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CAHIERS DE TOPOLOGIE VOL. XXXIV-3 (1993)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

UNIVERSAL CONCRETE CATEGORIES AND FUNCTORS
by Véra TRNKOVA

Dedicated to the memory of Jan Reiterman

Résumé. La catégorie S des semigroupes topologiques admet un
foncteur F : & — S et une congruence ~ préservée par F tel que le
foncteur

Fl~: S~ — S/~

est universel dans le sens suivant: pour chaque foncteur G : K; — Ko,
K, et Ko des catégories arbitraires, il existe des foncteurs pleins injectifs
b, Ki — S§/~, 1= 1,2, tels que (F/~) o ®; = &, 0 G. Ce résultat
découle de notre théoréme principal. Le probléme d’un prolongement
d’un foncteur défini sur une sous-catégorie pleine joue un role essentiel
dans cet article.

I. Introduction and the Main Theorem

By [14], there exists a universal calegory I, i.e. a category containing an isomor-
phic copy of every category as its full subcategory (we live in a set theory with sets
and classes, see e.g. [1]). This result was strengthened in [15]: if C is a C-unwversal
category (i.e. a concretizable category such that every concretizable category admits
a full one-to-one functor into ), then there exists a congruence ~ on C such that
C/~ is a universal category. The proof of this result is based on the Kuéera theorem
that every category is a factorcategory of a concretizable one (see [11]). Hence a
universal category {{ is a factorcategory of a concretizable one, say K, so that U is
isomorphic to A/~ for a congruence ~ on K. If C is a C-universal category, K is
(isomorphic to) a full subcategory of C. If ~ is a congruence on C extending ~, then
C/~ contains an isomorphic copy of U as a full subcategory hence it is universal.

Since the category 7 of topological spaces and open continuous maps and the
category M of metric spaces and open uniformly continuous maps are known to
be C-universal (see [13]), we get that their suitable factorcategories are universal
categories. Under a set-theoretical statement

(M) there is only a set of measurable cardinals,

many varieties of universal algebras, categories of presheaves, and other categories
are known to be C-universal (see [13]) hence their suitable factorcategories are
universal, too.

1991 Mathematics Subject Classification: 18B15, 18A22

Key words and phrases: concrete category, universal category, universal functor, extension of a
functor.
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In the present paper, we also show that the category S of topological semigroups
is C-universal (without any special set-theoretical assumption).

In the present paper, we investigate a ”simultaneous version” of the above field
of problems. We investigate functors F : 4 — U universal in the following sense:
for every functor G : Ky — K,, where Ky and K, are arbitrary categories, there
exist full one-to-one functors ®; : K; — U, 7 = 1,2, such that the square

Ky —S— K,

thl ldﬁv

u -~ u

commutes. Such a functor does exist, it is constructed in [15]. Now, we would like
to proceed as above and express I/ as a full subcategory of C/~. However, how to
handle the functor F? How to extend it on C/~7 Let us state explicitly that we
do not know whether for every C-universal category C there exists an endofunctor
F of C and a congruence ~ on C preserved by F such that F/~ : C/~ — C/~ is
universal. Our Main Theorem is a little weaker: C-universality is replaced by a
stronger notion of COE-universality, introduced below. Under this restriction we
are able to formulate and prove a satisfactory Extension Lemma and, using it, to
eonstruct F and ~ preserved by F such that F/~ is universal. Fortunately, the
categories 7, M, S, ... are COE-universal.

Our constructions require to distinguish between concretizable catlegories, i.e.
categories admitting faithful functors into Set, and concrete categories (K, U), where
a faithful functor U : K’ — Set is already specified. The following sorts of full one-to-
one functors of concrete categories ¥ : (K1, U;) — (Ko, Up) have been investigated
in literature or play a réle in our constructions:

realization: Uy =Uyo V¥,
extension: there is a monotransformation of U; into Uy o W;
strong extension: [/ is a summand of Uy o ¥ i.e. there exists
H :K; — Set such that Uyo¥ = U, U H;
strong embedding:there exists a faithful functor H : Set — Set
such that Uy o ¥ = H o U;.

In this paper, the word ”functor” always means a covariant functor unless the
contravariance is explicitely stated. This is just now: we investigate also strong
co-embedding (see [13]), i.e. full one-to-one contravariant functor ¥ : (K;,U;) —
(Ko, Uo) such that there exists a faithful contravariant functor H : Set — Set such
that Upo ¥ = H o U,. .

We say that a full one-to-one functor ¥ : (K}, U;) — (Ko, Up) is an ordinary
embedding if it can be expressed as a finite composition of strong extensions, strong
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embeddings and strong co-embeddings. We say that a concrete category (C,U) is
COE-universal if every Concrete category (K, U;) adinits an Ordinary Embedding
n 1t.

Main Theorem. Let C admit a faithful functor U : C — Set such that (C,U) is
COE-universal. Then there exisls an endofunclor F : C — C and a congruence ~
on C preserved by F such that F/~ :C/~ — C/~ is a universal funcior. '
Problem: Does every C-universal category C admit a functor U : C — Set
such that (C,U) is COE-universal?

