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UNIVERSAL CONCRETE CATEGORIES AND FUNCTORS
by V011Bra TRNKOVÁ

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

VOL. XXXIV-3 (1993)

Dedicated to the memory of Jan Reiterman

Resume. La cat6gorie S des semigroupes topologiques admet un
foncteur F : S - iS et une congruence - pr6serv6e par F tel que le

foncteur

F 1-- : S/- -&#x3E; S/-
est universel dans le sens suivant: pour chaque foncteur G : /Cl -&#x3E; K2,
K1 et K2 des categories arbitraires, il existe des foncteurs pleins injectifs
(bi : : ki -&#x3E; S/-, i = 1,2, tels que (F/-) o O1= O2 o G. Ce resultat

d6coule de notre theoreme principal. Le probléme d’un prolongement
d’un foncteur défini sur une sous-categorie pleine joue un role essentiel
dans cet article.

I. Introduction and the Main Theorem

By [14], there exists a uui’vcrsal category u, i.e. a category containing al isoiiior-
phic copy of every category as its full subcategory (we live in a set theory with sets
and classes, see e.g. [1]). This result was strengthened in [15]: if C is a C-unzversal
category (i.e. a concretizable category such that every concretizable category admits
a full one-to-one functor into C), then there exists a congruence - on C such that
C 1-- is a universal category. The proof of this result is based on the Kucera theorem
that every category is a factorcategory of a concretizable one (see [11]). Hence a

universal category 11 is a factorcategory of a concretizable one, say K, so that U is
isomorphic tu K/= for a congruence = on K. If C is a C-universal category, is
(isomorphic to) a full subcategory of C. If - is a congruence on C extending =, then
Cl- contains an isomorphic copy of 11 as a full subcategory hence it is universal.

Since the category T of topological spaces and open continuous maps and the
category M of metric spaces and open uniformly continuous maps are known to
be C’-universal (see [:3]), we get that their suitable factorcategories are universal
categories. Under a set-theoretical statement

(M) there is only a set of measurable cardinals,

many varieties of universal algebras, categories of presheaves, and other categories
are known to be C’-universal (see [13]) hence their suitable factorcategories are
universal, too.

1991 Mathematics Subject Classification: 18B15, 18A22
Key words and phrases: concrete category, universal category, umiversal functor, extension of a
functor.
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In the present paper, we also show that the category S of topological semigroups
is C-universal (without any special set-theoretical assumption).

In the present paper, we investigate a "simultaneous version" of the above field
of problems. We investigate functors F : 14 -&#x3E; 11 universal in the following sense:
for every functor G : K1 -&#x3E; K2, where K1 and K2 are arbitrary categories, there
exist full one-to-one functors 4)i : Ki-&#x3E;U, i = 1, 2, such that the square

commutes. Such a functor does exist, it is constructed in [15]. Now, we would like
to proceed as above and express 11 as a full subcategory of C/-. However, how to
handle the functor F? How to extend it on Cl-? Let us state explicitly that we
do not know whether for every C-universal category C there exists an endofunctor
F of C and a congruence - on C preserved by F such that F/-: C/- -&#x3E; c/- is
universal. Our Main Theorem is a little weaker: C-universality is replaced by a
stronger notion of COE-universality, introduced below. Under this restriction we
are able to formulate and prove a satisfactory Extension Lemma and, using it, to
construct F aiid - preserved by F such that F/- is universal. Fortunately, the
categories T , M, S, ... are C’O E-uni versal .

Our constructions require to distinguish between concretizable categories, i.e.

categories admitting faithful functors into Set, and concrete categorzes (K, U), where
a faithful functor tl : K -&#x3E; Set is already specified. The following sorts of full one-to-
one functors of concrete categories Y: (K1, U1) - (Ko, Uo) have been investigated
in literature or play a role in our constructions:

realization: (Ji = Uo o ql;
extension: there is a monotransformation of Ljl into (To o 41 ;

strong extension: U1 is a snmland of Uo oY i.e. there exists

H : K1 - Set, sucli that (fo o Y = Ul II H;

strong embedding:there exists a faithful functor H : Set - Set
such tliat Uo o Y = H o U1.

In this paper, the word "fulctor" always means a covariant functor unless the
coltravariance is explicitely stated. This is just now: we investigate also strong
co-embedding (see [13]), i.e. full one-to-one contravariant functor B11 : (1B:1, Ui) -
(K0, U0) such that there exists a faithful contravariant functor H : Set - Set such
that U0 oY= H o U1. 
We say that a full one-to-one functor BII : (K1, (U1) - (k0, Llo) is an ordinary

e1nbeddtng if it, can be expressed as a fllllt.e composition of strong extensions, strong
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embeddings and strong co-emheddings. We say that a concrete category (C, U) is
COE-universal if every Concrete category (K1, Ul ) adlits an Ordinary Embedding
in it.
Main Theorem. Let C adl1Út a faithful fiiilcior U:C -&#x3E; Set such that (C, U) is

COE-universal. Then there erists an endofunctor F : C - C and a congruences
on C 1)reServed by F such that Fl- : C/- -&#x3E; Cl- is a universal functor. 
Problem: Does every C-uliversal category C admit a functor U : C -&#x3E; Set
such that (C, U) is COE-uiiiversal?

