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HOMOTOPY COLIMITS IN PRESHEAF CATEGORIES
by Murray HEGGIE

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CA TÉGORIQUES

VOL. XXXI V-1 (1993)

RESUME. On construit des colimites homotopiques dans les

categories de pr6faisceaux, dont la th6orie d’homotopie est

6quivalente a la th6orie d’homotopie de la cat6gorie des ca-

tegories.

1 Introduction
In an unpublished but widely circulated rnanuscript, Grothendieck proposes to

base homotopy theory on CAT, the category of (small) categories [2]. He initiates
this program by proving a theorem that equates the homotopy category of certain
presheaf categories (A op , Sets) and the homotopy category of CAT. This paper
describes the construction of homotopy colimits in the afore-mentioned presheaf
categories and compares these to homotopy colimits in CAT.

Before giving a more detailed account of the contents of this paper, some funda-
mental notions for the homotopy theory of categories will be briefly recalled. The
first is that of a Grothendieck fibration [1]. Let F : C -&#x3E; D be a functor and let
D be an object, of D. The comma category D/F is the category with objects all
pairs (C, f ) where C E C and f : D - F(C) E D. A map from one object (C, f )
to another (C’, f’) consists of a map g : C -&#x3E; C’ E C satisfying f’ = F(g) o f . Let
F-1 (D) denote the fibre of F over D E D. Evidently, there is an inclusion

If t has a right adjoint, left inverse for every object D E D, F is called a Grothendieck
fibration.

Let Y : Cop -&#x3E; CAT be a contravariant C,A?’-valued diagram on C. There is a
fibration

n : Y f C-&#x3E; C
where the domain category Y f C is defined as follows: Objects of Y f C are pairs
(C, y) where C E C and y E Y(C). A map (C, y) - (C’, y’) is a pair (c : C -&#x3E; C’ E
C, g : y - Y(c)(y’)). Y f C is known variously as the fibred category associated to
Y or the Grothendieck construction of Y.
A functor F : A - B is called a weak equivalence if its image Nerve(F) under

the functor

Nerve : CAT -&#x3E; SS
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is a weak equivalence of simplicial sets, i.e. induces an isomorphism between the
homotopy groups of Nerve(A) and Nerve(B). The class of weak equivalences has
several saturation properties:

( 1) Isomorphisms are weak equivalences.
(2) The composite of two weak equivalences is a weak equivalence.
(3) If G o F = H and any two of F,G, or H are weak equivalences, then the

remaining map is also a weak equivalence.
(4) If P is a split epimorphism with section S and the composite S o P is

homotopic to the identity then P and S are weak equivalences.
A category A is called weakly contractible if the unique map A -&#x3E; 1 to the termi-
nal category 1 is a weak equivalence. Weak equivalences in the functor category
(A, CAT) are defined pointwise: A natural transformation 8 : X =&#x3E; Y is a weak

equivalence if 8(A) : X(A) =&#x3E; Y(A) is a weak equivalence in CAT for all A E A.
Let F : A - B and G : B -&#x3E; A be functors and let 0 : F =&#x3E; G be a natural

transformation. Let 2 denote the category

with two objects and one non-identity arrow. 0 determines a map

by the prescription

Since Nerve(2) = A[1], the simplicial interval, and Nerve preserves finite limits,
Nerve(8) is a homotopy between Nerve(F) and Nerve(G). It follows that if

are adjoints, A and B are homotopy equivalent. For the adjunctions

and

map to homotopy inverses via Nerve.
If the category A has a terminal object 1, then the identity idA is homotopic to

the composite
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of the unique map to the terminal category followed by the inclusion of the terminal
object in A. The homotopy is the map whose value at A E A is the unique map
A -&#x3E; 1. Similarly, if A has an initial object, A is weakly contractible.

