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ON CLASSIFICATION OF 4-MANIFOLDS ACCORDING TO GENUS

by Alberto CAVICCHIOLI and Mauro MESCHIARI

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. XXXI V-1 (1993)

R6sum6. Nous etudions la structure topologique des 4-vari4t4s fer-
m6es (compactes et sans bord) par rapport au genre. En particulier,
S’ X S’ (resp. RP4) est d6montr6 6tre l’unique 4-variete ferm6e,
orientable (resp. non-orientable) et indivisible (respectant la somme
connexe ) de genre 4 (resp.6).

1. Introduction

It is known that a closed connected smooth (or PL) n-manifold M can be
represented by suitable edge-coloured graphs (for details see [1], [7], [18]).
This allows to define new topological invariants for M as for example its
genus. We briefly recall the definition. An n-dimensional pseudocomplex
(see [10], p. 49) K is said to be a contracted triangulation of M if it has
exactly n + 1 vertices, vo, v1, ... , vn say. This notion is strictly related
to a graph theoretic one as follows. An (n + l)-coloured graph (G, c) is

a multigraph G = (v(G), E(G)), regular of degree n + 1, together with
an edge-colouring c : E(G) - {0,1,..., n} such that incident edges have
different colours.

A crystallization of M is the (n + 1)-coloured graph obtained by taking
the I-skeleton of the dual complex of A and by labelling the dual of each
(n - 1 )-simplex by the colour i if it does not contain the vertex vi . The

genus g(M) of M is the minimum genus of a closed connected surface into
which an arbitrary crystallization of M regularly imbeds (also compare [19]).
Clearly this genus is just the classical one in dimension two. Further, it is
not difficult to show that the genus of a 3-manifold equals (resp. twice) its

*Work performed under the auspices of the G.N.S.A.G.A. of C.N.R. and financially
supported by the Ministero dell’Universita e della Ricerca Scientifica e Tecnologica of Italy
within the project "Geometria Reale e Complessa"
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Heegaard genus in the orientable (resp. non-orientable) case and that the
genus is even for any non-orientable n-manifold.

For the classification of all orientable (non-orientable) closed 4-manifolds
of genus  2 (  4) we refer to [2], [3]. Here we go on with the classification.

Besides general results, we characterize the topological product Sl X S2 and
the real projective 4-space RP4 among closed 4-manifolds. Indeed, S2 X S2
(resp. RP4) is proved to be the unique prime closed connected orientable
(resp. non-orientable) 4-manifold of genus 4 (resp. 6), up to (TOP) homeo-
morphism.

2. Main results

In order to state our results we need some preliminaries and formulae first
proved in [2] and [3]. From now on, let us denote by

(1) M4 a smooth (or PL) closed connected orientable (resp. non-ori-

entable) 4-manifold of genus g (resp. h).
(2) (G, c) a crystallization of M.
(3) IW K(G) the contracted triangulation represented by (G, c).
(4) CG = {0,1,2,3,4} the colour-set of (G, c), (via : i E CGI the vertex-set

of IW and (i, j, r, s, t) an arbitrary permutation of CG.
We may always suppose that (G, c) regularly imbeds into the closed con-

nected orientable (resp. non-orientable) surface of genus g (resp. h) and
that vi corresponds to the subgraph Gi (i E CG) obtained by deleting all
i-coloured edges from G (for details see [2] and [3]).

Let K (i, j) (resp. J«(r, s, t)) be the one-dimensional (resp. two-dimen-

sional) subcomplex of A generated by the vertices vi and vj (resp. Vr, Vs
and vt). Let yij (resp. yrst) denote the number of edges (resp. triangles) of
J«i,j) (resp. J«(r,s,t)).