Let us describe briefly the contents of the paper. In the part I, we present
and prove the Extension Lemma. This lemina is the core of the proof of the Main
Theorem but it could be of interest in itself. In the part IIl, we present a lemma
which shows that, in the Extension Lemma, realization can be in a way replaced
by an ordinary embedding. In the part IV, we prove the Main Theorem. In V,
we indicate the parts of [13], which have to be inspected to see that 7 and M
are COE-universal and that, under (M), Graph, Alg(l,1) and others are COE-
universal. Moreover, we prove that the category S of topological semigroups (with
its natural forgetful functor), is COE-universal (its C—universality is also a new
result). Hence, applying the Main Theorem on &, we get the result stated in the
Abstract.

II. The Extension Lemma

II.1. Let A’} be a full subcategory of Ko, let E : Ky — Ay be the inclusion.
Let a functor

Fi:Ki—H

be given. If we want to extend Fj on Ky and we permit an enlarging of the range
category, a push-out of E and F;

Ky — H

1

) g [+

Ko —— C
Fy

seeius to offer a solution (clearly, J would be full and one-to-one). However, there
are troubles with push-out: for some a,b € objC, C(a,b) could be a proper class; if
C(a, b) is always a set, C could be non-concretizable though Ky, X1, H are concretiz-
able. Simple examples are shown below. The Extension Lemima gives a solution
satisfactory for our purposes.

II.2. Examples: a) Let A’y be a large discrete category (i.e. objK; is a
proper class and Ky has no other morphisins than identities), obj Ko = {i} Uobj K,
i is an initial object of Ky, objH = objA’; U {t}, { is a terminal object of M, both
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E and F, are full inclusions. If the square (s) is a push-out, then C(7,t) is a proper
class.

b) Let k be a category with precisely three objects, say a, b, ¢, and precisely seven
morphisms, namely 1,4, 13, 1., a € k(a,b), p1,B82 € k(b,c) and f1oa = froa €
k(a,c). Let I be a proper class and let, for every i € I, k; be a copy of k (we
denote its objects by a;, b;, ¢;). Let Ko be a coproduct of all k;, 7 € I, K its full
subcategory generated by {a;,b; | i € I} and let H be the category obtained from
K by the merging all b;, 7 € I, into a unique object b and F} is the corresponding
functor. If (s) is a push-out, then C, though really a category, is not concretizable
because b does not fulfil the condition in [7] (however K¢, A1, H are concretizable,
evidently).

I1.3. We recall that, given functors G1,G2 : Ky — K2, Go is a retract of
G, if there exist a monotransformation g : G2 — () and an epitransformation
7 : Gy — G2 such that 7oy is the identity. (The notion "realization” is recalled in
the part 1.)

Extension Lemma: Let (Ko, Up), (K1,U1), (K, V) be concrete categories. Let

E : (Ky,Uy) — (Ko,Up) be a realization and Fy : Ky — H be a functor such that
Vo Fy is a retract of Uy. Then there exist a concrete category (C, W), a realization
J:(H,V)— (C,W) and a functor Fy : Ko — C such that the square (s) commutes.
I1.4. Remarks. a) The rest of part 11. is devoted to the proof of the Extension
Lemma. However in IV. where we use the lemnma, we need also the following
properties (i), (ii), (iii) of the constructed category C (for shortness, we suppose
that E and J are inclusions):

(1) Fo is one-to-one on obj A\ objA’; and Fo(a) # Fo(b) whenever a € obj Xy,
b € obj Ay \ obj Aly;
(i1) if a € obj Ko \ obj X’y satisfies

() Ko(a,c) = Ko(c,a) =0 for all c € obj K4

then C(Fo(a), d) = C(d, Fo(a)) = 0 for all d € obj H;
(iti) if a,b € objKo\obj X' both satisfy (0) in (ii) and if Ko(a,b) = Ko(b, a) = 0,
then C(Fo(a), Fo(b)) = C(Fo(b), Fo(a)) = 0.
The statements (i), (i), (iii) are mentioned explicitely in 11.10 below.

b) Inspecting the proof, one can see that the Extension Lemuna is fulfilled also
if the category Set is replaced by an arbitrary base category B in which every class
of pairs of parallel morphisms with the same codomain has a joint coequalizer. But
we do not use this level of generality: we investigate only categories concrete over
Set.

I1.5. Convention. We shall suppose, for shortness, that the realization

E : (K1,U1) — (Ko, Up) is an inclusion, i.e. Xy s a full subcategory of K¢ and U,
is the domain-restriction of [/y. We will construct (C,W) and J : (X, V) — (C,W)
such that J will be an inclusion as well.
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Since (Ko, Uo), (H, V) are concrete categories, we use the following convenient
usual notation: every a € ANg(a,b) (or a € H(a,b)) is a triple a = (b, @, a), where
@ is a map Up(a) — Ug(b) (or V(a) — V(b), respectively). Clearly, @ = Uo(«) (or
@=V(a))and Bo@@ = B oa whenever B0 is defined.

I1.6. We start the proof of the Extension Lemina.

Denote by p : Vo F; — U; and 7 : Uy — V o F; natural transformations such

that 7 o y is the identity. Hence, for every ¢,d € obj Ky, a € Ki(c, d),

(*) Fi(a) = mgo@opu,.

In fact, rgo@o p, = Fi(a) o, o e = Fi(a).
Now, we define an auxiliary concrete category (Co, Wp) as follows:

objCo = AU B where A =objH and B = objKo \ X;.

