E (as a singleton sink).
(1) Every m in M is a monomorphism.

(2) M is closed under M-relative ,first factors, i.e., if nom E M, and n E M,, then m E M.

(3) M is closed under composition.
(4) Pullbacks of X-morphisms in M exist and belong to M.

(5) The M -subobjects of every X-object form a (possibly large) complete lattice; suprema are
formed via (E,.M)-factorizations and infima are formed via intersections. D

Throughout the paper we assume that X has equalizers and is an (E, M)-category for
sinks and that ,M contains all regular monomorphisms.

1.3 Definition A closure operator C on X (with respect to M) is a family {() }xex of
functions on the M-subobject lattices of X with the following properties that hold for each
X E X:

(a) [growth] m  (m)c, for every M-subobject M -m X;
(b) [order-preservation] m  n = (m)cx (n)c for every pair of M-subobjects of X;
(c) [morphism-consistency] If p is the pullback of the M-subobject M m- Y along some
X-morphism X f- Y and q is the pullback of (m)c along f , then (p)cx q, i.e., the closure
of the inverse image of m is less than or equal to the inverse image of the closure of m.

The growth condition (a) implies that for every closure operator C on ,Y, every M-
subobject M m- X has a canonical factorization

where ((M):,(m):) is called the C-closure of the subobject (M, m).
When no confusion is likely we will write mc rather than (m) and for notational

symmetry we will denote the morphism t by me’
If M m- X is an M-subobject, X f-Y is a morphism and M e- f (M) F Y is

the (E, M)-factorization of f o m then f (m) is called the direct irrtage of m along f.
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1.4 Remark (1) Notice that in the presence of (b) (order-preservation) the morphism-
consistency condition (c) of the above definition is equivalent to the following statement

concerning direct images: if M m-X is an M-subobject and X -4 Y is a morphism, then

f ((m)cX)  (f (m))cY, i.e., the direct image of the closure of m is less than or equal to the
closure of the direct image of m; (cf. [9]).
(2) Provided that (a) holds (growth), both order-preservation and morphism-consistency,
i.e., conditions (b) and (c) together are equivalent to the following: given (M, m) and (N, n)
M-subobjects of X and Y, respectively, if f and g are morphisms such that n o g = f o m,
then there exists a unique morphism d such that the following diagram commutes

(3) If we regard M as a full subcategory of the arrow category of X, with the codomain
functor from M to X denoted by U, then the above definition can also be stated in the

following way: A closure operator on X (with respect to M) is a pair C = (Y, F), where F
is an endofunctor on M ( that satisfies U F = U, and is a natural transformation from id m
to F that satisfies (idU)y = idU (cf. [9]).

1.5 Definition Given a closure operator C, we say that m E M is C-closed if me is an

isomorphism. An X-morphism f is called C-dense if for every (E, M)-factorization (e, m) of
f we have that me is an isomorphism. We call C idempotent provided that mc is C-closed
for every m E M. C is called weakly hereditary if m. is C-dense for every m E M.

Notice that morphism-consistency 1.3( c ) implies that pullbacks of C-closed M-subob-
jects are C-closed.

We denote the collection of all closure operators on M by CL(X, M) pre-ordered as
follows: C C D if mc  mD for each m E M (where  is the usual order on subobjects).
Notice that arbitrary suprema and infima exist in CL(X, M), they are formed pointwise
on the M-subobject fibers. iCL(X, M) and wCL(X, M) will denote the collection of all
idempotent and all weakly hereditary closure operators, respectively.

For more background on closure operators see, e.g., [4], [6], [9], [10], [14].
We now recall a few basic facts concerning Galois connections. For a pre-ordered class

X = (X, _C) we denote the dually ordered class (X, :1) by xoP.
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1.6 Definition For pre-ordered classes X = (X, C) and = (Y, ), a Galois connection
F = (F*, F* ) from X to y (denoted by X F- Y) consists of a pair of order preserving
functions (X F- ,y, y F- X) that satisfy F* F* , i.e., x E F* F* (x) for every x E X and
F* F* (y)  y for every y E Y. (F* is the adjoint part and F* is the coadjoint part).