If N = N(i, j) and N’ = N(r, s, t) are regular neighborhoods of J«i,j)
and K(r,s,t) respectively, then N and N’ are complementary bordered
4-manifolds, i.e. M = N U N’ and N n N’ = 8N = aN’.
Now the Mayer-Vietoris sequence of the triple (M, N, N’) gives

hence M is orientable (resp. non-orientable) if and only if ON is.
Setting c = g (resp. E = h/2) for the orientable (resp. non-orientable)

case, we have the following relations (see [2] and [3]);
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where gi is the genus of an orientable closed connected surface into ’which

Gi regularly imbeds and x(M) is the Euler-Poincar6 characteristic of M.
Relations (2) and (4) directly imply that

where [x] denotes the integer part of the real non-negative number x.
By (3) it follows that

(orientable case)

(non-orientable case),

hence

where f3k (resp. B(2)k) is the k-th integral (resp mod 2) Betti number of M.
Finally relation (1) and the inequalities (compare also [1] and [7])
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imply that

(i E CG, indices mod 5).
In sect. 3 and 4 we will study the possible values that the sum A may

assume and classify the corresponding 4-manifolds.
Now we state the main results of the paper. Here Sn and RPn (resp.

CPn ) denote the n-sphere and the real (resp. complex) projective n-space;
Sl ® Sn represents either the topological product S, X Sn or S’ X Sn the

twisted Sn-bundle over S1. Further let us define #pS1 ® Sn as the connected
sum of p copies of Sl 0 Sn if p &#x3E; 0 and as sn+1 if p = 0.

For the orientable case we have:

Theorem 1. Let M4 be a smooth (or PL) closed orientable connected 4-man-
ifold of genus g. If A = 0, then M is (PL) homeomorphic to the connected
sum #,S1 X 83. If A = 5, then M is (PL) homeomorphic to the connected
sum (#g-2S1 X S3)#Cp2.

Then we prove that there are no 4-manifolds of genus g for which the sum

A satisfies 1  A  9, A # 5. Therefore we classify all closed orientable
4-manifolds of genus g  4 (for g  2 see [2] and [3]).
Theorem 2. Let M4 be a smooth (or PL) closed orientable connected 4-man-
ifold of genus g. If g = 3, then M is (PL) homeomorphic to either #3S1 X S3
or CP2 #S1 X S3. If g = 4 and A  9, then M is (PL) homeomorphic to
either #4S1 X S3 or (#2S1 X S3)#Cp2. If g = 4 and A = 10, then M is
(TOP) homeomorphic to one of the following manifolds: CP2 #CP2, S2 X S2

(the twisted 82 - bundle over S2) and 82 X S2.
This characterizes S2 XS2 among closed orientable 4-manifolds, i.e. S2 X S2

is the unique prime smooth (or PL) closed orientable 4-manifold of genus
four, up to (TOP) homeomorphism.

The above results and [16] also imply that g(RP3 X S1) = 6. We conjecture
that this manifold is the unique prime closed connected orientable 4-manifold
of genus six.

For the non-orientable case, we have

Theorem 3. Let M4 be a smooth (or PL) closed non-orientable connected
4-manifold of genus h. If A - 0, then M is (PL) homeomorphic to the
connected sum #h/2S1 +S3.
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If A = 5 and H2 (M) has no 2-torsion, then M is homeomorphic to either
#(h-4)/2S1 0 S3#(CP2 or #(h-6)/2S1 0 S3#Rp1.

If 0 = 5 and H2 (M) has 2-torsion, then the homology groups of M are:

(hence h &#x3E; 8) and

Then we prove that there are no 4-manifolds of genus h for which the
sum A satisfies 1  A  4. Therefore we classify all closed non-orientable
4-manifolds of genus h  6 (for h  4 see [3]).
Theorem 4. Let M4 be a smooth (or PL) closed non-orientable connected
4-manifold of genus h. If h = 6 and A 54 5, then M is (PL) homeomorphic
to #3S1 ® S3. If h = 6 and A = 5, then M is (TOP) homeomorphic to
either 81 X S3#CP2 or RP.

This characterizes RP4 among closed non-orientable 4-manifolds as the
unique prime smooth (or PL) closed non-orientable 4-manifold of genus six,
up to (TOP) homeomorphism.

Finally we summarize our knowledge about the classification, in table I
for orientable 4-manifolds and in table II for non-orientable 4-manifolds.

Open problem.
Fill in some of the places of the tables marked with a question mark. We

conjecture that if g is odd, then M is (PL) homeomorphic to the connected
sum M #S1 x S3, M being a closed connected orientable 4-manifold of genus
g- 1.
We also observe that cases A &#x3E; 10 and g &#x3E; 5 can not be treated as

the previous ones since it may not be possible to apply the Gordon-Luecke
results (see [9]).

