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GENERAL ASSOCIATIVITY AND GENERAL COMPOSITION FOR
DOUBLE CATEGORIES

by Robert DAWSON and Robert PARE

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFF6RENTIELLE

CATÉGORIQUES

VOL. XXXIV-1 (1993)

Resume. Nous d6montrons que la composition dans une cat6gorie double
v6rifie une loi d’associativit6 g6n6rale. Nous 6tudions aussi une classe de
categories doubles qui admettent une composition g6n6rale associative.

Introduction

The question we wish to consider is whether a compatible arrangement of double
cells in a double category has a unique composite, independent of the order in which
the operations of horizontal and vertical composition are performed. The following
example will serve to illustrate what we mean. Consider the following arrangement
of double cells:

We can evaluate this either as

or

The question is whether these are equal.
The answer will be yes, in general, but the proof, while easy, is not totally

straightforward. The problem is that there are compatible arrangements of double
cells which cannot be evaluated at all. The simplest example is the pinwheel
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Although the whole arrangement fits together nicely, no two double cells are com-
patible so there is no place to start composing. As we shall see below, the "obvious
proof" of general associativity snags on this fact. Note, for example, that if we first
compute a,Q and then 00 in our original arrangement, we cannot proceed; we have
arrived at the pinwheel! If there are arrangements with no composite, might there
not be arrangements with several?

Why call this law general associativity when the order of the various factors
seems to change, not only the parenthesis? In fact, the order of the factors does not
change in the two-dimensional arrangement, just the order in which the operations
are performed. It is merely a by-product of trying to reduce what is essentially a
two-dimensional composite to linear notation, which causes the confusion.

To fix notation, we give a brief overview of the theory of double categories.
They were introduced by Ehresmann [5] in 1963 (see also [6]). Since then much
has been done, much by the Ehresmann group (see [1], [7]). They have also been
used extensively in the context of homotopical algebra (see [2], [14], [15]). However,
they are mentioned only in passing in the work of the Australian school [10] and
Gray [8] on 2-categories and bicategories. There the emphasis is on the foundational
aspect of bicategories. They are universes in which to do mathematics (i.e. category
theory). We believe that double categories play an important role in this context as
well, notably in the two dimensional theory of limits. That side of double categories
is developed in [11].

A double category D is a category object, D2 -&#x3E; Dl S Do , in Cat. It is

a structure with objects (the objects of Do), vertical morphisms (the morphisms of
Do), horizontal morphisms (the objects of D1 ), and double morphisms (or cells) (the
morphisms of D1) . The vertical morphisms form a category (Do) whose composition
is denotes - and identities idA . The horizontal structure also forms a category
with composition denoted by juxtaposition and identities by lA. In fact the whole
structure can be described by the pasting of double morphisms. A double morphism
has a horizontal domain and codomain, and a vertical domain and codomain. It

can be pictured

or when the domains and codomains are not important simply as

Horizontal pasting is denoted 
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and vertical pasting by

Each of these operations gives a category structure with identities

respectively. The two category structures commute in the sense that we have the
middle four interchange for

The question which we address is whether the associativities plus interchange
give uniqueness of all possible ways of evaluating compatible arrangements of double
cells. Thus we may view our results as coherence theorems for pasting of double
cells.

A 2-category may be viewed [10] as a double category in which all vertical

morphisms are identities. A 2-category also gives rise [13] to a double category in
which the double morphisms are squares with a 2-cell in them:

Thus our results yield coherence for pasting in 2-categories.
Mike Johnson has a general pasting theorem for n-categories [9]. When special-

ized to 2-categories, his pasting schemes take into account any arrangement in the
double categories constructed from a 2-category as above. It is not clear whether
the converse holds, but we believe our tilings are better behaved as everything is
rectangular. Nor do his results seem to apply to double categories in general. John
Power [12] also has a general pasting scheme for 2-categories. His approach is more
geometric than combinatorial, relying on planar graphs. Our tilings have a combi-
natorial aspect and a planar component as well. The precise relationship between
these various notions is not yet completely clear.

There are various dualities for double categories. There is op which switches
domain and codomain for the horizontal structure, co which does the same for the
vertical structure, and there is transpose, ir, which interchanges horizontal and
vertical. There are also combinations of these, eight in all counting the identity,
corresponding to symmetries of the square:
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1 General associativity:
For our proof, we need the following lemma.