Notice that for every such Galois connection F from X to Y up to equivalence F* and
F* uniquely determine each other, and we also have a dual Galois connection F°P = (F*, F* &#x3E;
from y°P to X°P. Moreover, given a Galois connection G = (G*, G*) from Y to Z, one can
form the co mposite Galois connection G o F = (G* o F*, F* o G*&#x3E; from X to Z.

1.7 Definition For a class A we let P(A) denote the collection of all subclasses of A,
partially ordered by inclusion. Any relation R between classes A and B, i.e., R C A x B
induces a Galois connection P(A) o_ P(B)°P, called a polarity, whose adjoint and coadjoint
parts are given by

Various properties and many examples of Galois connections can be found in [11].

2 General results

We recall from [6] the following commutative diagram of Galois connections

The above Galois connections are as follows.

(1) A* associates to each weakly hereditary closure operator its class of C-dense M-sub-
objects and 0* is its corresponding coadjoint. Notice that 4i* o A* = ídwCL(X,M) (cf. [6],
Proposition 2.12 (0)).

(2) A* associates to each closure operator its weakly hereditary core (i.e., the supremum of
all smaller weakly hereditary closure operators) and 0* is the inclusion.

(3) V* associates to each closure operator its iderrapotent hull (i.e., the infimum of all larger
idempotent closure operators) and V* is the inclusion.

(4) V* associates to each idempotent closure operator its class of C-closed M-subobjects.
and V* is its corresponding adjoint. Notice that V* o V* = idiCL (’X,M) (cf. [6], Proposition
2.12(0)).
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(5) v is the polarity induced by the relation 1 C M x M defined by: m 1 n iff for every
pair of morphisms f, 9 such that f o m = n o g, there exists a unique morphism d such that
both triangles of the following diagram commute

A direct consequence of the general theory of Galois connections (cf. [11]) and the above
statements is the following proposition.

A few remarks concerning the symmetry of the diagram above are in order. Let M o M
be the collection of composable pairs of morphisms in M, and let W be the composition
functor from M o M to M. In [6] this functor was shown to be a bifibration, i.e., the notions
of W-inverse image and of W-direct image make sense. If one restricts W from MoM to M

via the second projection (which was the vital ingredient in the definition of V) the notion of
stability under W-inverse images translates to the usual notion of stability under pullbacks.
If, on the other hand, one restricts the notion of stability under W-direct images along the
first projection from M o M to M, the following notion of E-sink stability is obtained:

2.2 Definition (1) A subclass N of M is called E-sink stable, if for every commutative

square

with n E M and the 2-sink (g, n) E E we have that mEN implies n E N.
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(2) Pes (M) denotes the collection of all E-sink stable subclasses of M, ordered by inclusion.

(3) Ppb(AM) denotes the collection of all pullback-stable subclasses of M, ordered by inclu-
sion.

In view of the construction of A and V as given in [6], one can expect these Galois
connections to factor through Pes (M) and through Ppb (M), respectively. We now provide
the details of these factorizations.

2.3 Theorem (1) Let N E Ppb(AM). If for every M-subobject M m- X, we define:

then SN is an idempotent closure operator with respect to M.

(2) Let N E Pes(M). If for every M-subobject M m- X, we define:

then CN is a weakly hereditary closure operator with respect to M.

Proof (1) Clearly, for every M-subobject M m- X , we have that m  msal.

To prove order-preservation, we just observe that if M m- X and N n- X are M-

subobjects such that m  n, then any .M-subobject N’ n- X that satisfies n  n’ also

satisfies m  n’. Therefore, taking the intersection yields mSN  nSN.

To show morphism-consistency, let X -4 Y be an X-morphism, let Nn- Y be an M-
subobject and let (N, n2- Y),E.1 be the family of all M-subobjects in N such that n  nt,
for every E I. By taking the pullbacks f -1 (n) and f -1 (nt) of n and nt along f , respectively,
we obtain the following commutative diagram

Since N is pullback-stable, we have that f -1 (ni) E N for every i E I. By the definition
of pullback, we have that f -1 (n)  f -1 (ni), for every i E I. Thus, because pullbacks and
intersections commute we have that ( f -1 (n))SN  Pf -1 (ni ) = f -1 (Dni) = f -1 (nSN).

Thus SN is a closure operator; i.e., it satisfies Definition 1.3.
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To show that SN is idempotent let M m- X be an .M-subobject. We first observe that

by definition we have that mSN  (mSN)SN . Now if n E N satisfies m  n, then it also
satisfies mSN  n. This clearly implies that (mSN)SN  msal. Therefore, (mSN )SN = msN .