Finally we note that it might exist a closed prime non-orientable 4-mani-
fold M such that g(M) = 8, x(M) = -1 (i.e. A = 5) and its homology
groups are: H1(M) = Z + Z, H2(M)= Z2n (n &#x3E; 1), H3(M) - Z2 and
Hq(M) = 0 (q&#x3E; 4).



42

TABLE I. Orientable 4-manifolds

3. Proofs: the orientable case

A=0.
If A = 0 (recall that c - g), then relations (7) and (9) imply that B1 = g,

hence /?2 = 0 by (6). Thus we have FH2 (M) ^= 0 and

Now we consider the complementary bordered 4-manifolds N = N(2, 4)
and N’ = N(0,1, 3). Because y24 = 1 + 9 (use (1)), the pseudocomplex
A"(2,4) consists of exactly 1-f-g edges, hence N is (PL) homeomorphic to the
boundary connected sum #gS1 xB3, B3 being a closed 3-ball. Further K(0, 3)
and A"(l,3) are also formed by 1 + g edges eachone as 103 = q13 = 1 + g by
formula (1). Because ’Ypl3 = ’Yol + g (use (2)), the complex K(0, 1, 3) has
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TABLE II. Non-orientable 4-manifolds

many triangles but g as there are edges in K(0,1). We observe that H2(N’)
is free since N’ = N(O, 1, 3) collapses to the 2-dimensional pseudocomplex
K(O, 1, 3). Thus the Mayer-Vietoris sequence of the triple (M, N, N’) gives

hence H2 (N’) = 0. Therefore it does not exist two triangles in K(0,1, 3) with
common boundary (notice that any r-ball of a pseudocomplex is abstractly
isomorphic to the standard r-simplex). Thus any triangle of ¡(CO, 1,3) can be
retracted, by deformation, on a one-dimensional subcomplex. This implies
that the regular neighbourhood N’ of K(0,1, 3) is (PL) homeomorphic to
a boundary connected sum #hS1 X B3. Since aN’ = 8N £i #gS1 X S2, it
follows that h = g. Therefore the manifold M must be #gS1 X S’ by theorem
2 of [15]. Now the result follows as the genus of #gS1 X S3 is really g by
corollary 2 of [3].
A= 1.

If A = 1, then at least one of the gi’s in the sum A equals 1, hence relation
(9) implies that /31  g - 1. On the other hand, we have 01 &#x3E; g by (7), i.e.
a contradiction.
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A =2.

If A = 2, then the addendum gi of A may assume (up to circular permu-
tations) the values listed in the following table:

Indeed, doing the above-mentioned change of names in the colour-set CG
the permutation of CG giving the regular imbedding of G is the same.

By (7) we have B1 &#x3E; g - 1. Thus cases 2.2 and 2.3 give a contradiction
since 01 :s; 9 - 2 by (9).

For case 2.1, it follows that 131 = g - 1 (use (9)), hence 132 = 0 by
(6). Now relations (1) and (2) give 102 = 7i3 = q14 = g and 1134 =
734 + g - 1. Then we can repeat the same arguments of the case A = 0
by replacing g and (K(2,4), K(0, 1, 3)) with g - 1 and (K(0, 2), K(1, 3,4))
respectively. It follows that M is (PL) homeomorphic to # g-1 81 X S3, which
is a contradiction because this manifold has genus 9 - 1 by corollary 2 of [3].
A = 3.

By (7) we have 01 &#x3E; g - 3/2, hence relation (8) gives -yij &#x3E; g - 1/2,
i.e. yij &#x3E; g. Thus (4) implies the inequality 5 + 5g - 2A &#x3E; 5g, which is a
contradiction.

A =4.

Relation (7) becomes B1 &#x3E; g - 2 so (9) implies that gi + g i+2  2 for
each colour i C CG. Thus the addendum of A may assume (up to circular
permutations) the following values:

In any case, relations (7) and (9) give B1 = g - 2 so ,Q2 = 0 by (6), i.e.
H3(M) = ®g-27 and FH2(M) = 0.