We define Wy : obj Co — Set by
Wo(a) = V(a) for all a € A,
Wo(b) = Up(d) for b € B.
For.a,b € obj Cy, we define a set gen(a,b) as follows:
a) if a,b € A, then gen(a,b) = H(a,b) = {(b,7,a) | v € H(a,b)};
3) ifa,b € B, then gen(a,b) = Kg(a,b) = {(b,7,a) | v € Ky(a,b)};
7) ifa € A, b€ B, then

gen(a,b) = {(b,3o pc,a) | c € objA1&F 1 (c) = a,p € Ko(c,b)},
gen(b,a) = {(a, 7. 07,b) | c €Eobj K 1 &Fi(c) = a,0 € Ko(b,¢)}.

The definition in ) is correct because the maps have the correct domains and
codomains:

Wola) —£— Up(c) —5— Wo(d)

and

Wo(b) Us(c) —=— Wo(a).

Moreover, though all the ¢ € objA’; with F)(¢) = a could form a proper class,
gen(a, b) and gen(b, a) are sets because there are only sets of mnaps Wy(a) — Wy(b)
and Wy(b) — Woy(a).

The category Cg is defined by the closing of the above sets gen with respect to
the composition, where, of course, (c,3,b) o (b,@,a) = (¢, o @, a). The forgetful
functor Wy : Cg — Set is defined on objects; we put Wy(a) = @ for morphisms.
I1.7. Now, we describe the morphisms in Cp, i.e. we describe all the triples
a = (b,@, a) which can be obtained by the composition of elements of the sets gen:

(a) ifa,b € A, then Co(a,b) = gen(a,b) = H(a,b);
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(B) if a,b € B, then Co(a,b) = Ko(a,b) U P(a,b) where P(a, b) is the set of all
triples (b,Gopug0do0m 0p,a),

Wo(a) —&— Up(c) —=— Wo(c') ——
— . Wo(d') —2— Up(d) —Z— Wi(b)
where ¢,d € obj K1, Fi(c) = ¢, Fi(d) = d', p € Ko(a,c), 6 € H(c',d’) and
o € Ko(d,b).
(y) ifa € A and b € B, then
every a € Co(a,b) has the form (b,7 o g 07, a),

Wo(a) —LI— Wo(d') —2— Up(d) —— Wo(b)

where d € obj Ky, Fi(d) = d', v € H(a,d"') and ¢ € Ko(d, b) and
every f € Co(b, a) has the form (a,5 o 7. 03,b),

o(b) —2— Up(e) —=— Wo(c') —— Wo(a)

where ¢ € obj Ky, Fi(c) =¢', o € No(b.c) and v € H(c' . a).

The proof of these statements (), (8), (v) requires to take arbitrary
a,b,c € AU B and to show that if « = (b,@,a) and 8 = (C,—/;, b) have the form
described above for Co(a, b) and Co(b, ¢), then Boa can be expressed in the form of
Cola,c). We show it for the case a € A, b € B, ¢ € A and omit the other 23— 1 cases
because they are analogous or easier. Thus, we may suppose that a = (b, Fopug07, a),
where d € obj Ay, Fi(d) = d', ¥ € H(a,d') and o € Ko(d,b) and 8 = (¢c,Zo7.00,b),
where e € obj Ky, Fi(e) = €', 0 € Ko(b,e), € € H(e',c). We use (*) and compute
Bol = Eom0g0T 00T = EoT, 000 G0pa07 =EoFj(goa)oy=co Fi(po0)on,
1e. Boa=¢coFi(poo)oy € H(a,c).
I1.8. Now, we define a map G : Ko — Cp as follows:

G(a) = Fy(a) for all a € objA’y,

G)y=9> for all b € obj K’y \ obj A'y;

«) if a,b € obj K}, a € Ko(a,b), we put G(a) = Fi(a);
B3) ifa,b € B, a € Ko(a,b), we put G(a) = «;

7) ifa €objAy, b€ B, a € Ko(a,b), B € Ko(b,a), we put

G(a) = (b,@ o pq, Fi(a)) and G(B) = (Fi(a), 74 o B,b).
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Then G maps obj Ko into objCo and, for every a,b € objK, and o € Ko(a,b),
it maps a into Co(G(a), G(b)). Moreover, GG preserves the units. But it is not a
functor because it does not preserve the composition. We perform a factorization
P :Co — C such that Fp = Po G : Ky — C is already a functor. (C and Fy will
already satisfy our Extension Lemma.)

For every z € objCy, let us denote by T the class of all triples (g, 0, @)
where p € Ko(r, s), 0 € Ko(s,t), a € Co(G(t), ).

P—— s ——
e o
G(t) —— =
[¢]
Let us denote by ¢, : Wy(z) — T a joint coequalizer (in the category Set!) of all
pairs of maps
Eomomand aoG(oop)

for all (g,0, ) € T.

If z,y € objCo, B € Co(z,y), B= (y,ﬁ,:c), then there exists precisely one
map 3 : T — g such that foe, = €y o3 because, for every (0,0,c) €T, (0,0,P0a)
isin Ty.

We define the category C as follows: objC = obj Co, C(z,y) = {(y,8,z)|8 =
(y,3,2) € Co(x,y)}; the forgetful functor W : C — Set is defined by W(z) = Z,

W(B) = 8. The factorization P : Cy — C is given by P(z) ==z, P(y,b_,x) = (y, B, z).
Then Fy = P o G already preserves the composition because, for p € Ko(r,s),
o0 € Ko(s.t), a =1 € Co(G(¢),G(t)), we have € 0 G(0) 0 G(p) = € o G(o o p) hence
G(o)oG(g)oe = G(oop)oc and ¢ is epi.