Lemma 1.1 If a coi7zpatible arrangement of double cells is composable then any
subset of them which forms a compatible arrangement is also composable.

Proof: The proof is by induction on the total number of double cells. If there
is only one double cell the result is obvious. Let A be a compatible arrangement
with n double cells and B C A a subarrangement. Assume that A is composable,
so there is some order in which the operations can be performed so as to get a
value for A. Let -y(A) denote any such value. Let us denote by * the last operation
performed in the evaluation of y(A). We can write -t(A) = y(A1 ) * 7(A1)- Let
Bi = B n Ai(i = 1,2).

Since Ai has less than n cells and is composable, unless Bi is empty, it too is

composable by induction. If Bi is empty, then B = B2-i is composable. Otherwise,
,(8) = ,(B1) * ,(B2). 0

We are now in the position to prove associativity.
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Theorem 1.2 If a compatible arrangement of double cells is corraposable in two
different ways, the results are equal.

Proof: Let A be a compatible arrangement of n double cells, composable in
two different ways, giving 71(A) and 72(A). We shall prove that y1(A) = y2(A)
by induction on n. If n = 1, the result is trivial. As before yi(A) = yi(Ai1) *i
li(Ai2), (i = 1, 2). Let Bij = Aii n A2j. Some of these may be empty. There are a
number of possibilities (8 in all) for the relative positions of the AiJ of which the
following two are representative:

By the lemma, each of the Bij is composable, and by the induction hypothesis the
composite, y(Bij), is uniquely determined.

Thus, in case (i) we have

In case (ii),

The other cases are similar.
0

2 General composition:
Why is it that the problem of composability does not arise in the case of 2-

categories ? In most cases occurring naturally, there is a way of composing the
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pinwheel and, in fact, any other compatible arrangement. For example, if the dou-
ble morphisms of the pinwheel are commutative squares (or pullbacks) in a category
then the large one is also. The pasting theorems of Johnson and Power also show
that the same holds for the double categories constructed from 2-categories as dis-
cussed above. Thus double categories often have operations of higher arity, not
derivable from the two basic binary ones.

In this section we study simple conditions, satisfied by most of the usual double
categories, which produce a composite for all compatible arrangements.

Let Arr(D) denote the set of compatible arrangements in D. We want a multi-
plication, p Arr(D) -&#x3E; D, associating to each arrangement a uniquely determined
double cell. Presumably, if this composite is to be of any use it should satisfy general
associativity

An example will clarify what we mean:

The top left corner is an arrangement of arrangements, whereas the bottom left
corner is simply an arrangement.

In its simplest form, if B is obtained from A by a single composition (Hor or
Vert), then associativity would give Ii(A) = 03BC(B). But we can also view this in the
reverse direction, i.e. A is obtained froin B by factoring a double cell, and their
composite is still the same. So the idea is to reduce an arbitrary arrangement to a
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single cell using composites and factorizations. In order to do this we shall assume
that we have certain factorizations.

Definition 2.1 We say that a double category has RL-factorizations if for every
double cell

and every factorization of its horizontal codomain, a = ai a2, there exists a fac-
torization of a as 0’1 a2 where the horizontal codomain of ai is ai

Note: RL stands for "right-to-left" . There are three "dual" notions: LR-, TB-,
and BT- factorizations.

Examples 2.2 Given a 2-category the double category whose double morphisms
are 2-cells in a square

has all four factorizations. For example, for the RL-factorization, assume G =
G1G2. Then
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If a 2-category is considered as a double category whose vertical arrows are
identities, it will have RL- and LR-factorizations but not TB- and BT- ones in

general.
On the other hand, the double category of pullback squares constructed from a

category with pullbacks has RL- and BT- factorizations but rarely the other two.
There are two problems with the use of factorization in the reduction of arrange-

ments. The first has to do with our method of proof, which is induction. Factoring
increases the number of cells in an arrangement and so takes us further from the
composite. In fact, any rank function which composition decreases will be increased
by factorization. We solve this by combining a factorization with a composite in
certain circumstances.