Let us describe briefly the contents of the paper. In the part II, we present
and prove the Extension Lemma. This lemma is the core of the proof of the Main
Theorem but it could be of interest in itself. In the part III, we present a lemma
which shows that, in the Extension Lemma, realization can be in a way replaced
by an ordinary embedding. In the part IV, we prove the Main Theorem. In V,
we indicate the parts of [13], which have to be inspected to see that T and M
are COE-universal and that, under (M), Graph, Alg(1, 1) and others are COE-
universal. Moreover, we prove that the category S of topological semigroups (with
its natural forgetful functor), is COE-universal (its C-universality is also a new

result). Hence, applying the Main Theorem on S, we get the result stated in the
Abstract.

II. The Extensioli Lemma

II.1. Let A.:1 be a full subcategory of K0, let E : K1 -&#x3E; klo be the inclusion.
Let a functor

F1: K1 -&#x3E; H

be given. If we want to extend Fi on K0 and we permit an enlarging of the range
category, a push-out of E and Fl

seems to offer a solution (clearly, J would be full and one-to-one). However, there
are troubles with push-out: for some a, b E objC, C(a,b) could be a proper class; if
C(a, b) is always a set, C could be non-concretizable though K0, K,1, 1í are concretiz-
able. Simple examples are shown below. The Ext,ension Lemma gives a solution
satisfactory for our purposes.
II.2. Exaniples: a) Let. K1 be a large discrete category (i.e. obj K1 is a

proper class and A:, has no other morphisms tlian identities), obj Jl;o = {i} U obj K1,
i is an initial object of Ko, obj 1l = obj A.:1 U It), I is a terminal object of 1í, both
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E and Fi are full inclusions. If the square (s) is a push-out, then C(i, t) is a proper
class.

b) Let k be a category with precisely three objects, say a, b, c, and precisely seven
morphisms, namely la, lb, lc, a E k(a, b), B1, B2 E k(b, c) and B1 o a = B2 0 a E
k(a, c). Let I be a proper class and let, for every i E I, ki be a copy of k (we
denote its objects by ns , bi , ci). Let A:o be a coproduct of all ki, i E I, K1 its full
subcategory generated by {ai, bi l i E I} and let 1l be the category obtained from
K1 by the merging all bi, i E I , into a unique ob ject b and Fl is the corresponding
functor. If (s) is a push-out, then C, though really a category, is not concretizable
because b does not fulfil the condition in [7] (however K0, K1, ?i are concretizable,
evidently).
11.3. We recall that, given functors Gl, G2 : kli - K2, G2 is a retract of

G1 if there exist a monotransformation 03BC: C2 -&#x3E; G, and an epitransformation
7r : G1 -&#x3E; G2 such that 7r o it is the identity. (The notion "realization" is recalled in
the part I.)
Exteiisioii Leiiiiiia: Let (Ko, Uo), (K:I, U1), (H, V) be concrete categories. Let
E : (K:1, U1) - (K0, U0) be a realization and F 1 kli 1 - 1l be a fimactor such that 
V o Fl is a retract of (11. Thell there exist a concrete cat egory (C, W), a realzzation
J : (11., V) - (C, W ) and a functor Fo : io - C such tliat the square (s) commutes.
II.4. Remarks. a) The rest of part II. is devoted to the proof of the Ext,ension
Lemma. However in IV’, where we use the lelnla, we need also the following
properties (i), (ii), (iii) of the constructed cat,egory C (for shortness, we suppose
that E and J are inclusions):

(i) Fo is one-to-one on obj K0Bobj K1 and Fo(a) =I- Fo (b) whelever a E obj K1,
b E obj k0 B obj K1; 

(ii) if a E obj K0 B obj K1 satisfies

The statements (i), (ii), (iii) are mentioned explicitely in 11.10 below.
b) Inspecting the proof, one can see tlat, the Extension Lemma is fulfilled also

if the category Set is replaced by an arbitrary base cat,egory B in which every class
of pairs of parallel morphisms with the same codomain has a joint coequalizer. But
we do not use this level of generality: we investigate only categories concrete over
Set.
II.5. Convention. We shall suppose, for shortness, tlat, the realization
E : (K1, tJl ) - (K0, Uo) is an inclusion, i.e. K1 is a full subcategory of A:o and U1
is the domain-restriction of lTo. BVe will construct (C, W) and J : (H, V) - (C, B1’)
such tliat J will be an inclusion as well.
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Since (ko, U0), (H, V) are concrete cat,egories, we use the following convenient
usual notation: every a E K0(a, b) (or a E ’H(a,b)) is a triple a = (6, a, a), where
a is a map Uo(a) - U0(b) (or V (a) -&#x3E; L’(6), respectively). Clearly, a = Uo(a) (or
a = V(a)) and B o a = /3 o a whenever B o a is defined.
11.6. We start the Proof of the Extension Lemma.