I1.9. We show that H is a full subcategory of C and that Fy is an extension
of Fy. To show this, it is sufficient to prove that for every a € A = obj M, the joint
coequalizer €4 : Wo(a) — @ in I1.8 is a bijection. Then we can choose &, = 1wo(a)
and, for a,b € A and « € H(a,b), @ = (b,@,a) we have @ = @, hence P(a) = a.
Consequently, for ¢,d € objK;, Fi(c) = a, Fi(d) = b, ¢ € Ki(c,d), we have
Fo(e) = G(e) = Fi(o).

Thus, let @ € A. It is sufficient to show that for every (g,0,a) € Ty,

(**) woG(o)oG(o) =aoG(oop).
Let us suppose that

t

a.

G(1)

a

We have to investigate all the possibilities r,s,¢ € objA’; U (obj Ao \ objKy), i.e.
23 cases again. We show “the worst” case that r € objKg \ objK;, s € obj X,
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and t € objKg \ objK;, the other cases are either analogous or easier. In our
case, G(g) = (Fi(s), 75 00,7), G(o) = (1,7 o p,, F1(s)), G(o 0 ) = 0 0 p; then
G(cop)=70pgand E‘v(T)an)- =Topsom,o0p; but, by 11.7, a € Co(G(t),a) can
be expressed as a = (a,Y¥ o my og,t) where d € obj X'y, Fi(d) = ¢, § € Ky(t,d) and
v € H(c, a), so that

@oG(0)oG(g) =FomgoboTopu,omopg=5oF (boo)o

omy0p=Fo0mg0b000g=F0mg080506g=aoG(co0p),

hence (*x) is satisfied.

I1.10. We conclude that the inclusion J : (H,V) — (C,W) is a realization
and Fy o E = jo Fy. The statements (i), (ii), (iil) in I1.4 follow from the fact that
C 1s a mere factorcategory of Co, so that C satisfies them whenever Cy satisfies the
corresponding statements. However this follows immediately from I1.7.

III. Ordinary embeddings

II1.1. Ordinary embeddings were introduced in the part 1. as compositions
of finitely many strong extensions, strong embeddings and strong co-embeddings.
The notion of ordinary embedding is sitting between two requirements:

a) 1o be weak enough: so weak that every concrete category admits an
embedding of this kind into the category of topological semigroups (as shown in
part V of this paper) and into other comprehensive categories;

b) to be strong enough: so strong that the Extension Lemma can be, in a
way, generalized to it. This is just stated in'the Proposition below.

II1.2. A distinguished point of a concrete category (A, U) is a collection d =
{ds | @ € objK’} such that d, € U(a) and [U(a)(ds) = dy for all a,b € obj K,
a € K(a,b).

Proposition. Let (Kg, Up), (K1,U1), (H,Y) be concrete categories, let (H,Y) have
a distinguished point. Let E : (K1,U1) — (Ko, Up) be an ordinary embedding. Let
Fiy : Ky — M be a functor such that Y o Fy is a retract of Uy. Then there exists a
faithful functor V : H — Set such that V o Fy is a retract of Uyo E.

The rest of part 111. is devoted to the proof of this Proposition.

III.3. -~ In II1.4-111.6, we suppose the following situation (we shall not repeat
these presumnptions): (K1, U;) and (H,Y) are concrete categories, (H,Y) has a
distinguished point, say d; moreover, a functor F; : Ky — H and natural trans-
formations 7 : Uy — Y o F and pt : Y o F — U} are given such that 7 o u is the
identity.

I11.4. Lemma.Let E: (K}, U)) — (Ko, Up) be cither a strong extension or a
strong embedding. Then there czists a faithful functor V : ' H — Set such that

a) (H,V) has a distinguished pont;

- 246 -



V. TRNKOVA = UNIVERSAL CONCRETE CATEGORIES...

b) there ezist natural transformations
#:Upo E—VoF, jg:VoF —-UyoF

such that 7 o ji is the identity.

Proof. 1) Let E be a strong extension. Hence there exists G : K; — Set
such that Ugo E = U; UG. We put V = Y, # sends U; onto V as 7 and G on
the distinguished point d (i.e. #4(z) = d, for all z € G(a)); jt is a composition of
u:VoF, — U; and the coproduct injection Uy — Uy I G. Since V =Y, (H,V)
has a distinguished point.

2) Let E be a strong embedding, i.e. there exists a faithful functor G :
Set — Set such that Ugo E = GgoU;. We put V = GoY. Since G is faithful,
there exists a monotransformation of the identical functor Id : Set — Set (see e.g.
[13]), so that the concrete category (H, V) has a distinguished point again. We put
#=Gom, i =Gop, hence V, &, ji have all the required properties.

II1.5. We need an analogous result also for strong co-embedding, hence we
have to work with opposite categories. Let K'i¥, HP be the categories opposite to
K1, H and let us denote by F/¥ : KJ¥ — H°P the functor opposite to F; : K1 — H.
Given a strong co-embedding E : (A}, U;) — (Ko, Up), let us denote by E: KPP —
Ko the corresponding covariant (full one-to-one) functor.
Lemma.lLet E : (K1,U;) — (Ko, Us) be a strong co-embedding. Then there ezists
a faithful functor V' : H°P — Set such that

a) (H°P, V) has a distinguished point;

b) there exist natural transformations

#:UgoE—VoFY" j:VoF"—UjoE
such that & o i 1s the wdentaty.