Suppose that we have double cells in the following position

and suppose that a can be RL- factored compatibility with (3, then the transforma-
tion

is called left exchange. VVe shall use this and dual notions in our proofs.
The second problem has to do with the very notion of compatible arrangement.

Suppose that a has several left neighbours
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and we wish to perform an RL-factorization on a (to use Lex for example). One
might wonder whether, after factorization the situation would look like

In fact it would more likely look like

with a little wedge appearing to the left of a, and this is not allowed in what we
consider to be a compatible arrangement.

This seems like a good point to give a clearer account of what we do consider
to be a compatible arrangement of double cells in a double category.

3 Tilings:
If a rectangle is decomposed into a finite number of smaller rectangles, there is
induced on the set T of subrectangles two binary relations: the horizontal neighbour
and the vertical neighbour relations H and V. rHs holds if and only if the right
side of r intersects the left side of s in more than one point. The definition of
rV s expresses that r is an upper neighbour of s in a similar fashion. A tiling
T = (T, H, V) is a set T whose elements are called tiles, equipped with two binary
relations H and V, which can be represented as the neighbour relations on the
decomposition of a rectangle. For example, if we take T = la, b, c, d, e}, H =
{(a, b), (c, d), (c, e), (d, b)1, and V = {(a, c), (a, d), (b, e), (d, e)}, then (T, H, V)
can be represented as a pinwheel.

An intrinsic characterization of tilings, independent of a geometric representa-
tion is given in [3]. One of the important properties for us which is studied there
is the neighbour chain property (NCP). In a tiling the set of right neighbours of a
given tile forms a chain with respect to V, i.e. they can be listed as aI, ... czn such
that aci V ai+1 for all i = 1, 2, ... , n - 1. The full NCP is that all four such conditions
hold, i.e, for right, left, top, and bottom.
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Tilings are what index our rectangular arrangements. They are the arities for
our general composition. The intersections used in theorem 1.2 should be taken at
the level of tilings and not at the level of cells where coincidences might occur.

A compatible arrangement of double cells in a double category D consists of
a tiling T = (T, H, V) together with a function A taking tiles to double cells of
D, elements of H to vertical morphisms of D, and elements of V to horizontal
morphisms, in such a way that if a has any right neighbour at all, then the horizontal
codomain of A(a) is the composite of the chain {A(a, b)l(a, b) E H} (which is hereby
required to be composable), and the same for left, top, and bottom neighbours. We
may denote this by A : T -; D.

This definition excludes wedges of the sort mentioned at the end of the previous
section. For example, in any arrangement A indexed by the tiling

the presence of (c, b) E H, precludes a potential wedge as it must be represented by
a vertical morphism which goes into the horizontal domain of A(b) as well as the
horizontal codomain of A(c) .

Remark: A tiling T generates a free double category 7 in the obvious way. Rect-
angular arrangements A : T -&#x3E;D are in natural bijection with double functors ft.: 1r
-

Representing a tiling T as the neighbour relations on a decomposition of a
rectangle is the same as a compatible arrangement R : T -&#x3E; R2 where IR 2 is double
category whose objects are pairs of real numbers (x, y) and whose double morphisms
are quadruples (x, y, x’, y’) with x  x’ and y’  y (with identities corresponding
to one or other of the equalities).

It will make things easier later if our rectangular representation n : T -&#x3E;R2 has
integer values, i.e. R : T _Z2 C R2. There is no loss in generality if we assume this.
For example let 0: R-&#x3E; R be any strictly increasing function taking all coordinates

o2of corners of rectangles R( a) to integers. Then R : T -&#x3E; Ilg2 --+JR 2 has that property.
Horizontal and vertical composition in a compatible arrangement can be de-

scribed independently of the geometric picture. For example, let A : T -&#x3E; D be an
arrangement, with a and b tiles such that b is the only right neighbour of a and
a is the only left neighbour of b. I.e. for (x, y) E H, x = a =&#x3E; y = b. Create
a new tiling T’ = (T’, H’, V’) by identifying a and b, i.e. T’ = T/a - b. We de-
note the equivalence class la, 6} by ab. The right neighbours of ab are the right
neighbours of b : abh’x =&#x3E; bHx. Similarly xH’ab =&#x3E; xHa, xY’ab =&#x3E; xV a
or xYb, abV’x =&#x3E; aY’x or bv’x. A geometric representation of T gives rise to a
canonical one for T’ by erasing the edge between a and b
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The arrangement A is descended to A’ : T’ -D by defining A’(ab) = A (a) A(b)
which is defined because the horizontal codomain of A(a) is the composite of all
A (a, x) for (a, x) E H, i.e. A(a, b), and the horizontal domain of A(b) is A(a, b) for
the same reason. For all other x E T’, A’(x) = A(x).