Denote by ii : V o F, - lfl and TT: 11, -&#x3E; V o Fi natural transformations such
that 7r o p is the identity. Hence, for every c, d E obj K1, a E K1 (c, d),

In fact, TTd o a o lic = Fl (a) o 7r (’ o Jlc = Fl (0’).
Now, we define an auxiliary concrete category (Co, W0) as follows:

We define

For. a, b E obj C0, we define a set, gen (a, b) as follows:

The definition in y) is correct, because the maps have the correct domains and

codomains:

and

Moreover, though all the c E obj K1 with F1(c) = a could form a proper class,
gen(a,b) and gen(6,a) are sets because there are only sets of lnaps W0(a) -&#x3E; IVO(B)
and W0 (b) -&#x3E; Wo(a).

The category Co is defined by the closing of the above sets gen with respect to
the composition, where, of course, (c, 73, b) o (b, 0, cc) = (c, B o 0, a). Tlle forgetful
functor Wo : Co - Set, is defiled ol objects; we put Wo(a) = G for morphisms.
11.7. Now, we describe the morphisms in C0, i.e. we describe all the triples
a = (b, a, a) which can be obtaiiied by the conlposition of elen1ents of the sets gen:
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if a E A and b E B, tlien
every a E C0(a, b) has the form

where
has the form

where

The proof of these statements (a), (,3), (y) requires to take arbitrary
a, b, c E A U B and to show that if n = (b, a, a) and B = (c, B, b) have the forni
described above for C0(a,b) and C0(b, c), tlien Bo (B can be expressed in the forill of
C0(a, c). We show it for the case a E A, b E B, c E A and omit the other 23 -1 cases
because they are analogous or easier. Thus, we may suppose that ci = (b, oo03BCdoy, a),
where d E obj K1, F1(d) = d’, y E H(a, d’) and o E k0(d, b) and B = (c,E o TTe o g, b),

Now, we defiue a map G : A.:o ....:. Co as follows:

for all

for all

we put
we put,

) an d
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Then G maps obj K0 into obj C0 atld, for every a, b E obj Ko and a E A:o(a, b),
it maps a into C0(G(a), C(b)). Moreover, G preserves the units. But it is not a

functor because it does not preserve the composition. We perform a factorization
P : Co - C such that Fo = P o (i : K0 -&#x3E; C is already a functor. (C and Fo will
already satisfy our Extension Lemma.)

For every x E obj C0, let us denote by Tx the class of all triples (g, (J, a)
where g E K0(r, s), 0- E ll;o(s, t), a E C0(G(t), z).

Let us denote by ex : W0(x) --&#x3E; x’ a joint coequalizer (in the category Set!) of all

pairs of maps 

, then there exists precisely one
such that B o Er = ey o7J because, for every

We define the category C as follows:

; the forgetful functor Set is defined by
The factorization

already preserves the composition because, for

II.9. We show that 7i is a full subcategory of C and that Fo is an extension

of F1. To show this, it is sufficient to prove that for every a E A = ob j 71, the joint
coequalizer 6a Wo(a) -1’ a in II.8 is a bijection. Then we can choose Ea = lyyo(a)
and, for a, b E A and a E H(a, b), a = (b, a, a) we have a = a, hence P(a) = a.
Consequently, for (

Thus, let a E A. It is sufficient to show that for every (g, o,a) E Ta,

Let us suppose that

We lave to investigate all t,lie possibilities 1", s, t

23 cases again. We slow "the worst" case that
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and t E obj Ko B obj K1, the other cases are eitlier analogous or easier. In our

hence (**) is satisfied.
11.10. We conclude that the inclusion J : (H, V) -&#x3E; (C, W ) is a realization
and Fo o E - j o Fl. The statements (i), (ii), (iii) in 11.4 follow from the fact that
C is a mere factorcategory of Co, so that C satisfies them whenever Co satisfies the
corresponding statements. However this follows immediately from II.7.

III. Ordinary embeddings

111.1. Ordinary elubeddings were introduced in the part 1. as compositions
of finitely many strong extensions, strong embeddings and strong co-enibeddiiigs.
The notion of ordinary embedding is sitting between two requirements:

a) to be weak enough: so weak that every concrete category admits an

embedding of this kind into the category of topological semigroups (as shown in
part V of this paper) and into other comprehensive categories;

b) to be strong enough: so strong that the Extension Lemma can be, in a
way, generalized to it. Tliis is just stated in the Proposition below.
III.2. A distinguished point of a concrete category (K, If) is a collection d =

{da l a E obj K} such that da E 11(a) and [U(a)](da) = f4 for all a, b E obi
a E K(a, b).
Propositiom.Let (Ko, (lo), (KI, U1), (H, Y) be concrete categories, let (H, Y) have
a distinguished point . Let E : (K1, U1) -&#x3E; (K0, (10) be an ordin ary e7tzbeddz*ng. Let

Fl : K1 -&#x3E; 1í be a functor such that 1. o F1 is a retract of U1. Then there exists a

faithful functor V: H -&#x3E; Set, such th at Bl o Fl is a retract of lfo o E.
The rest of part III. is devoted to the proof of this Proposition.