The Grothendieck construction,X f C, has already been described. The property
of X f C that is crucial to the sequel is Thomason’s observation that, for CAT-
based homotopy theory,

r

the homotopy colimit of C [6]. In more detail, let E-1CAT denote the category of
fractions of CAT with respect to the class of weak equivalences and let E-1(C, CAT)
denote the category of fractions of (C, CAT) with respect to the class of point-wise
weak equivalences. Let

denote the unique functor to the terminal category and let

denote the functor induced by n C . It is evident that 7r* c preserves weak equivalences
and therefore

exists. Frequent reference will be made to the following fundamental result:

1.1 Theorem (Thomason’s Theorem) The Grothendieck construction preserves
weak equivalences and therefore

exists. Moreover, there is an adjunction

Proof. [6] 0

A second cornerstone of CAT-based homotopy theory is Quillen’s Theorem A
[5]:
1.2 Theorem Let F: A -&#x3E; B be a funclor. Suppose that F/B is weakly contractible
for all objects B E B. Then F is a weak equivalence. 0

The property of fibrations enunciated in the lemma which follows will play a key
role in the proof of many of the results contained in this paper.
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1.3 Lemma Let

be a pullback in CAT. Suppose that G is a fibration and that, for all D E D, F/D
is weakly contractihle. Then F’ is a weak equivalence.

Proof. For every object D’ E D’ there are functors

and

such that

In particular, H is a homotopy equivalence. Therefore, F’/D’ is weakly contractible
for all objects D’ E D’. By Quillen’s Theorem A, F’ is a weak equivalence. Addi-
tional details can be found in [3] 0

For any category A, there is a canonical functor

Grothendieck proposes to relate the homotopy theory of (A°p, Sets) to the homotopy
theory of CAT via cA. His main result gives sufficient conditions for LA to induce
an equivalence of homotopy theories. This result is recapitulated in §2. In §3, a
class of categories meeting the conditions of Grothendieck’s theorem is introduced.
Properties of categories belonging to this class are explored in §3 and §4. Let A be
a category belonging to the class. Let

be a diagram. The homotopy colimit of X,

is constructed in §5. Various properties of the homotopy colimit are described in
§6 and §7.

It should be noted that the theory sketched by Grothendieck applies to the
standard example, viz. (Ll op, Sets), the category of simplicial sets.
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2 Grothendieck’s theorem
Let A denote a (small) category and let A/.: A -&#x3E; CAT denote the functor

which assigns the comma category A/A to each object A E A.
2.1 Definition LA: (A°P, Sets) -&#x3E; CAT is the left Kan extension of A/. along the
Yoneda embedding A -&#x3E; (A°p, Sets).

For X E (A op, Sets), tA (X) is the category whose objects are all pairs f(A, x) I
A E A and x E X(A)}. A map (A, x) -&#x3E; (B, y) from one object to another is a
map f : A -&#x3E; B such that X(f)(y) = x. tA(X) is variously known as the diagram
of X , the category of elements of X , or the fibred category associated to X . LA is
left adjoint to the functor

Let jA denote this functor. It will be useful in the sequel to have an explicit
description of the counit c of the adjunction LA -I jA. To this end, let C be a

category and let (A, F: A/A - C) be an object of tA o jA (C). Then Ec( A, F) =
F(idA : A -&#x3E; A) = idF (A). The extension to maps is immediate.
2.2 Lemma The forgetful functor tA (X) -&#x3E; A is a (Grothendieck) fibration with
discrete fibres 0

2.3 Definition [2] A map 8 : X - Y in (A°P, Sets) is a weak equivalence if the
functor i A(0) is a weak equivalence in CAT. The collection of weak equivalences in
(A’P, Sets) will be denoted EA .
EA inherits closure properties from the class of weak equivalences in C.AT :

( 1) Isomorphisms belong to EA .
(2) If 0 and 0 are a composable pair of maps and any two of 0,yb, or 0 o 0 are

in EA, so is the third.
(3) If p is a split epimorphism with section o, and the composite u o p e EA,then

p E EA.