A’(x, y) = A(x,y) as long as neither x nor y is ab. If y is a right neighbour of
ab, then A’(ab,y) = A(b, y), and similarly for left neighbours. If a and b share a

lower neighbour c in ?-, then A’(ab, c) = A(a, c)A(b, c) which exists because a and b
are horizontal neighbours in the chain of upper neighbours of c. On the other hand,
if c is a lower neighbour of a or b but not both, then A’(ab, c)= A(a, c) or A(b, c)
whichever makes sense.

Checking the domain and codomain conditions is straightforward, except pos-
sibly the vertical ones for ab. The lower neighbours of a form a chain cl , C2, ... , Ck
and the vertical codomain of A(a) is OA(a) = A(a, c1)A(a, C2) ...A(alck) which is
assumed composable. Similarly ôIA(b) = A(b, d1)A(b, d2)... A(b, di). Thus

which is the composite of the A’(ab, ei) where the ei are the lower neighbours of ab.
If T’ comes for T by horizontal composition, then a rectangular representation

for T, R: T -&#x3E; IR 2 gives, by this method, a canonically associated one for T’, R’ : 
T’ -&#x3E; R2. If we start with R : T -&#x3E; Z2 then all successive ones have the same

property.
The main contribution to our understanding of composition in a rectangular

arrangement that the above admittedly abstract presentation gives is that it can in
fact be done without pictures. It is of course much less understandable but it must
be resorted to when there is danger of the diagrams suggesting things that are not
there.

When we talk of factorization in theorems 4.1 and 5.1 we mean at the level of
the whole arrangement. Thus when we say that B is obtained from A : T -&#x3E; D by
factorization, we mean that there exists a tiling T’ and an arrangement B : T’ -&#x3E; D
such that A is obtained from B by composition. So the existence of RL-factorizations
does not imply that we can factor a cell in an arrangement if it lies inside.

A rectangular representation for T’ gives one for T as described above, but when
we use factorization we do not assume that this is the same one that we started
with on T. To say Fact: A-&#x3E; B means exactly that there exists a B and Comp:
B-&#x3E; A.
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Le,ft exchange is treated similarly. It is performed on a compatible arrangement
A : T -&#x3E; D. Let a and b be tiles in the following position

with a on the left border of T. Abstractly, a has no left neighbours, several right
neighbours of which b is the furthest down, and b has only a as left neighbour.
Assume that A(a) = a can be RL-factored compatibility with A(b) = B : 

Construct a new tiling T’ by replacing

formally, and a new arrangement A’ T’ --+ D by A’(a1) = al and A’(a2b) = a2,3.
If n : T -&#x3E; Z2 is a rectangular representation of T then, because Z2 has RL-

factorizations, we get a rectangular representation T’ : T -&#x3E; Z2 . Here the factor-
izations cause no problems because we are assuming that a lies on the left border.
When we wr ite

it is understood that if .A has a rectangular representation, then A’ inherits one in
the above manner.

4 Key-based composition:
We show in this section, that in the presence of any of the four factorizations men-
tioned above, any rectangular arrangement can be reduced to a single double cell
using a finite number of compositions and factorizations. We give a canonical reduc-
tion somewhat similar to placing all brackets to the left for one binary operation.
Uniqueness of the result will be discussed in the next section.

We shall assume that our double category has RL-factorizations, and so we
take as our operations horizontal and vertical composition and left exchange (which
involves a factorization and a composition). The other cases are treated dually.

We define the rank, p(R), of a rectangular representation R : T --t E2 to be the
sum over all tiles of the distance from the centres of the corresponding rectangles
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to the top of the tiling. Thus, if ; 

(ta + ba)/2] where T = y coordinate of the top. E.g. if the pinwheel is represented
as a 3 x 3 square in the obvious way

its rank is 1 2 + 1 + 1 1 2 + 2 +2 1 2 =7 1 2. Note that, the higher a rectangle lies, the less
it contributes to the rank. 