Proof. Since E is a strong co-embedding, there exists a contravariant
faithful functor G : Set — Set such that Ugo E = Gol;. Then GoY : H — Set is
a contravariant faithful functor, let V : H° — Set be the corresponding covariant
one. Since G is contravariant and faithful, the contravariant power-set functor P~
(ie. P~X = expX, [PT(H)(Z) = f~1(2)) is a retract of G (see e.g. [13, pp.
85-86)); since P~ has a distinguished point (namely @ € P~ X), (H°,V) also has
a distinguished point. Now, we put # = Goyp, ji = Gow. Then V, %, ii have all
the required properties.

II1.6. Proof of the Proposition.

By the definition, E : (Ky,U;) — (Ko, Up) can be expressed as £ =
Eypo---0E;, where every E; : (K, U;) — (Nig1,Uis1) is either a strong extension
or a strong embedding or a strong co-embedding (and (K41, Un4+1) is our given
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(Ko,Up)). Moreover, we may suppose that all the functors Ej, except possibly
the last E,, map the class obj X’; onto the class objK;y1. Hence every E;, i =
1,...,n —1, is either an isomorphism of X’; onto K;4+; (and then we may suppose
that K; = K;3+; and E; is identical, only U;, U4 are possibly different) or a
contravariant isomorphism (and then we may suppose that K;+; = K* and E;
is the duality). If every E;, i = 1,...,n is either a strong extension or a strong
embedding, we use Lemma II1.4 finitely many times and we get the Proposition.
If some of the E;’s is a strong co-embedding, we use also Lemma II1.5: let j be
the smallest element of {1,...,n} such that Ej is a strong co-embedding. Since
E is covariant, some Ej4, with h > 1 must be also a strong co-embedding; let
h be the smallest natural number with this property. We apply Lemma 111.4 on
Ey,...,E;_; (we may suppose K; = --- = Kj); then we use Lemma IIL.5 for
E;. For Ej4i,...,Ej4n-1, we use Lemma 111.4 again, but applied on K{¥ and
FY* : K{? — M. Then, using Lemma II1.5 for E; 4, we change K{¥, H° and Fy?
back to Ky, H and F;. We proceed similarly with Ej a41,..., En.

IV. The proof of the Main Theorem

IV.1. In this part, we present the proof of the Main Theorem, using the
Extension Lemma of II. and the Proposition in III. By [15], a universal functor

u - _.u

does exist. By the Kugera theorem [11], a concretizable category H and a congruence
~o exist such that H/~¢ is isomorphic to {{. Let us denote by P : H — U
the corresponding surjective functor, one-to-one on objH (i.e. P(a) = P(p) iff
a ~q ). Let us form a pullback of H o P and P,

P H

H U U
g -
KN ——— A, LA N H

i.e. obj X is precisely the class of all pairs (as,a;) € objH x objH such that
H(P(a2)) = P(ay), Fi(az,a1) = a1, Fa(a2, a;) = az and analogously for morphisms.
One can verify that F is surjective and that it is one-to-one on obj X’; (because the
functor P, opposit to F» in the pullback, has also these properties), so that Po Fy is
also surjective and one-to-one on objA’;. Let ~; be the congruence on KX, defined
by

o~ ﬂ iff P(Fg((!)) = P(F;(ﬂ)) .

Hence Ky /~ is isomorphic to I{/. Moreover, F} sends ~;-congruent morphisms to

I
~p-congruent morphisms so that the factorfunctor Fy : Ky/~j— H/~y of F} is a
universal functor.
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IV.2. Since M is concretizable, there is a faithful functor X :  — Set. Let
C) : H — Set be a functor sending each a € objH on a one point set {d,} and
let Y be a coproduct of X and C; so that (H,Y) is a concrete category with a
distinguished point d = {d, | @ € obj H} (see 111.2). Let us define

Uy : K1 — Set

by Ui(az,a1) = Y(a2) x Y(a1), Ui(az,a1) = Y(a2) x Y(a1). Then (K1,U;) is
a concrete category because U is faithful. Moreover, Y o F is a retract of U,.
In fact, if a = (az2,a1) € objK;, then the maps 75 : Y(az2) x Y(a;) — Y(ay)
sending (z2,z1) to z; determine an epitransformation = : Uy — Y o Fy and the
maps o : Y(a1) — Y(a2) x Y(a;) sending z € Y(a;) to (dq,,z) determine a
monotransformation u : Y o F} —'U; such that = o u is the identity.
IV.3. Let a COE—universal category (Ko, Up) be given. Then there exists an
ordinary embedding E : (K;,U;) — (Ko, Us). By Proposition II1.2, there exists
a faithful functor V : H — Set such that V o Fy.is a retract of Uy o E. Hence
E : (K1,Ugo E) — (H,V) is a realization, so that we can use the Extension
Lemma: there exist a concrete category (C, W), a realization J : (H,V) — (C, W)
and a functor Fy : Kg — C such that Fpo E = Jo F,. Let ® : C — Ky be a full
one-to-one functor (such functor does exists because C is concretizable and K is
COE-universal). Then we have the commutative square

Ky 5

N

F,

Ko —— C

-

. ®oF .
Ko —=2, Ko

and both E and ® o J are full one-to-one functors. Moreover, we have congruences
~1 on K1 and ~¢ on ‘H such that the functor Fj : K1 /~1— H /~q is universal.