(2) This follows by the symmetry mentioned above. However, for clarity and completeness
we provide the following proof.

It is clear from the definition of CN that for every monomorphism M m- X, m  mCN .

To prove order-preservation, let us consider the following commutative diagram

where m  n are two M-subobjects, tEN and ((el, e2), p) is the (E, M)-factorization of the
2-sink (n, m’). Notice that the closure of M under M-relative first factors implies that el E
M. E-sink stability of Ai yields that el E N. This, together with the fact that suprema are
formed via (E, M)-factorizations immediately yields via the (E, M)-diagonalization property
a diagonal morphism d with nCN o d = mCN. Therefore we can conclude that mCN  ncN .

To show morphism-consistency, let X f- Y be a morphism and let m = ml’ o m, be a
factorization of m with m, E Nand ml’ E M. By taking the direct images of m and ml’
along f , we obtain the following commutative diagram where ti is induced by the (E, M)-
diagonalization property.

Let (e, mCN) and (e, ( f (m))CN) be the (E, M)-factorizations that yield the CN-closures
of m and f (m) and suppose that e and e are indexed by I and J, respectively. For every
z E I notice that since ei’ belongs to E, so does the 2-sink (el’, tt ). Since N is E-sink stable,
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we conclude that ti E N. Therefore for every i E I there exists some j( i) E .I such that the
following diagram commutes

Using the (E, M)-diagonalization property we obtain a morphism MCN d- f (M)CN such
that d o et = 63(,) o e"i and f o mCN = (f(m))CN o d. Let (ecN, f(mCN)) be the (E, M)- 
factorization of f omCN . Since we have that f(mCN)oeCN = (f(m))CNod, the diagonalization
property implies the existence of a morphism d such that ( f (m))CNod = f(mCN). Therefore
we can conclude that f (mCN)  ( f (m))CN, i.e., that condition (c) of Definition 1.3 is satisfied
(cf. Remark 1.4(1)).

To show that CN is weakly hereditary, let us consider the following commutative diagram

Clearly we have (mcN)CN o (nCN)CN = mCN’ On the other hand, any Mm- &#x3E; M’ E N
used in the construction of mcal is also used in the construction of (mCN)CN which implies
mCN  mCN o (mCN )CN. Thus (mCN )CN is an isomorphism. This completes the proof. D

2.4 Theorem

defined by:

Then, iCL(X,M) R- Ppb(M)oP is a Galois connection that is a coreflection; i. e., R* oR* =

Then, is a Galois connection that is a reflection; i.e., K. o K* =
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Proof (1) By the preceding lemma and the definition of closure operator, it is clear that
R* and R* have domains and codomains as indicated.

If C E C’, then C’-closed implies C-closed, which implies R* (C’) g R* (C), i.e., R* (C) 
R* (C’) in Ppb(M)op. Hence R* is order-preserving.

Clearly, M1  M2 = M2 9 M1. = SM1 S M 2’ Thus R* is order-preserving.

If N E Ppb(M)op and m E M, then m is SN-closed, which implies that AI is a subclass
of ( R* o R* ) (N). Thus, ( R* o R*) (N)  M.

Let C be a closure operator, let Mm-X be an M-subobject and let (Nt ni- X) I be
the family of all M-subobjects with the property that m  ni and nt is C-closed. Then, for
each z E I, mc  nci= n,, which implies that mc D{ni : z E I}= m (R*oR*)(C). Thus
C E (R* o R* )(C). Also, since C is idempotent, mc is C-closed and so is one of the ni’s

originally chosen. Therefore, mR*°R*  mC . Thus R* o R* = idiCL(X,M)
(2) This again follows by the symmetry mentioned above. However, for clarity and com-

pleteness we provide the following proof.

If C C C’, then C-dense implies C’-dense, which implies K* (C) C h’* (C’), i.e., K* (C) 
h-* (C’).