Each of our operations decreases the rank:

Hor: (one disappears)

Vert: (bottom one rises and the top disappears)

Lex: the right one stays at the same height, the other rises

Theorem 4.1 If the double category D admits any one of the above factorizations,
then any rectangular arrangement of double cells can be reduced to a single double
cell using a finite number of compositions and factorizations.

Proof: We may assume, without loss of generality, that D has RL-factorizations.
Let A : T -&#x3E;D be a rectangular arrangement of double cells, and choose a repre-
sentation of T, R : T -&#x3E; E2. Its rank, p(R), is a half integer and as (Hor), (Vert),
and (Lex) each decrease it, any sequence of these operations performed on A must
stop in  2p (R) steps.

Define the key tile of T to be the furthest down of those tiles on the left border
that have no more than one upper neighbour. The upper left corner tile has no
upper neighbours so there is always at least one tile satisfying the condition, so
the key tile always exists. If there is a tile below the key it is necessarily wider
(has several upper neighbours) otherwise the key would not be the lowest. So the
situation is either

or
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Either the key has no upper neighbours or the one above it is the same width or

wider, so for upper neighbours the situation is

The key operation on A is the one involving the key tile defined as follows. If we
are in situation (b) above, then it is vertical composition. Otherwise the situation
looks like

If the key has a unique right neighbour, then a horizontal composite is possible and
that is the key operation. If there are several right neighbours a left exchange is

possible with the furthest down of them, and we take this as the key operation.
Unless there is only one tile, the key operation can always be performed. This

completes our proof as there are no infinite sequences of these operations. D

Now make a choice of RL-factorizations. Then left exchange is an actual (par-
tially defined) operation. The procedure described in Theorem 4.1 will yield a well
defined tile 03BC(A) for any rectangular arrangement : T -&#x3E; D. We shall call this the
key-based composite of A.

As left exchange involves arbitrary choices of RL-factorizations, one would be
surprised if p satisfied general associativity, and in fact it doesn’t. Consider, for
example,

with two other cells a’, y’ with the same domains and codomains as a and 7
respectively and such that a’. y’ = a o y but no other relation. Also assume
that the chosen RL-factorization of a - y is into a’ and y’ . Then fi of the above is
(a’,B) . « (,’6) . O) e), whereas if we first compose a with ,Q and then take p we get
(aB) - (((y6). 0) c). In the free situation, there is no way to transform either of these
composites into anything.

Admittedly this is an artificial example. In the next section we see why it is
difficult to find a natural one.
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5 The main theorem.

Theorem 5.1 If the double category D admits any two of the factorizations RL,
LR, TB, and BT, then any two sequences of compositions and factorizations which
reduce a compatible arrangement to single cells yield the same result. If one of these
factorizations is used to define the key-based composite, then it satisfies general
associativity.

Proof: The second statement is a consequence of the first as general associa-
tivity is merely a question of the order in which various operations are performed.

Without loss of generality we may assume that D has RL- and LR-factorizations
or RL- and BT-factorizations. The other cases follow by duality. Make a choice
of RL-factorizations and use it to define the key-based composite, p(A), of any
compatible arrangement A : T -&#x3E; D. We wish to show that if k : A -&#x3E; A’ is

the result of applying one instance of Hor or Vert, then 03BC(A) = ii(A’). This will
prove our theorem as factorizations are just the reverse of compositions, so p is also
invariant under these.

Choose a rectangular representation of T, n : T -&#x3E; Z2. Our plan is to show
that for each of the three cases, Vert (1), Hor (2), Lex (3) of the key operation
tc : A -&#x3E; 8, there is path

of arrangements of rank less than A, such that for every consecutive pair, Bi-&#x3E;1 Bi,
one is obtained from the other by one of our operations A. It would then follow by
induction that

and as IB, is the key operation, 03BC(A) = 03BC(B). So our proof would be complete.
There are six cases to consider for the various possibilities for x and A and

five go through without problem. In order to deal with the sixth we must allow A
to be left exchange as well, and not just with the choice of RL-factorizations but
arbitrary Lex. Now we have nine cases and 8 2 work without problem. To deal
with the remaining one, we now allow A to Rex and Tex as well. So there are five
possibilities for k : Vert (a), Hor (b), Lex(c), Rex (d), and Tex (e). There are now
15 cases (la -3e) to consider, and 14 1 2 go through in a straightforward way without
needing the extra factorization. It is only in one subcase of 3c that we use it.