(case 4.1). Since yo2 = yo3 = y14 = 9 - 1 and ’yo23 = y23 + g - 2 (use
(1) and (2)), we can repeat the same arguments of case A = 0 by replacing
g and (K((2,4),K((0,1,3)) with g - 2 and (K(1,4), K(0,2,3)) respectively.
Then M is (PL) homeomorphic to #g-2S1 X 83, which is a contradiction as
usual.
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(case 4.2). Relations (1) and (2) imply that y13 = y24 = g-1, yo3 = g and
7013 = 101 -f-g-1. Then N = N(2,4) is (PL) homeomorphic to #g-2S1 X B3.

Since H3(M)= ®g-2Z, FH2(M) = 0 and H2(N)= 0, the Mayer-
Vietoris sequence of the triple (M, N, N’), N’ = N(0,1,3), implies that
H1(N’) = eg-22 and H2(N’) = 0 (compare also A = 0). Thus we obtain
the contradiction of the previous case too.

(case 4.3). Since yo3 = 714 = ’Y24 = g - 1 and y124 = 112 + g - 2 (use
(1) and (2)), we can repeat the same arguments of case 4.1 by replacing the
pair (K(1,4), K(0,2,3)) with (K(0,3), K(1,2,4)).
A=5.

If A = 5, then (7) implies that /31 &#x3E; g - 2. Since yij &#x3E; B1 + 1 &#x3E; g - 1
by (8), relation (4) gives y24 = 114 = 7i3 = 703 = 702 = g - 1. Thus by
(1) we obtain gi + Yft2 = 2 (indices mod 5), and whence 9î = 1 for each
i E CG. Now relations (6) and (9) imply that B1 = g - 2 and /?2 = 1, i.e.

H3 (M) = FH1 (M) = eg-22 and FH2 (M) = Z. Since q13 = g - 1, the
complex K(1,3) is formed by two vertices joined by exactly g - 1 edges,
hence N = N( l, 3) is (PL) homeomorphic to #g-2S1 X B3.

Further h’(o, 2) and K(2,4) consist of exactly g - 1 edges eachone as
’yo2 = 724 - g - 1. Because 1024 = 704 + g - 1 (use (2)), the complex
K(0, 2,4) has many triangles but g - 1 as there are edges in h’(o, 4). Since
FH2 (M) = Z, H2 (N) = 0, H3(M) = H2 (aN) = eg-22 and H2(N’) is free
(N’ = N(o, 2, 4)) the Mayer-Vietoris sequence of the triple (M, N, N’)

implies that TH2(M) = 0, hence H,(M) -- H3(M) = FH3(M)®TH2(M)=
®g-2Z, H1(N’) = ®g-2Z and H2 (N’) = Z. Thus K(0,2,4) collapses to a 2-
dimensional subcomplex formed by a combinatorial 2-sphere S 2 and by g - 2
edges e1, e2 , ... , e g-2 such that ej n S2 = i9ej. Further S2 consists of exactly
two triangles o-1,o-2 E K (0,2,4) with common boundary as qo2 = ’Y24 = g-1,
y024 = y04 + g - 1 and H1 (N’) = ®g-2Z.

By isotopy we can always assume that o-1 is the standard 2-simplex in
M. Let o-1 be the barycenter of o-1 and Sd2 K be the second barycentric
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subdivision of K = K(G). Then N’ is the orientable bordered 4-manifold
obtained by adding a 2-handle (a regular neighborhood of 6-1 in Sd 2K) to
#g-2S1 X B3#B4 along a knot L C aB4, B4 being a small neighborhood of
a2 in M.

Since the surgery is given by attaching 2-handles in dimension 4, the
surgery coefficient associated to L must be an integer and by homological
reasons equals to ±1 (use H2(N) = Z). Since aN’ = 8N ci #g-2S1 X 82 #S3,
by theorem 2 of [9] (also compare [17]) L must be the trivial knot so the
manifold N’ is (PL) homeomorphic to #g-281 X B3#(±Cp2 B open 4-ball).
Thus M is the connected sum #g-2S1 XS3#CP2 as requested. Now the result
follows by the "subadditivity" of the genus as g(CP2) = 2 and g(#g-2S1 X
S3) = g-2 by [3].

Here we recall that g(M1#M2 )  g(Mi) + g(M2 ) for any two orientable
(resp. non-orientable) closed manifolds. On the contrary, if M, is orientable
and M2 is non-orientable, then g(M1 #M2 )  2g(Mi) + g(M2)’
A = 6.