Clearly, if M1 M2, i.e., A4i C M2, then CM1,  CM2 .
If A( E Pes (M) and M t- N E N, we can consider the factorization t = idN 0 t. Clearly

this implies that (M)CN N = N, i.e., t E (K* o K*)(N). Thus, N  (K* o K*)(N).
Now first notice that if C is a closure operator then K* (C) is E-sink stable, so that

K* (C) E Pes (M). Let M m- X be an M-subobject and let m = nt o tt be a family of
factorizations with tt C-dense for every i E I. Clearly, we have that ni= (m)CN  (m)CX.
Therefore, ni  (m)$ implies that (m)CN X= sup ni  (m)$. Thus (K* o K*)(C) E C.
Also, since C is weakly hereditary, mc is C-dense and so is one of the tt’s originally chosen.

Therefore, mc  m (K*oK) (C). Thus (K* o K*)(C) = C. D

2.5 Remark A direct consequence of the above results is that a closure operator C E

CL(X, M) is weakly hereditary and idempotent if and only if C ri V* 0 R* o R* o V*(C)=
A* o K* O K* 0 Ll*(C).

Unfortunately the notion of E-sink stability is less easy to verify than stability under

pullbacks. Therefore next we give some criteria that are easier to check and are equivalent
to it.
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2.6 Proposition (Characterization of E-sink stability) A subclass N of M is E-sink stable
if and only if it satisfies the following two conditions:

(a) whenever M F X and N n- X are M-subobjects with m  n, then for every factor-
ization m = m" o m’ with m’ E N and m" E M, there exists a factorization n = n" o n’ of
n with n’ E A( and n" E M such that m"  nil.

(b) A( is closed under direct images along E-morphisms.

Proof Suppose that N is E-sink stable. Let M m-X be an A(-subobject and let X ...J4. Y
be an E-morphism. If (e, g(m)) is the (E, M)-factorization of g o m, then the 2-sink (g, g(m))
belongs to E and E-sink stability immediately implies that g(m) E N, i.e., (b) holds. To
show that (a) also holds, let us consider the following commutative diagram

where m, n and m" are M-subobjects, m’ E Nand ((el, e2), p) is the (E, M)-factorization
of the 2-sink (n, m"). Notice that the closure of M under .M-relative first factors implies
that el E M. E-sink stability yields that el E N. Thus (a) holds.

Now let us assume that N satisfies (a) and (b) and consider the following commutative
diagram

with mEAl, n E M and the 2-sink (g, n) E E. Now let (e, p) be the (E, M)-factorization of
g, and let (e’, e(m)) be the (E, M)-factorization of e o m. Due to the (E, M)-diagonalization
property, we obtain a morphism d such that the following diagram is commutative.

f
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Notice that condition (b) implies that e(m) E N. Now let us consider the M-subobject
p o e(m) of Y. Clearly, p o e(m)  n and from condition (a) there exists a factorization of n,
n = n" o n’ with n’ E N and n" E M such that p  n". Let h be the morphism such that

p = n" o h. We therefore obtain the following commutative diagram

Since the 2-sink (g, n) E E, the (E, M)-diagonalization property implies the existence of a
morphism Y - k4 N’ such that n" o k = idY. Since n" is a monomorphism and a retraction,
we have that n" is an isomorphism. Thus, n" E E, so since n = n" o n’, we have that n is a
direct image of n’ along an E-morphism and so by (b) it belongs to N. Hence .N is E-sink
stable. D

The proof of the following proposition is rather easy so we omit it.

is a Galois connection and V=Q o R.

for some m E .M’ and some

X-morphisms f and g with (g, n) E E}

2.8 Definition If A is a class of X-objects, we say that an X-monomorphism m is A--regular
if it is the equalizer of some pair of morphisms with codomain in A.

In the case that M contains all regular monomorphisms, an important special class of
idempotent closure operators can be defined as follows. Given any class A of X-objects and
M m- X in M, the A-closure of m is given by the intersection of all A-regular subobjects
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n of X that satisfy m  n. This generalizes the Salbany construction of closure operators
induced by classes of topological spaces, cf. [17], and may also be viewed as a relativization
of Isbell’s notion of dominion (cf. [13]). Following other authors, we will call such a closure
operator the regular (or Salbany) closure operator induced by A. The fact that in the presence
of squares equalizers can be expressed as pullbacks of suitable diagonal morphisms allows us
to build a symmetric counterpart of the Salbany operator. Both constructions fit nicely in
our diagram of Galois connections given at the beginning of this section.

From now on we assume that our category X has squares and that M contains all regular
monomorphisms.