First note that if the tiles which x changes are distinct from those which A
changes, the operations commute, i.e. performing ic on A’ gives the same as per-
forming A on B:
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So in this case we are done.
Thus we need only consider the situation when the operations "overlap". As

each operation involves two tiles, there are at most four ways they can overlap, so
the possibilities are well contained. We shall only do a few representative cases in
detail. The others being similar are left to the reader.

In the following diagrams, a is the key tile so lies on the left border (shown as
a thick line). K. operates on a and ,Q, and A on y and b. The cells not pictured do
not change.

Case 1 a:

(ii) -y = a and (3 = 6.
Then k = A so 03BC(A) = p(A’) trivially.

(iii) 6 = a.
This is impossible as the tile below the key a must be wider.

Case 1 b:
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Note that Lex can be performed with any appropriate factorization, not just the
chosen one which must be used with the key operations.

(ii) y = (3 and a has one right neighbour 0. Since a is the key tile, the one
below it (if there is one) is necessarily wider. Thus not only is 0 the unique right
neighbour of a but a is the unique left neighbour of 0, i.e, a and O are composable.

(iii) y = B, a has several right neighbours. As in (ii) above, because a is the key
tile, the lowest right neighbour 0 of a matches with a so as to allow a left exchange.
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Before proceeding we should spell out what Rex and Tex are. Right exchange is
applied to tiles in the position

with 6 along the right border. If 6 can be factored as 61. b2 with 62 composable
with y then

Top exchange is similar. If y is along the top border and can be factored as -yl72
with y2 composable with 6 then
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It is important that Rex and Tex both decrease the rank.

Case 1 d is the most complicated as there are subcases which depend on the relative
sizes of the tiles.

(i) y = a and 6 is shorter that ,Q - a.

Here again we use the fact that Lex can be performed using any compatible RL-
factorization. Thus we first factor Q into B1 and fl2 compatibly with 61, then we
use the factorization of B. a into B1 and 32 - a to perform the exchange with 6. This
gives

But (/32’ a)6 = (/?2 - a)(81 62) = (B61 ) . (ab2).
(ii) y = 6 and 6 is the same height as a - /3.
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the right bottom corner being the unique composite of

(iii) y = 6 and b is taller than a. ,Q

(iv) y = j3 and a has one right neighbour 0. This subcase is similar to lb
subcase (ii) and left to the reader.

(v) y = Q and a has several right neighbours. This is similar to lb subcase (iii).

Case 1 e:
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This case is easy as there is no possibility for overlap.

Fourteen of the fifteen cases go through in exactly the same manner as the above
examples, the existence of the second factorization never being needed except in one
subcase of 3c.

Case 3c:

The factorizations must be performed in the following order: a is factored into al
and a2, the chosen factorization for the key exchange; Q is factored into 81 and Q2
compatibility with 6; a2 is factored into a21 and a22 compatibility with 32-

(ii) y = 6. Then B = 6. tc is left exchange with the chosen factorization for a and
k is left exchange with another factorization. This case must be considered as in
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our previous cases we used left exchange with factorizations other than the chosen
ones, e.g. lbi and Idi.

As our double category D has either LR- or BT -factorizations, there is an

operation which can be performed on A similar to the key operation but on the
right border or top border respectively. It might be Hor, Vert, Tex, or Rex but
definitely not Lex. Call it v : ,A - C. By applying the appropriate one of 3a,
3b, 3d, 3e, we have a path of lesser rank tilings joining B to C. Since we assumed
nothing about our choice of RL-factorization in defining the key operation, we could
equally well have chosen ai 1 and a’ 2 as our factorization of a, compatible with Q.
So the same argument as above gives a path of lesser rank tilings joining A’ to C.
Thus by induction, p(A) = p(C) = p(A’). This completes the proof. 0

In future work [4] we shall show how canonical factorizations give the same
result.
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