2.4 Definition Let I E (A°P, Sets) have two disjoint global sections: 60: 1 - 1
and 61: 1 -&#x3E; I. A map p: Y -&#x3E; X E (A°p, sets) is the dual of a deformation retract
with respect to I if

( 1) p has a section o-: X -&#x3E; Y p o o- = idX .
(2) There is a map H: Y x I -&#x3E; Y such that (2) commutes:

This definition is motivated by considerations from axiomatic homotopy theory.
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2.5 Definition [2] An object I which has two disjoint global sections, 80: 1 - 1
and 81: 1 --&#x3E; I, is called a homotopy interval if duals of deformation retracts with
respect to I belong to EA-

2.6 Theorem (Grothendieck’s Theorem) Let A be a weakly contractible category.
Assume that (A°P, Sets) contains a homotopy interval. Then the functors tA and
jA induce adjoint equivalences:

Proof. [2] 0

3 Categories of models

3.1 Definition [2] A category A is acyclic if the diagonal functor has weakly con-
tractible homotopy fibres, i.e., the pullback

is weakly contractible for all pairs (A, B) E A x A.

3.2 Proposition A is an acyclic category if and only if the projection nB: A(., A) x
A(., B) - A(., B) E EA for all objects A and B of B.

Proof. Assume that nB E EA. By definition, tA(nB) is a weak equivalence in CAT.
But tA(A(., A) x A(., B)) = 1l/(A, B), the homotopy fibre of A over (A, B) E A x A,
and tA(7rB) = A/(A, B) - A/B, the evident functor. Since A/B is contractible,
0/(A, B) is weakly contractible,i.e., A is acyclic. By running this argument in
reverse, one obtains a proof of the converse D

3.3 Proposition An acyclic category is weakly contractible.

Proof. Let A be an acylic category. The diagonal functor A induces isomorphisms

and

for all choices of A E A. 0

Acyclicity of A imposes additional requirements on the collection EA.
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3.4 Proposition Assume that A is an acyclic category. Then 0 x 0’ E EA whenever
8 E EA and 8’ E EA-

Proof. Let 8 : X - Y and 8’ : X’ --&#x3E; Y’ be maps in EA. By definition, tA (8) and
i A(0’) are weak equivalences in CAT. In virtue of the saturation properties of the
collection of weak equivalences in CAT, iA(0) x tA(O’) is a weak equivalence. For
any two objects X and X’ of (A°P, Sets), there is a natural map

defined on objects by (A, (x, x’)) l-&#x3E; ((A, x), (A, x’)). By inspection,F fits into a
pullback diagram 

where the vertical arrows are the forgetful functors. By 2.2, the rightmost vertical
arrow is a fibration. Since A satisfies the hypotheses of Quillen’s Theorem A, F is
a weak equivalence. Given two maps 8 : X - Y and 8’ : X’ -&#x3E; Y’, construct the
commuting square

Since iA(0) x iA(0’) is a weak equivalence and both horizontal arrows are weak
equivalences, tA(0 x 0’) is also a weak equivalence D

The preceding proposition has a partial converse:

3.5 Proposition Let A be a weakly contractible category. Assume that 0 x 0’ E EA
whenever 0 and 0’ are in EA. Then A is acyclic.

Proof. Let 1 denote the terminal object of (A op, Sets). Note that tA(1)= A.Let
A be an object of A. tA(A(., A)) = A/A. Since A is weakly contractible and
A/A is contractible, the forgetful map A/A - A = tA(A(., A) -&#x3E; 1) is a weak

equivalence. By definition, A(., A) -&#x3E; 1 E EA. Consequently, for each B E A,
A (., A) x A(.,B) -&#x3E; 1 x A(., B) E EA. But this map is isomorphic to 7rB’. : By 3.2,
A is acyclic D

Let QA denote the subobject classifier in (A°P, Sets).
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3.6 Proposition Let A be an acyclic category. Then tA and jA induce adjoint
equivalence

if and only if QA is a homolopy interval.

Proof. One direction is immediate from Grothendieck’s Theorem. To prove the

converse, let 2 E CAT denote the category with two objects, 0 and 1, and one non-
identity arrow 0 -&#x3E; 1. By assumption, jA preserves weak equivalences. Since 2 -&#x3E; 1

is a weak equivalence in CAT, jA (2) -&#x3E; 1 E EA. But jA(2) = QA. Let 60: 1 -&#x3E; HA
denote the classifying map for 0 --&#x3E; 1 and let 51 : 1 -&#x3E; HA denote the classifying
map for 1 -&#x3E;1. Then bo and 61 are disjoint global sections. As HA -&#x3E; 1 E EA and

commutes for i = 0, 1, bi E LA for i = 0, 1. Let X E (A op, Sets). As A is

acyclic,id x 5; : X - X x HA E EA by 3.4.To finish the argument that S2A is a

homotopy interval, let p : Y -&#x3E; X be a map that has a section : X -&#x3E; Y. Let H

be a homotopy between idy and o p:

By the closure properties of EA, H E EA . By the same reasoning, o- o p E EA. The
closure properties of EA imply that p E EA D

3.7 Definition A category A is a category of models if

( 1) A is acyclic.
(2) HA is a homotopy interval.