IV 4. To finish the proof of the Main Theorem, it is sufficient to find a con-
gruence ~ on K such that the constructed functor F = & o Fy preserves it and ~
agrees with ~; on E(X,) and ~ agrees with ~g on ®(J(H)). Then, clearly,

F/~ . K0/~ hnd K0/~
is universal. For phis reason, we have to choose the functors E : (K1, U;) — (Ko, Up)
and ¢ : C — K¢ in a special way. This is done in V.6 below.

IV.5. Before the special construction of E and @, let us mention explicitely
how a congruence ~ on a full subcategory A of a category B is extended on B: For
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every a,b € obj B, a, 3 € B(a,b), we define

aRB iff eithera=pBora=popoy,

B=pocovand p~o.

Then the transitive envelope of R is a congruence = on B and, since A is a full
subcategory,
a = fiff a >~ B whenever a, 3 € A(a,b).

IV.6. We investigate two copies (K§,Ud) and (K2,Ug) of the given COE-
universal category (Ko, Up). The coproduct is a concrete category as well, hence
there exists an ordinary embedding

A (RLUH U (KE,UE) — (Ko, Vo) -

Let us denote by K; : (Ki,Ui) — (K, U) U (K2, UZ) the coproduct injections
(they are realizations of the concrete categories). Let E; : (K1, U;) — (K3, UQ) be
an ordinary embedding and ®» : C — K3 be a full one-to-one functor. We choose
E :(K1,U1) = (Ko, Ug) and @ : C — Ko in IV.3 of the form

E=AoKy0oE, and ®=Aoh,0P,.

Then E is an ordinary embedding and & is a full one-to-one functor, as required in
IV.3.
IV.7. For shortness, let us suppose that }\3(1), KS are full subcategories of K¢,
Ky is a full subcategory of A}, C is a full subcategory of A'Z, H is a full subcategory
of C and all the functors Ey, Ky, N3, A, ®2, &, J are inclusions. Notice that
F : Ky — Ko sends the whole A into € and A’; into H.

We investigate the following classes of objects of Kg:

Mo = objKy, Mjy, = F(M;).

We claim that

(a) if 1 # 7, then M, N M; = ; in fact, Mo N M; = 0 for all j > 1| because
My C objK} and M; C objA2 for all j > 1. If My, ..., M, are supposed pairwise
disjoint, then My, My = F(My),..., M4y = F(M,,) are pairwise disjoint, by 11.4
(i)

(b)if i # j, a € M;, b € Mj, then Ko(a,b) = Ko(b,a) = 0; this can be
proved analogously to (a), using (ii) and (iii) in 11.4.
IV.8. Let us denote by M, the full subcategory of K¢ generated by M; and
by 9 the full subcategory of Ky generated by U;,J:o M;. The claims (a), (b) in
IV.7 imply that a congruence >~ on It is determined by congruences =; on M;,
7 =0,1,.... We define the congruences =; as follows:

Zo=~1, =1L =0
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and, for j > 2, we put « ~; 3 whenever a and # in M; have the same domain and
codomain.

Let ~ be the congruence on Ky extending =~ as mentioned in IV.5. Then
F : Ko — Ky preserves ~ and the square

K1/~ _Fl_., H [~

! !

Ko/~ LI Ko~

commutes, where the vertical arrows are isofunctors onto full subcategories. We
conclude that F/~ is universal.

IV.9. Remark. An easy modification of the proof of the Main Theorem
gives the following variant of it: Let (C;,U;), i = 1,2, be COE-universal categories.
Then there exist congruences ~; on C;, i = 1,2, and a functor F : C; — C; sending
~1-congruent morphisms to ~2-congruent ones such that the corresponding factor
functor C; /~; — Ca/~2 is universal.

V. COE-universal categories

V.1. A considerable part of full embeddings in [13] are in fact ordinary embed-
dings. However, this is not explicitly stated in [13]. In V.2-V.5 below, we indicate
the parts of [13] which have to be inspected to see that the categories 7 and M are
COE-universal and that, under (M), the categories Graph, Alg(1,1), Alg(2) and
others are COE-universal (all endowed with their natural forgetful functors). In
V.6, we show that the category S of all topological semigroups and all continuous
homomorphisms is COE-universal.

V.2. . The categories S(P*), S(Pg), S(P~) are often used in the embedding
constructions in [13]. Let us recall that P*, P~ are the covariant and the con-
travariant power-set functors Set — Set, P+(X) =P (X)={Z]|ZC X} and,

for f: X =Y, [PY(N)(Z) = f(Z) for every Z C X and [P (N(Z) = FY(Z) for
every ZCY. The functor Py is a subfunctor of P¥, P (Y)={Z | Z C X Z#0}.
Given a functor F : Set — Set, covariant or contmvarlaut the category

S(F) is defined as follows: objects are all pairs (X, r), where X is a set and r C
F(X); f:(X,r) — (X', ?') is a morphism of S(F), if it is a map X — X' such
that [F(f))(r) C ' (or [F(f))(r') C r if F is contravariant). The forgetful functor

S(F) — Set send< (X,r) to X of course. S(Fy,...,F,) are defined analogously
(here, objects are all (.X,ry,...,r,) with r; C F;(.X)).
V.3. The categories S(P*), S(P), S(P') are COE-universal. In fact, given

an arbitrary concrete category (2, U), there exists a preordered class (T, <) and a
realization of (. U) into the category S(P*o@, (T, <)). This is precisely Theorem
3.3 of [13, pp. 95-96], the category S(P* o @, (T, <)) being defined on [13, p. 94].
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(Let us recall that @ : Set — Set denotes the square functor Q(X) = X x X,
Q(f) = f x f.) A full one-to-one functor F : S(P* 0 Q, (T, <)) — S(P*,...,P%)
is constructed in the proof of Theorem 4.3, in [13, pp. 97-99]. Inspecting the
formula for F on p. 98, one can see that F can be expressed as a composition of a
strong embedding, (carried by the set functor P*o@Q) followed by a strong extension |
(adding the summand Upsc x x x {M} xY (a(M)))). Finally, S(P*,..., P*) admits
a strong embedding into S(Pg), see [13, pp. 88-89). We conclude that S(Py),
hence S(P*), are COE-universal. A strong embedding of S(Py) into S(P~) is
constructed in (13, pp.81-85], hence S(P~) is also COE-universal.