III.3. - In 111.4-111.6, we suppose the following situation (we shall not repeat
these presulnptions): (K1 , U1) and (H 1’) are concrete categories, (1í, Y ) has a
distinguished point, say d; moreover, a functor F, : K1 -&#x3E; 71 and natural trans-
formations TT: U1 -&#x3E; Y o F and /i : V o F - III are given such that TT 0 JI is the

identity.
III.4. Leimma.Let E : (K1, U1) -&#x3E; (K0, U0) be cztller a si7-oiig extension or a

strong e7ubedding. The71 there cxzst.,, a faithful functor V: 1í - Set, suclc that

a) (H, V) has a distinguished point; 
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b) there exist natural transformations

such. that TT o 03BC is the identity.

Proof. 1) Let E be a strong extension. Hence there exists G : K1 -&#x3E; Set
such that Uo o E = U1 11 G. We put V = Y, 1r sends Ul onto V as 7r and G on
the distinguished point d (i.e. 1ra(x) = da for all x E G(a)); fi is a composition of
p : V o Fi - Ui and the coproduct injection Ul -&#x3E; U1 II G. Since V = Y, (H, V)
has a distinguished point.

2) Let E be a strong embedding, i.e. there exists a faithful functor G :

Set --i Set such that 110 o E = Go o Ul . We put V = G o Y’ . Since G is faithful,
there exists a monotransformation of the identical functor Id : Set -&#x3E; Set (see e.g.
[13]), so that the concrete category (H, V) has a distinguished point again. We put
1r = G o II, A = G o it, hence L’, 1r, it have all the required properties.
111.5. We need an analogous result, also for strong co-embedding, hence we
have to work with opposite categories. Let, Kop1, H°P be the categories opposite to
AJi, x and let us denote by F:P : Kop1 -&#x3E; H°P the functor opposite to F, : K1 -&#x3E; H.
Given a strong co-embedding E : (K1, tll) - (Ka, 1Jo), let us denote by E : Kop 1 -&#x3E; 
Eo the corresponding covariant (full one-to-one) functor.
Lemma. Let E : (k:1, U1) -&#x3E; (K0, tlo) be a strong co-embedding. Then there exists
a faithful functor L’ : Hop -&#x3E; Set s?tch that

a) (Hop, V) has a distinguished point;
b) there exist natural transformations 

such that TT o 03BC zs thf identzty.

Proof. Since E is a strong co-embedding, t,here exists a contravariant

faithful functor G : Set, -&#x3E; Set, such that tlo o E = G o CII. Then G o Y:H -&#x3E; Set is
a contravariant faithful functor, let V : Hop -&#x3E; Set, be the corresponding covariant
one. Since G is contravariant and faitliful, the contravariant power-set functor P-
(i.e. P-X = exp X, [P-(f)](Z) = f-1 (Z)) is a retract of G (see e.g. [13, pp.
85-86]); since P- has a distinguished point (namely 0 E P-X), (Hop, V) also has
a distinguished point. Now, we put. 7r = G o 03BC, it = G o 1r. Then V , 7r, it have all
the required properties.
III.6. Proof of the Proposition.

By the definition, E : (A: 1, lll) - (E0, Uo) can be expressed as E =

En o ... o E1 where every E; : (ll;;, Ui) - (A.:i+l, Ui+1 ) is either a st,rong ext,eiision
or a strong embedding or a strong co-elnbeddillg (and (Kn+1, Un+1) is our given
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(Ko, Uo)). Moreover, we may suppose that all the functors Ei, except possibly
the last En, map the class obj A:i onto the class obj k¡+ 1. Hence every Ei, i =

1, ... , n- 1, is either an isomorphism of ki onto ki+1 (and then we may suppose
that Ki = Ki+1 and Es is identical, only Ui, Ui+l are possibly different) or a

contravariant isomorphism (and then we may suppose that ki+l = K,;P and E¡
is the duality). If every Es, i = 1, ... , n is either a strong extension or a strong
embedding, we use Lemma 111.4 finitely many times and we get the Proposition.
If some of the Ei’s is a strong co-embedding, we use also Lemma 111.5: let j be
the smallest element of {1, ... , n} such that Ej is a strong co-embedding. Since
E is covariant, some Ej+h with h &#x3E; 1 must be also a strong co-embedding; let
h be the smallest natural number with this property. We apply Lemma 111.4 on
E1, ... , Ej-1 (we may suppose K1 = ... = kj); then we use Lemma III.5 for

Ej. For Ej+1,...,Ej+h-1, we use Lemma 111.4 again, but applied on Kop 1 and
F:P : Kop 1-&#x3E; Hop. Then, using Lemma III .5 for Ej+h, we change Kop 1, Hop and F;P
back to K1, 7i and Fl . We proceed similarly with Ej+h+1’ ... , En.