SincefJ1 &#x3E; g-3 by (7), it follows that yij &#x3E;B+1 &#x3E; g - 2 (see (8)). Thus it
is easily seen that the 7ij’s in (4) must assume (up to circular permutations)
the values listed in the following table:

Now by (1) we have:
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hence relations (6), (7) and (9) give (31 = g - 3 and /?2 = 0 for any case.
Therefore we obtain the contradiction

For conciseness we only sketch the proof in case 6.1. Here relations y14 =
’Yo2 = 7o3 = g - 2 and y023 = y23 + g - 3 hold (use (1) and (2)). Then we
can repeat the same arguments of case 4.1 by replacing g - 2 with g - 3.

A = 7.

Since B1 &#x3E; g - 3 and yij &#x3E; g - 2 by (7) and (8), we must have (up to
circular permutations) 124 = g - 1 and i14 = 113 = 703 = 102 - g - 2 (see
(4)). Then relation (1) implies that 96 = gi = 2 and g2 = g3 = g4 = 1, hence
B1 = g - 3 and B2 = 1 by (6), (7) and (9). Since 114 = 103 = 102 = g - 2 and
7023 = y23 + g - 2 by (2), we can repeat the same arguments of case A = 5 by
replacing g - 1 and (K(1,3), K(0, 2,4)) with g - 2 and (/((1,4),/((0,2,3))
respectively. Thus, we obtain the contradiction

A =8.
Since B1 &#x3E; g - 4 by (7), it follows that lij &#x3E; B1 + 1 &#x3E; g - 3 (see (8)). Thus

it is easily seen that the yij’s in (4) may assume (up to circular permutations)
the values listed in the following table:

Now by (1) we have:
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hence relations (6), (7), and (9) give B1 = g - 4 and /?2 = 0 for any case.
Therefore we obtain the contradiction

(also compare with A = 6).

Since B1 &#x3E; g - 4 and yij &#x3E; g - 3 by (7) and (8), we must have (up to
circular permutations) the following cases (use (4)):

Now by (1) we obtain:

hence B1 = g - 4 and B2 = 1 for any case (use (6), (7) and (9)). Now we
can repeat the same arguments of case A = 5 (or A = 7) to obtain the
contradiction
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Now we have only to consider case A = 10 and 9 = 4 to complete the
proof of theorem 2. Indeed, if g  4, then A  10.

A = 10, g = 4.
For this case, we have 724 = 114 = 113 = ’Yo3 = ’yo2 = 1 by (4), hence

n1, (M) = 0 and /?2 = 2 (use (6) and (8)). Since H2 (M) £i H2 (M) = FH2 (M)
is free, it follows that H2(M) = Z + Z. 

According to [5], [6] and [8], closed simply-connected smooth (or PL)
4-manifolds are classified (up to homeomorphism) by their intersection forms.
Since Poincar6 duality identifies H2 (M) with H2 (M), we can consider the in-
tersection form Am as a pairing H2(M)0H2(M) --+ Z so defined: Am(x, y) =
(x U y) [M], where U and [M] denote the cup product and the fundamental
class of M respectively.

Combining Donaldson’s theorem [5], [6] and Freedman’s classification, we
have the following cases:

(1) If Am is positive (resp. negative) definite, then AM is isomorphic
over the integers to (1) e (1) (resp. (-1) EB (-1)) by [5] and [6] (use
the fact that H2 (M) = Z + Z). Thus M is (TOP) homeomorphic to
either Cp2#Cp2 or (-CP2 )#( -CP2) respectively (use [8]).

(2) If Am is an odd indefinite form, then Am is isomorphic to (1) 3 (-1)
(see for example [14]), hence M Top CP2#( -CP2) = S2 X 92 by [8]

TOP 

and [14].
(3) If Am is an even indefinite form, then Am is isomorphic to the form

where rank (w) = 16 lal + 2 lbl.
Since rank(AM) = rank(ca) = rank(H2 (M)) = 2, we obtain a = 0

and b = 1, i.e. 

Now the Freedman theorem implies that M is (TOP) homeomorphic
to S’ X S’ as M is simply connected. Now the proof is completed
because g(82 X S2) = g(S2 X S2) = g((Cp2#(Cp2) = 4 by corollary 2
of [3]. 