A substantial portion of the homotopy theory of spaces can be instantiated in
(A°P, Sets) if A is a category of models. The propositions which follow provide
partial support for this claim. Further details can be found in [3].
3.8 Proposition Assume that A is a category of models. Let p: Y - X be a

map in (A oP, ,Sets). Suppose that p has the right lifting property with respect to all
monomorphisms: there is a lifting h : X’ -&#x3E; Y in all commuting diagrams of the
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fo rm

where i : Y’ -&#x3E; X’ is a monomorphisni. Then p is the dual of a deformation retract
with respect to OA.

Proof. Let 0 denote the initial object of (A op, Sets). The unique map 0 -&#x3E; X is a

monomorphism. By assumption, there is a lifting s : X -&#x3E; Y in

Let Y + Y denote the coproduct of Y with itself and let 60 + 61 : Y + Y --&#x3E; Y X S2A
be the map which agrees with 60 on the first summand of the coproduct and with
61 on the second. Similarly, let s o p + idy : Y + Y --&#x3E; Y be the map which coincides
with s o p on the first summand and with idy on the second. Let 7ry : Y X Q A -&#x3E; Y
denote the projection. Then there is a lifting H : Y x Q A -&#x3E; Y in

as 60 + 61 is a monomorphism. H exhibits p as the dual of a deformation retract
with respect to HA 0

3.8 Corollary Let f: Y --&#x3E; X be a map in (A°P, Sets). Then f can be factored in
the form f = p o i where p is the dual of a deformaiion retract with respect to S2A
and i is a monomorphism.

Proof. As the comma category

is a topos, it has enough injectives. Embed f in an injective object of (A°P, Sets)/X:

By virtue of the definition of injectivity, p has the right lifting property with respect
to all monomorphisms. By 3.8, p is the dual of a deformation retract D
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3.9 Corollary Let p: Y --&#x3E; X be a map which has the right lifting property with
respect to monomorphisms which are in EA. Assume in addition that p E EA-
Then p is the dual of a deformation retract with respect to S2A.

Proof. As before, embed p in an injective object of the topos
(A op, Sets)/X:

As both p and p’ are in EA, i E EA also. By assumption, there is a lifting r: Y’ - Y
in

But then p is the retract of a map which has the right lifting property with respect
to all monomorphisms. It is easily verified that p must have the same property D

3.10 Proposition Suppose that f : Y --&#x3E; X has the left lifting property with respect
to all duals of deformation retracts: there is a lifting in every commutative square
of the form 

where p is the dual of a deforrnation retract with respect to QA. T/ten f is a

monomorphism.

Proof By 3.8, the unique map Y -&#x3E; 1 can be factored in the form p o i : Y -
Y’ - 1 where i is a monomorphism and p is the dual of a deformation retract. By
assumption, there is a lifting g : X -&#x3E; Y’ in

As i = g o f is a monomorphism, f is a monomorphism 0
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Therefore, monomorphisms are characterized by the left lifting property with
respect to duals of deformation retracts and duals of deformation retracts are char-
acterized by the right lifting property with respect to monomorphisms. In the

axiomatic development of homotppy theory in (AOP, Sets) using Quillen’s notion of
a model category structure [4], cofibrations are monomorphisms and acyclic fibra-
tions are duals of deformation retracts with respect to S2A. This line of thought is
pursued in [3].
4 Auxiliary results on acyclic categories

The results of this § are needed for the construction of homotopy colimits in
(A°P, Sets) in case A is a category of models.