IV. The proof of the Main Theorem

Iv.1. In this part, we present the proof of the Main Theorem, using the
Extension Lemma of II. and the Proposition in III. By [15], a universal functor

does exist. By the Kucera theorem [11], a concretizable category W and a congruence
-VQ exist such that H/ -0 is isomorphic to 11. Let, us denote by P : H -&#x3E; 14
the corresponding surjective functor, one-to-one on obj 7i (i.e. P(a) = P(B) iff
a "’0 t3). Let us form a pullback of H o P and P,

i.e. objK1 is precisely the class of all pairs (a2, a1) E obj H x obj H such that
H(P(a2)) = P(a1), F1(a2,al) = aI, F2 (a2, a1) = a2 and analogously for morphisms.
One can verify that F2 is surjective and that it is one-to-one on obj K1 (because the
functor P, opposit to F2 in the pullback, has also these properties), so that, P o F2 is
also surjective and one-to-one on obj k:1. Let -1 be the congruence on Kl 1 defined
by

Heuce K1/-1 is isomorphic to 11. Moreover, F, sends -1-congruent Inorphisrns to
-0-congruent morphisms so that the factorfunct,or F, : K1/-1- H/-0 of F, is a
universal functor.
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IV.2. Since 1l is concretizable, there is a faithful functor X : H-&#x3E; Set. Let
Ci : H -&#x3E; Set be a functor sending each a E obj H on a one point set {da} and
let Y be a coproduct of X and C1 so that (1£, Y) is a concrete category with a

distinguished point d = {da l a E obj 711 (see III.2). Let us define

by U1(a2,a1)= y(a2) x Y(al ), U1(a2,a1)= Y(a2) x Y(a1). Then (K1, VI) is
a concrete category because Ui is faithful. Moreover, Y o F1 is a retract of Ul.
In fact, if a = (a2,al) E objK1, then the maps TTa: Y(a2) x I"(al) -&#x3E; Y(a1)
sending (X2, X1) to x, determine an epitransformation 1r : VI --+ Y o FI and the
maps pa : Y(a1) -&#x3E; 1’(a2) x Y(al ) sending x E Y(al ) to (da2’X) determine a
mono transformation It : V o Fi -i’Ul such that 7r o it is the identity.
IV.3. Let a COE-universal category (Ko, Uo) be given. Then there exists an
ordinary embedding E : (K1, U1) -&#x3E; (Ko, Uo). By Proposition III.2, there exists
a faithful functor V : 1l --+ Set such that V o FI. is a retract of Uo o E. Hence
E : (Kl, Uo o E) - (H, V) is a realization, so that we can use the Extension
Lemma: there exist a concrete category (C, 1,V), a realization J : (H, V)-&#x3E; (C, W)
and a functor Fo : K0 -&#x3E; C such that Fo o E = J o Fl . Let (D (I - Ko be a full
one-to-one functor (such functor does exists because C is concretizable and Ko is

COE-universal). Then we have the commutative square

and both E and 4) o J are full one-to-one functors. Moreover, we have congruences
-1 on K1 and --o on 1l such that the functor Fl : K1/-1 - H/-0 is universal.
IV.4. To finish the proof of the Main Theorem, it is sufficient to find a con-
gruence - on K0 such that the constructed functor F = V o Fo preserves it and -
agrees with --i on E(K1) and - agrees with -Vo on O(J(H)). Then, clearly,

is universal. For this reason, we have to choose the functors E : (A.:1, Lli) - (ko, Uo)
and O: C - K0 i’n a special way. This is done in IV.6 below.
IV.5. Before the special construction of E and O, let us mention explicitely
how a congruence = on a full subcategory A of a category B is extended on r): For
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every a, b E obj 8, a, B E B(a, b), we define

Then the transitive envelope of R is a congruence == on C and, since A is a full
subcategory,

IV.6. We investigate two copies (A-10, U10) and (K2 0 U2 0 ) of the given COE-
universal category (K0, K0). The coproduct is a concrete category as well, hence
there exists an ordinary embedding

Let us denote by Ki: (Ki0, U0i) -&#x3E; (K-1 0, U1 0) II (K20, U20 ) the coproduct injections
(they are realizations of the concrete categories). Let E1 : (K1,U1) -&#x3E; (K-1 0,U1 0) be
an ordinary embedding and O2: C -&#x3E; KÕ be a full one-to-one functor. We choose
E : (K1, ill) -&#x3E; (K0, lfa) and O: C -&#x3E; K0 in IV.3 of the form

Then E is an ordinary embedding and O is a full one-t.o-one functor, as required in
IV.3.
IV.7. For shortness, let, us suppose that, K-1 0, Kl) are full subcategories of Ko,
A:l is a full subcategory of K -1 0, C is a full suUcategory of A:2, 1í is a full subcategory
of C.’ and all the functors E1, K1, K2, A, O2, O, J are inclusions. Notice that
F : ae,o - Klo sends the whole K0 into C and Ej 1 into x.