2.9 Definition We call a monomorphism m essentially a diagonal for an object X, if m is
an equalizer of the two projections for some product (X x X,II1,II2) of X with itself.

The corresponding relation between objects in X and monomorphism in M immediately
induces a Galois connection as follows:

H* (A) = (m E .M : m is essentially a diagonal for some X E ,A}
H* (N) ={ X E Obx : every essential diagonal m for X belongs to A(

Then, P(ObX) - H- P(M) is a Galois connection that is a coreflection, i.e., H* o H* =

idobx. D

2.11 Proposition For any class A of _¥-objects, (R*o Q*oHop*)(A) is pn;cisely the Salbany
closure operator induced by A.

Proof Let A E P(ObX)°P . First notice that since for every X E A, the diagonal morphism
8X is A-regular and pullbacks of A-regular morphisms are A-regular, we obtain that (Q* o
HOP*)(A) is a class of A-regular morphisms. On the other hand, if M m-X is A-regular,
i.e., m = eq( f , g), where f , g are two morphisms with codomain Y E A, then m is isomorphic
to the pullback of bY along the morphism X f,g&#x3E; Y x Y. Therefore (Q* o Hop*)(.A)
consists of all A-regular morphisms. Consequently, (R* o Q* o Hop* )(A) is the Salbany
closure induced by A. 0

The next proposition follows from the general theory of Galois connections (cf.[11]).
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Then, is a Galois connection. 1:1

2.13 Theorem (1) S = HIP 0 V = H°P o Q o R

(2) T =A oH=KoloH.

Proof (1) To see that S ri HIP 0 V it is enough to observe that S* = Hop o V*. Con-
sequently by the essential uniqueness of the adjoint we obtain that S* = V* 0 H°P* . The

equality follows from Proposition 2.7(1).

(2) Similarly, it is enough to recall Proposition 2.7(2) and to observe that T* = H* o A* .
Consequently by the essential uniqueness of the coadjoint we obtain that T*= A* o H* . LJ

2.14 Corollary For any class A of x-objects, S*(.A) is precisely the Salbany closure oper-
ator induced by A. D

The following two commutative diagrams of Galois connections help to visualize the

previous results.

These diagrams show that the Galois connection T may well be viewed as a "symmetric
counterpart" of the Galois connection S induced by the Salbany construction. Notice that
S actually can be defined without reference to squares (cf. [7], Theorem 2.5 and Corollary
2.10). For T, however, this does not seem to be possible.
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3 Applications in concrete categories

In this section x always denotes a category with squares that satisfies all the hypotheses of
Sections 1 and 2.

We start with a simple example that nicely supports our view of S and T as symmetric
counterparts of each other.

3.1 Example Let x = (X, ) be a partially ordered set (considered as a category) with
the property that for every x E X the lower segment l x is a complete lattice. For M

we take Morx, so E consists of all supremum sinks. Clearly, (X, ) has squares, namely
x -= x n x for every x E X; consequently all diagonal morphisms are isomorphisms. For every
subset A C X , the closure operator S* (A) turns out to be indiscrete (i.e., the largest closure
operator). To see this notice that if x  y, there is at most one subobject of y that is the

pullback of some diagonal and dominates x, and when there is one it is y itself. Thus the
formation of the intersection of all these subobjects always yields y. On the other hand, the
closure operator T* (A) turns out to be discrete (i.e., the smallest closure operator). To see
this notice that if x  y, there is exactly one factorization x  z  y such that x  z is

induced by a diagonal via an E-sink, and this is x  x  y. Hence the formation of the

supremum of all the corresponding subobjects z  y always yields the original x  y.

Next we consider two special relations on the class of objects of x.

3.2 Definition Let C C Obx x ObX be the relation defined by (A, B) E C iff every morphism
from A to B is a constant morphism (cf. [12], 8.2-8.8), and let lC C ObX x ObX be the relation
induced by the Galois connection H°P o v o H, i.e., (A, B) E J’C iff all essential diagonals m
of A and n of B satisfy m I n (cf. point (5) at the beginning of Section 2).