4.1 Lemma Let tA* : (BOP x AoP, Sets) - (BoP, CAT) be the functor on diagrams
induced by tA : tA.(X)(B) = tA(X(B, .)) for B E B. The the following diagram
commutes:

4.2 Lemma Let 8: X -&#x3E; Y be a pointwise weak equivalence in the category of
B -indexed diagrams

i.e. 8B : X(B,.) -&#x3E; Y(B,.) E EA for each B E B. Then, making the identification
of

with

it follows that 0 E EBxA.

Proof. By assumption, tA(8,B) is a weak equivalence in CAT for all B E B. By the
homotopy invariance of the Grothendieck construction, this implies that

is a weak equivalence. But, by 4.1, ((tA)*8) f B = tBXA(8) 0
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be the functor induced by the diagonal A: A -&#x3E; A x A. For each X E (A op x
A°P, Sets) there is a natural map F: t(A*X) -&#x3E; ¿AXA(X) defined on objects by
(A, ac) -&#x3E; ((A, A), x). Evidently,

commutes.

4.3 Lemma (17) is a pullback 0

4.4 Proposition Let A be an acyclic category. For all X E (A°P x A op, Sets), the
map F: tA(A*X) -&#x3E; LAxA(X) is a weak equivalence.

Proof. The pullback of a map with homotopically trivial fibres along a Grothendieck
fibration is a weak equivalence 0

4.5 Corollary Let A be an acyclic category. Then A*(EAxA) 9 EA.

Proof. Let 8: X -&#x3E; Y E EAxA· There is a commutative diagram

where the horizontal maps are the natural maps considered previously. By assump-
tion tAxA(8) is a weak equivalence. By 4.4, both horizontal arrows are weak equiv-
alences. It follows from the saturation properties of the class of weak equivalences
that tA(A*0) is a weak equivalence 0

4.6 Corollary Let A be an acyclic category. If 0: X -&#x3E; Y is a pointwise weak
equivalence in (A°P x AOP, Sets), A*(9) E EA.

Proof. By 4.2, 0 E EAXA- Now apply 4.5 0

4.7 Proposition Let A be weakly contractible. If A*(EAxA) C EA, then A is

acyclic.

Proof. In virtue of the weak contractibility of A, A x A is also weakly contractible.
Let n1 : A x A -&#x3E; A (x2 : A x A -&#x3E; A) denote the projection on the first (second)
factor. Let X and Y E (A°P, Sets). It is readily verified that tAxA(n1* (X) x n*2(Y))
is naturally isomorphic to tA(X) x tA(Y). Let X = A(.,A) and Y = A(.,B) be
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representable presheaves. Then
previous remark,

and A x A is weakly contractible. By hypothesis, Z
1) E EA. Since 0* is a right adjoint, A* (1) is isomorphic to 1 and
1r;(A(.,B))) is isomorphic to

Hence A(-, A) x A(., B) -&#x3E; 1 E EA for all objects A and B of A. Consequently, by
3.5, A is acyclic provided it is weakly contractible 0

5 Homotopy colimits in (A’P, Sets) 
Let C be a (small) category. Let Rc : (C, (A°P, Sets)) -&#x3E; (AOP, Sets) denote the

5.1 Theorem Let A be a category of models. If 0: X -&#x3E; Y E (C, (A°P, Sets))
is a pointwise weak equivalence, i. e. 8C : X(C,.) -&#x3E; Y(C, -) E EA for every object
C E C, then RC(O) E EA.

Proof. It must be shown that i A(Rc(0)) is a weak equivalence in CAT. Consider
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the diagram:

By assumption, 0,0: X (C,.) -&#x3E; Y(C,.) E EA for every object C E C. By
definition, (cA)*(8) is a pointwise weak equivalence in (C, CAT). By the homotopy
invariance of the Grothendieck construction, this implies that (tA)*(8) f Cop is a
weak equivalence. By 4.1,

Consequently, ((tCop)*(8)) f A is a weak equivalence. As A is acyclic and HA
is a homotopy interval, the components of the counit E: tA o jA -&#x3E; 1 are weak

equivalences. This implies that the components of £* : (tA)- o (jA)* -&#x3E; 1 are point-
wise weak equivalences. By the homotopy invariance of the Grothendieck con-
struction, (£.((tCop)*(X))) f A and (£*((tCop)*(Y))) f A are weak equivalences.
By saturation, ((LA)- - ( jA)* o (tCop). (8)) f A is a weak equivalence. By 4.1,
tAXA((jA). 0 (tCop).(8)) is a weak equivalence. Since A is acyclic, 4.4 applies:
there are natural weak equivalences
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and