We investigate the following classes of objects of Ko:

We claim that

(a) if i + j, then Ai, fl Mj = 0; in fact,, Mo n Mj = Ql for all j &#x3E; 1 because

Mo g obj K -1 0 and Mj ç obj K 2 0 for all j &#x3E; 1. If 1B10, ... , Mn are supposed pairwise
disjoint, then Mo, M1 = F(A10),..., Mn+1 = F(A1n) are pairwise disjoint, by 11.4
(i);

(b) if i + j, a E A4;, b E Mj, then K0(a, b)= K0(b, a) = 0; this can be

proved analogously to (a), using (ii) and (iii) in 11.4.
IV.8. Let us denote by 9Jli the full subcategory of Eo generated by Mi and
by 931 the full subcategory of K0 generated by Uoo j= 0 Mj. The claims (a), (b) in

IV.7 imply that a congruence = ou 9Jl is determined by congruences ’:::j on mj,
j = 0, 1, .... We define the congruences =j as follows:
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and, for j &#x3E; 2, we put a =j B whenever a and ,Q in mj have the same domain and
codomain.

Let - be the congruence on )CO extending = as mentioned in IV.5. Then
F : A§o -&#x3E; ko preserves - and the square

commutes, where the vertical arrows are isofunctors onto full subcategories. We
conclude that Fl- is universal.
IV.9. Remark. An easy modification of the proof of the Main Theorem
gives the following variant of it: Let (Ci, Ui), i = 1, 2, be COE-universal categories.
Then there exist congruences -i on Ci, i = 1, 2, and a functor F : C1 - C2 sending
-1-congruent morphisms to -2-congruent ones such that the corresponding factor
functor C1/-1 -&#x3E; C2/-2 is universal.

V. COE-universal categories

V.1. A considerable part of full embeddings in [13] are in fact ordinary embed-
dings. However, this is not explicitly stated in [13]. In V.2-V.5 below, we indicate
the parts of [13] which have t,o be inspected to see that the categories T and M are
COE-universal and that, under (M), the categories Graph, Alg(1, 1), Alg(2) and
others are COE-uuiversal (all endowed with their natural forgetful functors). In

V.6, we show that the category S of all topological semigroups and all continuous
homomorphisms is COE-universal.
V.2. The categories S(P+), S(P0+), 5(P-) are often used in the embedding
constructions in [13]. Let us recall that P+, P- are the covariant and the con-
travariant power-set functors Set - Set, P+(X) = P-(X) = {Z I Z C X} and,
for f : X --+ I", (P+(,f)] (Z) = f(Z) for every Z C X and [P-(f)](Z) = f-’(Z) for
every Z C I". The functor P+ is a subfunctor of P+, P+0 (Y) = {Z l Z C X, Z +0}

Cliven a functor F : Set - Set,, covariant or contravariant, the cat,egory
S(F) is defined as follows: objects are all pairs (X, r), where A is a set and 7’ C

F(X); f : (X, r) - (X’, r’) is a morphisI11 of S(F), if it, is a luap X - X’ such
that [F(f))(7.) g r’ (or (F(f))(r’) g 7’ if F is contravariant). Tlie forgetful functor
S(F) -&#x3E; Set sends (X, r) to X of course. S(F1,...,Fn) are defined analogously
(liere, objects are all (A, r1, ... , i-,,) with rj C Fj(A)).
V.3. The categories S(P+), S(P0), 5(P-) are COE-universal. In fact, given
au arbitrary concrete category (21, il), there exists a preordered class (T, ) and a
realization of (21. U) into the category S(P+ oQ, (T, )). This is precisely Theorem
3.3 of [13, pp. 95-96], the category S(P+ o Q, (T, )) being defined on [13, p. 94].
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(Let us recall that Q : Set -&#x3E; Set denotes the square functor Q(X) = X x X,
Q( f ) = f x f.) A full one-to-one functor F : S(P+ o Q, (T, )) -&#x3E; S(P+, ... , p+)
is constructed in the proof of Theorem 4.3, in [13, pp. 97-99]. Inspecting the
formula for F on p. 98, one can see that F can be expressed as a composition of a
strong embedding, (carried by the set, functor P+ o Q) followed by a strong extension ,
(adding the summand UMC XxX({M}xY Finally, S(P+, ... , P+) admits
a strong embedding into S(P0+), see [13, pp. 88-89]. We conclude that S(P0+),
hence S(P+), are COE-universal. A strong embedding of S(P0+) into S(P-) is

constructed in [13, pp.81-85], hence S(P-) is also COE-universal.
V.4. A strong embedding of S(P0+) into M is constructed in [13, pp. 230-

233]. A full embedding 03BC1 of S(P0+) into T is constructed in [13, pp. 244-246];
inspecting the construction, one can see that III can be expressed as a composition
of a strong embedding followed by a strong extension. Thus, both M and T are
COE-universal.