V.4. A strong embedding of S(Pg) into M is constructed in [13, pp. 230-
233]. A full embedding #; of S(Py) into 7 is constructed in [13, pp. 244-246);
inspecting the construction, one can see that I{; can be expressed as a composition
of a strong embedding followed by a strong extension. Thus, both M and 7 are
COE-universal.

V.5. Under the set-theoretical statement (M), a strong embedding of S(P™)
into Graph, the category of all directed graphs and all compatible maps, is con-
structed in [13, p. 80]. In {13, pp. 59-60], full embeddings of Graph into Alg(l, 1)
and into Alg(1, 1,0), the categories of all universal algebras with two unary resp. two
unary and one nullary operations and all their homoinorphisms, are constructed.
Inspecting the construction (the construction is also mentioned in V.6 below), one
can see that these full embeddings are strong extensions. Strong embeddings of
Alg(1,1) into Alg(2) and into Alg(2,0), the categories of all algebras with one bi-
nary or one binary and one nullary operations, are constructed in [13, pp. 60-61].
Hence, under (M), all the categories Graph, Alg(1,1), Alg(1,1,0), Alg(2), Alg(2,0)
are COE-universal. Moreover, a strong embedding of Alg(2) into the category Smg
of all semigroups is constructed in [13, pp. 148-154] and a strong embedding of
Alg(1,1) into Idg, the category of all integral domains of characteristic zero and
all their ring homomorphisms is outlined in [13, pp. 158-160] (the full version see
[4]). Thus, under (M), Smg and Idg are also COE-universal. Many varieties of
unary algebras are shown to be COE-universal under (M) in [13, pp.173-185]. (Let
us mention explicitly that every variety of universal algebras is investigated as a
category, morphisms are formed by all homomorphisms.) In fact, if Alg(1,1) can
be fully embedded in a variety V of unary algebras, then it can be strongly emnbed-
ded in it, by [12]. Hence, under (M), every C-universal variety of unary algebras
is COE-universal. In [16], all the categories of presheaves in Set, which admit a
full embedding of Graph into them, are characterized; the results are presented in
(13, pp.201-202]. All the full embeddings constructed in [16] are strong extensions
whenever the category of presheaves in question is endowed by the usual forgetsul
functor sending any ¢ : (P, <) — Set to the coproduct of all sets ¢(p), p € P.
Hence again, under (M), if a category of presheaves in Set is C~universal. then it is
COE-universal. A lot of full embeddings of Graph into varieties of universal alge-
bras are constructed in the literature, mostly in very sophisticated way, see e.g. [2],
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(5], [9], [10]. However these full embeddings imply the C-universality (and possibly
COE-universality) of the varieties in question only under (M) — and better result
cannot be obtained: no category of algebras is C-universal under non (M) (see [13,
pp. 348-349]).

In the next part V.6, the statement (M) is not supposed.

V.6. Let us denote by Top Graph the category of all topological graphs, i.e.
objects are all pairs (X, R) where .\’ is a topological space and R is a closed subset
of the space X x X, morphisms are all continuous compatible maps; denote by
Par Graph the full subcategory consisting of all (X, R) with X paracompact.

Let V be a variety of universal algebras, say of a type A, determined

by a set of equations E. Let us denote by TopV (or ParV) the corresponding
category of topological (or paracompact) algebras, i.e. objects are all topological
(or paracompact) spaces endowed by continuous operations of the type A satisfying
the set of equations E, morphisms are all continuous homomorphisms.
Proposition: The categories Par Graph, Par Alg(1, 1), Par Alg(1,1,0), Par Alg(2),
Par Alg(2,0), ParSmg (hence S = TopSmg), all investigated with their natural
forgetful functors, are COE-unwversal.
Proof: a) In [13], almost full embeddings into the category Top of all topolog-
ical spaces and all continuous maps are investigated. Let us recall that a one-to-one
functor @ : K — Top is called an almost full embedding if, for every a,b € obj X,
¢ maps the set A(a,b) onto the set of all nonconstant continuous maps of ®(a)
into ®(b). Let us denote by ®(A’) the subcategory of Top consisting of all ®(a),
a € objN'. and all (), @ € morph X'. Then K and ®(K) are isomorphic, ®(K) is a
category of suitable topological spaces and all their nonconstant continuous maps
(and these maps are closed with respect to the composition!).

b) In {13, §15, pp. 249-252], as variations of [8], almost full embeddings
of S(P~)°" into Par, the category of all paracompact spaces and all continuous
maps, are presented. Particularly, in 15.10 [13, p. 252], such almost full emnbedding
Q : S(P7)% — Par is presented (let us investigate it as a contravariant functor
S(P~) — Par) that there exists a contravariant functor F : Set — Set with UoQ =
FoVl’, where U : Par — Set and V : S(P~) — Set are the natural forgetful functors.
Hence. denoting by D the subcategory Q(S(P~)) of Par, we get that the range-
restriction Q : S(P™) — D of Q is a strong co-embedding. This implies easily
that D is COE-universal. In fact, given a concrete category (C, W), we denote by
D :(C,W) — (C? P~ o W) the strong co-embedding which is just the duality
on C, carried by P~ : Set — Set. Since (S(P7),V) is COE-universal, there is
an ordinary embedding E : (CP, P~ o W) — (S(P~),V), so that Qo E o D is
an ordinary embedding of (C, W) into (D,U) (where U : D — Set is the domain
restriction of L : Par — Set).