By saturation, Rc (8) is a weak equivalence 0

Assume for the remainder of this § that A is a category of models. By the
argument used to establish 5.1, the square

commutes up to natural weak equivalence. As Rc preserves weak equivalences, the
corresponding diagram of homotopy categories 

commutes up to natural isomorphism. As tA and jA induce adjoint equivalences

for every category C. For any diagram X E (C, CAT), C J X = (X f Cop )op .
Since, for any category A, Nerve(A) is weakly equivalent to Nerve(A°P), there is
a natural isomorphism in E- 1 CAT between C f X and X f C°P . By Thomason’s
theorem,there is an adjunction 

where 7rè is the functor induced by the unique map C -&#x3E; 1 : 7r* (B)(X) = B for all
categories B and diagrams X.Consequently, there is an adjunction E-1(. f Cop) -I

E-1 (1rê). It is readily verified that the following diagram commutes on the nose:
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Since A is a category of models, the vertical functors in (23) preserve weak equiv-
alences. Consequently, (23) descends to the derived categories:

The next lemma is required for the proof of the main result of this §.
5.2 Lemma Given diagrams

F

and

in CAT subject to the following conditions:

(1) L and G are quasi-inverse equivalences.
(2) M and H are quasi-inverse equivalences.
(3) K -l J.

(4) There is a natural isomorphism K o G =&#x3E; H o F.
(5) LoJ =NoM.
Then F is left adjoint to G 0

5.3 Theorem E-’(Rc) -l E- 1(n*c).
Proof. Apply 5.2 to (22) and (24) 0

The preceding theorem validates the identification

for any diagram X: C --&#x3E; (A op, Sets).
6 Properties of homotopy colimits

From the proof of 5.1, it is immediate that, if A is a category of models, A
commutes with hocolimc : there is a natural isomorpliism

in E-1 CAT. The next proposition establishes the analogous property of jA.
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6.1 Proposition Let A be a category of models. The following square

commutes up to natural weak equivalence.

Proof. Let X E (C, (A°p, Sets)). It has already been noted that there is a natural
weak equivalence

As ,. (X) is a weak equivalence, £* (X) f Cop is also. By composition, this yields a
weak equivalence 

As jA preserves weak equivalences, application of jA to the preceding map yields a
natural weak equivalence

As the components of the unit q: 1 -&#x3E; jpGp are weak equivalences, one obtains the
desired weak equivalence

Let F: C -&#x3E; D be a functor. For every X E (D, (A°P, Sets)) and A E A
there is a natural map G: tCopX(F(.), A) -&#x3E; tDopX(.,A) defined on objects by
(C,x) -&#x3E; (F(X), x).
6.2 Lemma G fits into a pullback diagram
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where the vertical arrows are the projections 0

6.3 Lemma Let F: C -&#x3E; D be a functor. If F has weakly contractible homotopy
fibres, i.e. D/F is weakly contractible for all objects D E D, then the induced functor
tCopX(F(.), A) -&#x3E; lDoPX(., A) is a weak equivalence for all objects A E A.

Proof. By assumption, Fop/D = D/F is weakly contractible for all objects D E
D. As tDopX(.,A) -&#x3E; D°P is a fibration and (28) is a pullback, G is a weak

equivalence 0

6.4 Proposition Let A be a category of models. Lei F : C - D be a ,functor with
weakly contractible homotopy fibres. Then the diagram

commuters up to natural weak equivalence.

Proof. By 6.3, there is a natural weak equivalence

in (A°P, CAT) for every diagram X E (D,(AOP,Sets)). Hence there is a pointwise
weak equivalence

in (A°P x A°P, Sets). By 4.6, since A is acyclic, A* carries pointwise weak equiva-
lences into EA. By definition,

and

This establishes the commutatvity of (29) up to natural weak equivalence D

In the special case that the indexing category C = A, the homotopy colimit
admits a simple description.