3.3 Proposition (1) K C C.

(2) C C K iff X satisfies the following property (P): for every commutative diagram

with (A, B) E C and 8 A and Ó B essential diagonals for A and B, the two projections 7r, from
B x B to B satisfy 7rl 0 g = r2 0 g.
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Proof (1) Consider (A, B) E lC and a morphism A f_ B. For any choice of essential

diagonals A 8A- A x A and B 8B- B x B the following diagram commutes

Orthogonality yields a morphism d such that d o SA = f and SB o d = f x f . For any two

morphisms X # A and X s# A we have

where X F A x A and X for, fos&#x3E; B x B are induced by the universal property of
the respective products. Therefore f o r = do  r, s &#x3E;= f o s, i.e., f is a constant morphism.

(2) For (A, B) E C consider a commutative diagram (3-1) with 6A and 6B essential diagonals.
By hypothesis f is constant.

Suppose that C C K. Since 6A l 6B there exists a unique morphism d such that do8A = f
and 6B o d = g. Now 7r, o g = 7r, o 6B o d = d = 7r2 0 8B o d = 7r2 o g. Hence x satisfies (P).

Conversely, suppose that X satisfies the property (P). Thus 7r, og = 7r2 og. Since 6B is an
equalizer of 7r, and 7r2, there exists a unique d with J Bod = g. Since I B is a monomorphism,
it also follows that d o JA = f , which establishes 6A l1 JB. Thus (A, B) E lC. D

3.4 Proposition (1) In the categories Grp of groups and Ab of abelian groups the relations
lC and C coincide.

(2) In the category Top of topological spaces the relations K and C coincide.

Proof By part (1) of Proposition 3.3 we need only show that for these categories C C K;
and so by part (2) it suffices to show that they satisfy property (P). Suppose every morphism
from A to B is constant, and consider arbitrary morphisms A 4 B and A x A g- B x B
for which the diagram (3-1) commutes.

(1) Let i and i2 denote the two injections of A into A x A and let 7r, and 7r2 be the two

projections of B x B into B. By hypothesis, 7r, o g o i and 7r2 o g o i are both constant and
therefore so is g o i1. Similarly we obtain that g o i2 is also constant. Since g o 11 and g o Z2
both equal the constant e-valued homomorphism from A to B x B, it follows that g itself is
the constant e-valued homomorphism from A x A to B x B. In particular, 7ri 0 g = 7r2 o g.

(2) Clearly, both 7f1 o g and 7r2 o g are constant on the subspace A x {a} for each a E A.
Since each of these subspaces intersects the diagonal, on which g is constant by hypothesis,
it follows immediately that 7f1 o g and 7r2 o g agree on the union of A x f a} with the diagonal
of A, and consequently agree on all of A x A. 1:1
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Notice that the relations K and C coincide in any construct X that has the property that

for each x-object A there is an epi-sink (At e2 - A x A)I with the property that for each
i E I both At = A and the images of A under e, and SA have a nonempty intersection. In

Proposition 3.4(1) the two injections i1 and i2 from A into A x A constitute such an epi-sink.
In 3.4(2) the sink is comprised of "horizontal sections" of the space A x A.

Next we illustrate the situation in the two cases in which x is the category Ab of abelian

groups or the category Grp of all groups. In these categories we assume that M is the class
of all injective homomorphisms and consequently E consists of all epi-sinks. We use the
notation X  Y to mean that X is isomorphic to a subgroup of Y and we use X/M for the
quotient group of X mod M.

3.5 Example Let x be the category Ab, and let Sing denote the class of all singleton
groups. By Proposition 3.4 (Sing, ObAb) is a pair of corresponding fixed points of the Galois
connection H°P o v o H. Since every monomorphism in Ab is regular, it is immediate to see
that S* (ObAb) = T* (Sing) is the discrete (i.e., smallest) closure operator. Furthermore,
(ObAb, Sing) is also a pair of corresponding fixed points. S* (Sing) is the indiscrete (i.e.,
largest) closure operator. To see that T* (ObAb) is also the indiscrete operator requires more
effort. We would like to show that the class (L* o H* (ObAb) consists of all monomorphisms.
First notice that the inclusion {0} 0 Y belongs to (L* o H*)(ObAb) for every abelian
group Y. This is true since {0} 0 Y is the direct image of the diagonal 8y along the
epimorphism Y x Y ll1 - ll2 - Y. Now notice that for every monomorphism Mn- Y we have
that idy o OY = n o ON, where {0} O N is the inclusion. Therefore, E-sink stability
implies that n belongs to (L* o H*)(ObAb).