V.5. Under the set-theoretical statement (M), a strong embedding of S(P-)
into Graph, the category of all direct,ed graphs and all compatible maps, is con-
structed in [13, p. 80]. In [13, pp. 59-60], full embeddings of Graph into Alg(l, 1)
and into Alg(1, 1, 0), the categories of all universal algebras with two unary resp. two
unary and one nullary operations and all their homomorphisms, are constructed.
Inspecting the construction (t,le construction is also mentioned in V.6 below), one
can see that these full embeddings are strong extensions. Strong eiiibeddiiigs of
Alg(l, 1) into Alg(2) and into Alg(2,0), the cat,egories of all algebras with one bi-
narv or one binary and one nullary operations, are colstructed in [13, pp. 60-61].
Hence, under (M), all the categories Graph, Alg(1, 1), Alg(1, 1,0), Alg(2), Alg(2, 0)
are COE-universal. Moreover, a strong embedding of Alg(2) into the category Sing
of all semigroups is constructed in [13, pp. 148-154] and a strong embedding of
Alg(1, 1) into Ido, the category of all int,egral domains of characteristic zero and
all their ring liomomorpliislns is outlined in [13, pp. 158-160] (the full version see
[4]). Thus, under (M), Sing and Ido are also COE-universal. Many varieties of
unary algebras are shown to be COE-universal under (M) in [13, pp. 173-185]. (Let
us mention explicitly that every variety of universal algebras is investigated as a
category, morphism are fonned by all homomorphisms.) In fact, if Alg(1, 1) can
be fully embedded in a variety of unary algebras, then it, can be strongly elribed-
ded in it, by [12]. Hence, under (M), every C-universal variety of unary algebras
is (;OE-universal. In [16], all the categories of presheaves in Set, which admit a
full embedding of Graph int,o tliein, are characterized; the results are presented in
[13, pp.201-202]. All the full embeddings constructed in [16] are strong extensions
whenever the category of presheaves in question is endowed by the usual forgetsul
functor sending any p : (P, ) -&#x3E; Set t,o the coproduct of all sets p(p), p E P.
Hence again, under (M), if a cat,egory of presheaves il Set is C-universal. then it is
COE-universal. A lot of full embeddings of Graph into varieties of universal alge-
bras are constructed il the literature, mostly in very sophisticated way, see e.g. [2],
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[5], [9], [10]. However these full embeddings imply the C-universality (and possibly
COE-universality) of the varieties in question only under (M) - and better result
cannot be obtained: no category of algebras is C-universal under non (M) (see [13,
pp. 348-349]). 

In the next part V.6, the statement (tB1) is not supposed.
V.6. Let us denote by Top Graph the category of all topological graphs, i.e.
objects are all pairs (X, R) where X is a topological space and R is a closed subset
of the space X x X, morphisms are all continuous compatible maps; denote by
Par Graph the full subcategory consisting of all (X, R) with X paracompact.

Let V be a variety of universal algebras, say of a type A, determined
by a set of equations E. Let us denote by Top V (or Par V) the corresponding
category of topological (or paracompact) algebras, i.e. objects are all topological
(or paracompact) spaces endowed by continuous operations of the type A satisfying
the set of equations E, morplisms are all continuous lomomorphisms.
Proposition: The cat egories Par Graph, Par Alg(1, 1), Par Alg(1, 1, 0), Par Alg(2),
Par Alg(2, 0), Par Smg (hene S = Top Smg), all investigated with their natural

forgetful fuitetor-s, are COE-universal.
Proof: a) In [13], al1uost full embeddings into the category Top of all topolog-
ical spaces and all continuous maps are investigated. Let us recall that a one-to-one
ftiiictor 4) : K -&#x3E; Top is called an almost full embedding if, for every a, b E obj A:,
4J maps the set K(a, b) onto tlie set, of all nonconstant continuous maps of O(a)
into 4)(b). Let, us denote by O(K) the subcategory of Top consisting of all O(a),
a E obj K and all O(a), a E morph K. Then K and O(K ) are isolllorphic, O(k) is a
category of suitable topological spaces and all their nonconstant continuous maps
(and these maps are closed with respect to the composition!).

b) In [13, §15, pp. 249-252], as variations of [8], almost full embeddings
of S(P- )Or into Par, the category of all paracoinplct spaces and all continuous

maps, are presented. Particularly, in 15.10 [13, p. 252], such almost full embedding
Q : S’(P- )op -&#x3E; Par is presented (let us investigate it as a contravariant functor
.5’(P- ) - Par) that there exists a contravariant functor F : Set -&#x3E; Set with U o Q =
F o V, «·llere tl : Par - Set and V : S(P- ) -&#x3E; Set are the natural forgetful functors.
Hence, denoting by Ð the subcategory Q(.S(P-)) of Par, we get that the range-
restriction Q : S(P-) -&#x3E; D of Q is a strong co-elnbedding. This implies easily
that, Ð is COE-universal. In fact, given a concret,e category (C, W), we denote by
D : (C, W) - (COr. P- o 14’) tlle strong co-enbedding which is just the duality
on C, carried by P- : Set. - Set,. Since (S(P-), V) is COE-universal, there is

an ordinary embedding E : (COr, P- o W) - (S(P-), V), so tliat Q o E o D is
an ordinary embedding of (C, W) int,o (’P, if) (where 17 : Ð - Set is the domain
restriction of (U: Par - Set, )..