¢) If we inspect §15 in {13, pp. 249-252] again, we see that (D, ) has
two distinct distinguished points, say d' = {d} | « € objD} and ¢ = {d2 | a €
obj D} (in fact, (D, ) has 2%¢ distinct distinguished points, see [13, pp. 148-152],
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and we choose arbitrary pair of them). This implies immediately that there is a
realization ¥ : (D, U) — Par Graph namely, for every space a = (U(a),ts), we put
¥(a) = (a, R,), where R, = {(d},d2)}. Clearly, if f : a — a' is a morphism of D
then it is a morphism of Par Graph and vice versa. We conclude that Par Graph is
COE-universal.

d) Let us recall that in [13, p. 59], the following functor F : Graph —
Alg(1,1) (or Graph — Alg(1,1,0)) is defined: F(X,R) = (Y,q, ) (or F(X,R) =
(Y,a, B,w)) where

Y = XU RU {p, q} with

a(z) = p,a(z,y) = z,a(p) = a(g) = g,
B(x) = q,B8(z,y) = y,B(p) = a(q) = p,
forz € X,(z,y) € R, (w =p);

(the definition of F' on morphisms is omitted).

In [13, pp. 59-60], the functor F is proved to be full. It is a strong
extension, evidently. Moreover, ifa = (X, R) € obj Top Graph, and Y 1s endowed by
the topology t, which coincides with the topology of @ on .\', X is closed-and-open in
t, and t, is discrete on RI{p, ¢}, then «, B are continuous and F determines a strong
extension of Top Graph into Top Alg(1,1) and into Top Alg(1,1,0). Moreover, if
a = (X, R) € objPar Graph, then the underlying space of F(a) is paracompact as
well. We conclude that Par Alg(1,1) and Par Alg(1, 1,0) are COE—-universal.

e) In [13, p. 61] a strong embedding F of Alg(1,1) into Alg(2) and into
Alg(2,0) is defined as follows: its sends an algebra (X, a, ) to an algebra (G(\), o)
(or (G(X), e,w)) where G(.X') = X U {p,q} and

zey=ppezr=zep=c(z).qezx=zeq=LF(z)forallz,y€ X,
pep=gqqeq=ppeqg=qep=p (w=p)

(the definition of F on morphisms is not necessary, F is carried by
G = ldent UCy, 43)-

The proof that F is really a strong embedding (especially its fullness)
is proved in [13, pp. 61-62]. We see immediately that if X is a topological
space and «, § are continuous, tlien the binary operation e is continuous as well
whenever we investigate GG(.\') topologized such that it is a topological sum of
the space X and a two-point discrete space {p,q}. Moreover, if X is paracom-
pact, G(X) is paracompact as well. We conclude that F determines strong embed-
dings Top Alg(1,1) — Top Alg(2), Top Alg(1,1) — Top Alg(2,0), Par Alg(1,1) —
Par Alg(2), Par Alg(1,1) — Par Alg(2,0), so that Par Alg(2) and Par Alg(2,0) are
COE-universal.

f) In [13, pp. 152-154], a strong embedding & of Alg(2) into the category
Smg of all semigroups is constructed as follows: a rigid semigroup D of [3], on two
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generators a, b and the defining relation ab? = baba, is decomposed into two sets,
namely

M = {a, ab, ba, aba, bab, baba} and N = D\ M.

The functor & is carried by G = (Ident xCn)U Car,ie. G(X) = X x M 1IN, given
(X, ®) € obj Alg(2), ®(X, ®) is asemigroup (G(.X), ) where its operation is defined
by means of ® and also by means of the composition of the rigid semigroup D, see
the rules (a), ..., () on p. 152 in [13]. Inspecting these rules, one can see that if
X is a topological space such that the binary operation ©® is continuous, then e is
continuous on G(X) whenever G(X) is investigated as the space X x M IN, M and
N endowed with a discrete topology. This also implies that, for every continuous
f:(X,0) = (X', ®), the map ®(f) : (GX,e) — (GX', ), carried by G(f), is also
continuous. Conversely, if h : (GX,e) — (GX',e) is a continuous homomorphism,
then necessarily h = &(f) where f : (X,®) — (X’,®) is a homomorphism, by [13,
pp. 148-154]; since & is carried by G and G(f) is continuous, f must be continuous.
We conclude that ¢ determines strong embeddings Top Alg(2) — TopSmg = S and
Par Alg(2) — Par Smg, so that S and Par Smg are COE-universal.

Remark. The C-universality and COE-universality of categories Top V, whe-
re V is an algebraically universal variety (i.e. admitting a full one-to-one functor
Alg(1,1) — V) will be investigated in a forthcoming paper.
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