3.6 Example Let F denote the class of all torsion-free abelian groups. It is well known

that the regular closure operator S* (F) induced by Y in Ab, is weakly hereditary and

idempotent and has the morphisms in (Q* o Hop*) (F) corresponding to closed subgroups.
- Clearly, (0* o V*)(S* (F)) = S*(F) and such a closure operator has as dense subgroups all
subgroups Mm-X such that X/M E T, where T is the class of all torsion abelian groups.
Clearly from Proposition 3.4 we have that T = (H* oA* oV* oH°p* )(F)= (H* ov* 0 HOP* ) (F)
and F= (H°p ov* o H*)(T).

3.7 Example Let R denote the class of reduced abelian groups; i.e., those abelian groups
which have no nontrivial divisible subgroup. It is well known that the regular closure operator
S* (1l) in Ab is weakly hereditary and idempotent and has the morphisms in (Q* o H°p* ) (R)
corresponding to closed subgroups. Clearly, (0* o V* ) (S* (R)) = S* (7Z) and such a closure
operator has as dense subgroups all subgroups M m- X such that X/M E D, where D
is the class of all divisible abelian groups. Again from Proposition 3.4 we have that D =

(H* o A* o V* o H°P*)(R) = (H* o v* o HOP*)(1l) and 1l = (H°P 0 V* o H*)(D).
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3.8 Example Let x be the category Grp and let B be the class of all abelian groups. The

S*(B)-closure of a subgroup M m- X is given by the intersection of all normal subgroups
N of X such that X/M is abelian. Since the normal subgroup relation is not transitive,
S*(B) is not weakly hereditary. From Proposition 3.4 we have that A = (H* o v* o H’P*) (5)
consists of all perfect groups, i.e., all groups X such that X = X’, where X’ denotes the
subgroup generated by the commutators. Moreover, (HoP o v* o H* ) (,A) is the class of all
groups which do not have any non-trivial perfect subgroup (cf. (5)).

For the last three examples we consider the special case where X is the category Top
of topological spaces (and continuous functions), M is the class of all embeddings and E
consists of all epi-sinks.

3.9 Example Let A = Topo be the class of all To spaces and let B = Ind be the class of all
indiscrete spaces. Then (B, A) is a pair of corresponding fixed points of the connectedness-
disconnectedness Galois connection induced by C in Top (cf. [2]). It is well known that

the regular closure operator S* (Topo) is the b-closure. We recall that if M is a subset of
a topological space X , a point x belongs to the b-closure of M if for every neighborhood
U of x, U rl M fl Cl(x) i= 0, where Cl (x) denotes the topological closure of the subset
(x) (cf. [3], [15]). Since the b-closure is weakly hereditary and idempotent, we have that

(0* o V* o S*)(Topo) = S* (Top0). From Proposition 3.4 we have that Ind = (H* o A* o
V* o HOP*)(Topo) == (H* o v* o Hop)(Topo) and (H?P ov* o H*)(Ind) = Topo.

3.10 Example Let A = Top1 be the class of all Tl topological spaces. It is well known that

5** (Top1) is weakly hereditary and idempotent (cf.[8]), therefore (0* o V* o S*) (Top1)
S* (Top1). Consequently, (H* ov* oHop* (Top,) consists of all topological spaces whose diag-
onal mapping is S* (Topl )-dense. From Proposition 3.4 we have that (H* o v* o HoP* ) (Top,)
equals the class Aconn of all absolutely connected topological spaces. We recall that a topo-
logical space X is called absolutely connected if it cannot be decomposed into a disjoint family
L of non-empty closed subsets such that 1£1 &#x3E; 1 (cf. [16]). Since Aconn and Top1 are cor-
responding fixed points of the connectedness-disconnectedness Galois connection induced by
C in Top, we also have that Top1 = (H°P o v* o H* )(Aconn).

3.11 Example Let A = Dis be the class of all discrete topological spaces. From Proposition
3.4 we have that (H* o v* o H°P* ) (Dis) equals the class Conn of all connected topological
spaces. Again from Proposition 3.4 we have that (H°p o v o H*)(Conn) is the class Tdisc
of all totally disconnected topological spaces (cf. [2]).

Further examples that illustrate the relationship between closure operators and their
classes of "closed" and "dense" subobjects can be found in [6].
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