c) If we inspect !i 15 in [:3, pp. 249-252] again, we see that (1’, if) llas

two distinct distinguished point, say d1 = {d1al a E objD} and d2 = {d2a l a E
obj D} (in fact, (D, U) has 2Nu distinct distinguisled points, see [1:3, pp. 148-152],
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and we choose arbitrary pair of them). This implies immediately that there is a

realization 41 : (D, U -&#x3E; Par Graph namely, for every space a = ((!(a), ta), we put
Y (a)= (a, Ra), where Ra - {(d1a, d2a)}. Clearly, if f: a -&#x3E; a’ is a morphism of D
then it is a morphism of Par Graph and vice versa. We conclude that Par Graph is
COE-universal.

d) Let us recall that in [13, p. 59], the following fuuctor F : Graph
AIg(l, 1) (or Graph -&#x3E; AIg(l, 1, 0)) is defined: F(X, R) = (Y, a, /3) (or F(X, R) =
(Y, a, B, w)) where

(the definition of F on morphisms is omitted).
In [13, pp. 59-60], the functor F is proved to be full. It is a strong

extension, evidently. Moreover, if a = (X, R) E obj TopC;raph, and Y is endowed by
the topology ta which coincides witli the topology of a on X, X is closed-and-open in
ta and ta is discrete on R11 {p, q), tlien (-v, /3 are continuous and F determines a strong
extension of Top Graph into Top Alg(1, 1) and into Top Alg(1, 1, 0). Moreover, if
a = (X, R) E obj Par Graph, then tlie underlying space of F(a) is paracompact as
well. We conclude that Par Alg(1, 1) and Par Alg(1, 1, 0) are COE-universal.

e) In [13, p. 61] a strong embedding F of Alg(1,1) itito Alg(2) and into
Alg(2, 0) is defined as follows: its sends an algebra (X, 0, 13) to an algebra (G(X), O) 
(or (G(X), ., w)) where G(X) = X 11 {p, q} and

(the definition of F on morphisms is not necessary, F is carried by
G = Ident IIC{p,q}).

The proof that, F is really a strong embedding (especially its fullness)
is proved in [13, pp. 61-62]. We see immediately that if X is a topological
space and a, B are continuous, then the binary operation o is continuous as well
whenever we investigate G(X) topologized such that it is a topological sum of
the space X and ’a two-point, discret.e space {p, q} . Moreover, if X is paracom-
pact, G(X) is paracompact as well. We conclude that F determines strong embed-
dings Top Alg(1, 1) - Top Alg(2), Top Alg(1, 1) -&#x3E; Top Alg(2, 0), Par Alg(1, 1) -
Par Alg(2), Par Alg(1, 1) - Par Alg(1, 0), so that Par Alg(2) aud ParAlg(2,0) are
COE-universal.

f) In [13, pp. 152-154], a strong embedding O of Aig(2) into the category
Smg of all semigroups is constructed as follows: a rigid semigroup D of [3], on two
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generators a, b and the defining relation ab2 = baba, is decomposed into two sets,
namely

M = {a, ab, ba, aba, bab, baba} and N = D B M.

The functor O is carried by G = (Ident x CN ) II CM, i.e. G(X) = X x M II N; given
(X, 0) E obj Alg(2), O(X, o) is a semigroup (G(X), O) where its operation is defined
by means of 0 and also by means of the composition of the rigid semigroup D, see
the rules (a), ... , (y) on p. 152 in [13]. Inspecting these rules, one can see that if
X is a topological space such that the binary operation Q is continuous, then O is
continuous on G(X) whenever G(X) is investigated as the space X x M U N, M and
N endowed with a discrete topology. This also implies that, for every continuous
f : (X, O -&#x3E; (X’, O), the map O(f) : (GX, O) - (GX’,.), carried by G( f ), is also
continuous. Conversely, if h : (GX, o) -&#x3E; (GX’, e) is a continuous homomorphism,
then necessarily h = O (f ) where f : (X, O)-&#x3E; (X’,0) is a homomorphism, by [ 13,
pp. 148-154]; since O is carried by G and G(f) is continuous, f must be continuous.
We conclude that -4, determines strong embeddings Top Alg(2) -&#x3E; Top Smg = S and
Par Alg(2) - Par Smg, so that ...’B and Par Smg are COE-universal.
Remark. The C-universality and COE-universality of categories Top V, whe-
re V is an algebraically universal variety (i.e. admitting a full one-to-one functor
Alg(1, 1) -&#x3E; V) will be investigated in a forthcoming paper.
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