31

6.5 Proposition Let A be a category of models. Then for each presheaf

there is a natural weak equivalences A*(X) -&#x3E; hocolim A (X).

Proof. By 4.1 and the rernark following the proof of 5.1 ,there is a natural isomor-
phism tA hocolim A(X) -&#x3E; iAx A(X) in r:-1CAT. By 4.4, there is a natural weak
equivalence tAA*(X) -&#x3E; tAxA(X) 0

The next proposition concerns transport of homotopy colimits along certain functors
P: A -&#x3E; B between categories of models A and B. Let

be the functor induced by P : P*(X )(C,A) = X (C,P(A)). There is a natural map

defined on objects by (A E A, C E C, x E X (C, P(A))) l-&#x3E; (P(A), C, x). It is easily
verified that 

commutes. Consequently,

is a pullback for every X E (C, (B°P, Sets). For, by commutativity of (30),

and

is a pullback.
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6.6 Proposition Let P : A -&#x3E; B be a functor with weakly contractible homotopy
fibres. Assume that A and B are model categories. Then there is a natural weak

equivalence

Proof. Because (31) is a pullback, (tc.,). (X) f B - B is a fibration, and P is a
functor satisfying the hypotheses of Quillen’s Theorem A,

is a weak equivalence. By the argument that established 5.1, there are natural weak
equivalences 

and

7 Homotopy colimits and coends
The homotopy colimit of a diagram X : C -&#x3E; (A°p, Sets) can be described as a

coend:

The purpose of the present § is to establish this identity. Let A E A,C E C, and
X : C - (A op, Sets).For each object (F, x) of

define

on objects by

Extending to maps in the obvious way defines a functor o-(C,A)(F)(x). By definition,
o-(C,A)(F)(x) E hocolimc(X)(A).
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7.1 Lemma ForeachCEC and f: A -&#x3E; B E A,

commutes. In other words,

is natural in A E A 0

7.2 Lemma Let g : C -&#x3E; D E C. Then

commutes for every A E A D

For C E C, let aC : jA(./C)op x X(C,.) -&#x3E; fc jA(./C)op x X denote the canonical
map. As a consequence of 7.1, 7.2, and the universal property of the coend

there is a unique map o-: such that

commutes for every C E C.

7.3 Theorem (uc lCE C} is a universal dinatural transformation, i.e.

hocolimcX

has the universal property of the coend



34

Proof. The proof is a (lengthy) verification of the universal property. Details can
be found in [3] 0

Consequently, hocolimc(X) admits two descriptions:

The first description of hocolimc is more amenable to direct calculation. This was
illustrated in the previous § when, e.g., the connection between hocolimc and the
diagonal functor A* was described. The second description also has its uses. For

example,it is better adapted to theoretical investigations. By way of illustration,
the adjunction

E-1 hocolimc -l E-17n*C
will be rederived using the second description of hocolimc. For objects X and Y
of (A°P, Sets),let HOM (X, Y) denote the internal hom-functor in (A°P, Sets) :

The functor

is left adjoint to HOM(jA(./C)op,.).
7.4 Proposition Let A be a category of models. Then, for each C E C and X E
(A°P, Sets) there is a natural weak equivalence

Proof. It will be shown that there is a map

which is the dual of a strong deformation retract with respect to QA. Hence

HOM(jA(C/C)op,X)-&#x3E;, X E EA. For each C E C,the comma category (C/C)°P
has a terminal object (idC : C -&#x3E; C). Consequently, there is a homotopy
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such that

commutes (1 -&#x3E; (C/C)°P picks out the terminal object). Since jA is a right adjoint,
application of jA to (36) gives a homotopy

with respect to QA = jA(2). Apply HOM(., X) to this diagram giving

and

Since the composite 1 -&#x3E; jA(C/C)°P - 1 is evidently the identity, by functoriality,

is also the identity. Let

correspond to HOM (H, X) via the adjunction

Using the natural isomorphisms
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and

it is readily verified that

and

commute

7.5 Corollary Let A be a category of models. Then

Proof. By 7.4, there is a pointwise weak equivalence

in (C, (A°p, Sets)). Thus HOM(jA(./C)op,.) preserves weak equivalences and
there is a natural isomorphism in E-1 (A°P, Sets),
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