To conclude the section we now prove that the genus of RP3 X Sl is 6.

Since the Euler-Poincar6 characteristic of Rp3 X Sl is 0, relation (3) becomes
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0 = 2 - 2g + A. Hence the inequality A &#x3E; 10 implies that g &#x3E; 6. Now the

proof is completed because a crystallization of Rp3 X Sl with genus 6 is really
constructed in [16].

4. Proofs: the non-orientable case

A = 0.
If A = 0 (recall that c = h/2), then relation (1) implies that -yo3 =

’Y24 = q14 = 7i3 = ’Yo2 = 1 + h/2. Since y24 = 1 + h/2, the pseudo-
complex J(2,4) consists of exactly 1 + h/2 edges, hence N = N(2, 4) is

(PL) homeomorphic to the boundary connected sum #h/2S1 © B3. Here

Sl ® B3 represents either S’ X B3 or the twisted B3-bundle over 81. Since
M is non-orientable (and whence ON is non-orientable), we have H1 (aN) =
(I)h/2Z, H2(aN)= ffi(h-2)/2Z e Z2 and Hq(aN)= 0 for any q &#x3E; 3. By

(7) and (9) it follows that 0(2) = h/2, hence (6) gives B(2)2 = 0. Since

H2 (M; Z2) = H2(M) ® Z2 e Tor(H1 (M), Z2) = 0, we have FH2(M) = 0
and H1 (M) has no 2-torsion. Since H, (M; Z2) = H1 (M) &#x26; Z2 = ffih/2Z2
and Tor(H1(M);Z2)= 0, we also obtain H1 (M)= FH1 (M)= ffih/2Z,
i.e. B1 = h/2. This implies that x(M) = 2 - h = 1 - B1 + B2 - B3 =
1 - h/2 - B3 (B2 = 0 as FH2 (M) = 0), and whence B3 = h/2 - 1. Moreover
H3 (M; Z2) = H3 (M) 0 Z2 ® Tor(H2(M); Z2) = H3 (M) 0 Z2 = ffih/2Z2 as

øi2) = B(2)3 = h/2, hence 1I3(lvf) ::: +(h-2)/2Z + Z2-
Thus the Mayer-Vietoris sequence of the triple (M, N, N’), N’ = N(0, 1, 3),

gives

and

hence H2(N’)= FH2 (N’) = 0 and H1 (N’)= (Dh/2Z. Further K(0,3) and
K(1, 3) are also formed by 1 + h/2 edges eachone as io3 = 7i3 = 1 + h/2
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by (1). Because y013= -yo1 + h/2 (see (2)), the complex h’(o,1, 3) has many
triangles but h/2 as there are edges in h’(o,1).

Since -U2(N’)= 0 and H1 (N’)= EBh/2Z there are no two triangles in
K(0,1, 3) with common boundary. Now it follows that K(0,1,3) collapses
to an one-dimensional subcomplex. Hence the regular neighbourhood N’ of
K(O, 1, 3) is (PL) homeomorphic to a boundary connected sum #pS1 + B3.
Since 0N’ £i 8N £i #h/2S1 0 S2, it follows that p = h/2. Thus M is

#h/2S1 0 83 by theorem 2 of [15] and lemma 1 of [4] (see also [13]).
Now the result follows as g(S’ x S’) = 2 (see [3]) and the genus is "sub-

additive" . 

A = 1.

Relations (7) and (9) give B1(2) &#x3E; h/2 and B1(2)  h/2 - 1 respectively, i.e.
a contradiction.

A = 2.

Using the same arguments shown in A = 2 (orientable case) and A - 0
(non-orientable case), we prove that M is (PL) homeomorphic to #(h-2)/2S1+
S3, which is a contradiction.

i.e. yij &#x3E; h/2 by (9). Thus relation

contradiction.

A =4.

Using the same arguments shown in A - 4 (orientable case) and A = 0
(non-orientable case), one obtains the contradiction

A = 5.

If 0 = 5, then relation (7) implies that B1(2)&#x3E; h/2 - 2. By (8) we have
yij &#x3E; 0(2) + 1 &#x3E; h/2 - 1, hence 724 = y14 = 7i3 = 703 = 702 = h/2 - 1 by
(4). Now relation (1) implies that gi = 1 for each colour i E CG.

Since -t24 = h/2 - 1, K(2,4) consists of two vertices joined by h/2 - 1
edges, hence N = N(2,4) - #(h-4)/2S1+B3, i.e. aN= #(h-4)/2S1 + s2.PL PL

Since gi = 1 (i C CG), we obtain B(2)1 h/2 - 2 by (9), and whence
B(2)1 = h/2 - 2. Thus relation (6) gives 0(2) = 1.
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Furthermore relation (8) also implies that rkn1 (M) = rk H1 (M) = h/2 -
2.

Since Z2 = H2 (M; Z2) - H2 (M) ® Z2 e Tor(H1 (M); Z2), it may occur
three cases:

) has no 2-torsion.
has no 2-torsion.
has one 2-torsional

Now the Mayer-Vietoris sequence of the triple

splits in the following exact sequences
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Since q13 = 703 = h/2 -1, ’Yol3 = 701 + h/2 -1 (see (2)), Hq (N’)= 0 (q&#x3E;
2) and H1(N’) ®(h-6)/2Z ® Z2n, the manifold N’ is (PL) homeomorphic
to the boundary connected sum #(h-6)/2S1 + B3#W. Here W is a bordered
4-manifold homotopy equivalent to eo U e’ U e2 (e’ i-cell) with âe2 = 2ne1,
i.e. Hq(W) = 0, q &#x3E; 2, and H1 (W ) = Z2n. Moreover e2 must be formed by
exacly two triangles of K(0,1,3) since yo13 = ’Yol + h/2 - 1 and FH1(N’)=
®(h-6)/2Z. Thus it follows that n = 1, i.e. M is (PL) homeomorphic
to #(h-6)/2S1 0 S3#V1, where V4 is a closed connected non-orientable 4-
manifold with H1(V)= n1 (V)= Z2, H2 (V) = 0, H3(V) = Z2 and H9 (V )=

is cyclic). Since x(V) = 1 and n1 (V) = Z2, the universal covering V of V
is a simply connected closed 4-manifold of Euler-Poincaré characteristic 2,
hence V = 84 by the Freedman theorem (see [8]). This implies that V is

TOP 

homotopy equivalent to the real projective 4-space RP4, hence V= RP4
TOP

by [8] and [12] (see problem 4.13 of [12]). Now the proof is complete because
a crystallization of RP4 with genus 6 is really constructed in [1] (see also [3])

Case 2. Since B(2)1 = h/2 - 2 and Tor(H1(M); Z2) = 0, we obtain

i.e. f31 = h/2 - 2. Thus rk H1 (M) = h/2 - 2 = B1 gives TH1 (M)= 0.
Since H2(M) has no 2-torsion and f3i2) = B(2)3, we also have ®(h-4)/2Z2=

Now the Mayer-Vietoris sequence of the triple 
#(h-4)/2S1+ JR3, N’ = N(0,1,3), gives

hence
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we can repeat the arguments used in A = 5 (orientable case) to obtain

Thus we have

hence and

i.e. H2(M)= Z2n for some integer n &#x3E; 1 as H2(M) has one 2-torsional
factor. Thus M is (PL) homeomorphic to #(h-8)/2S1 + S3#M’, where M’
is a closed connected non-orientable prime 4-manifold (if exists) such that
H1 (M’) = Z + Z, H2(M’)= Z2., H3(M’)= Z2, Hq(M’) = 0, X (M) = -1
and g(M’) = h = 8.

Now we prove theorem 4.
If A  5 and h = 6, then M is homeomorphic to either #3S1 + S3 or

CP2 #S1 X 83 or RP4, hence M= RP4 if M is prime. If h = 6 and
- TOP 

6  A  7, relation (4) becomes
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hence 20 - 2A E {8, 6}, i.e. at least one of the yij’s in (***) must be 1.
This implies that n1(M)= 0 (use (8)) so M is simply-connected; but this

is a contradiction as M is non-orientable.

Indeed we can also prove that A E {6,7} and h &#x3E; 6 give a contradic-
tion as we obtain the manifolds #(h-6)/2S1 0 S’ and #(h-6)/2S1 0 S3#(CP2
respectively. 0
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