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CAHIERS DE TOPOLOGIE VOL. XXXIV-1 (1993)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

HOMOTOPY COLIMITS IN PRESHEAF CATEGORIES
by Murray HEGGIE

RESUME. On construit des colimites homotopiques dans les
catégories de préfaisceaux, dont la théorie d'homotopie est
équivalente a la théorie d'homotopie de la catégorie des ca-
tégories.

1 Introduction

In an unpublished but widely circulated manuscript, Grothendieck proposes to
base homotopy theory on CAT, the category of (small) categories [2]. He initiates
this program by proving a theorem that equates the homotopy category of certain
presheaf categories (A°P,Sets) and the homotopy category of CAT. This paper
describes the construction of homotopy colimits in the afore-mentioned presheaf
categories and compares these to homotopy colimits in CAT .

Before giving a more detailed account of the contents of this paper, some funda-
mental notions for the homotopy theory of categories will be briefly recalled. The
first is that of a Grothendieck fibration [1]. Let F : C — D be a functor and let
D be an object.of D. The comma category D/F is the category with objects all
pairs (C, f) where C € C and f : D — F(C) € D. A map from one object (C, f)
to another (Cl,f') consists of amap g: C —» C € C satisfying f' = F(g) o f. Let
F~1(D) denote the fibre of F over D € D. Evidently, there is an inclusion

¢:F"Y(D) = D/F.

If ¢ has a right adjoint, left inverse for every object D € D, F is called a Grothendieck
fibration.

Let Y : C°? — CAT be a contravariant CA7 -valued diagram on C. There is a
fibration

T:Y[CoC

where the domain category Y [ C is defined as follows: Objects of Y [ C are pairs
(C,y) where C € C and y € Y(C). A map (C,y) — (C',y) isapair (c:C - C' €
C,g:y— Y(c)(y')). Y [ C is known variously as the fibred category associated to
Y or the Grothendieck construction of Y.

A functor F : A — B is called a weak equivalence if its image Nerve(F) under
the functor

Nerve : CAT — S§S
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is a weak equivalence of simplicial sets, i.e. induces an isomorphism between the
homotopy groups of Nerve(A) and Nerve(B). The class of weak equivalences has
several saturation properties:
(1) Isomorphisms are weak equivalences.
(2) The composite of two weak equivalences is a weak equivalence.
(3) If GoF = H and any two of F,G, or H are weak equivalences, then the
remaining map is also a weak equivalence.
(4) If P is a split epimorphism with section S and the composite S o P is
homotopic to the identity then P and S are weak equivalences.
A category A is called weakly contractible if the unique map A — 1 to the termi-
nal category 1 is a weak equivalence. Weak equivalences in the functor category
(A,CAT) are defined pointwise: A natural transformation § : X = Y is a weak
equivalence if 8(A) : X(A) = Y (A) is a weak equivalence in CAT for all A € A.
Let F: A — B and G : B — A be functors and let # : F = G be a natural
transformation. Let 2 denote the category

0—1
with two objects and one non-identity arrow. 6 determines a map
§:Ax2—B
by the prescription
fa: A— A0 > 1) =G(a) 0 0(A)
=0(A’) o F(a).

Since Nerve(2) = A[l], the simplicial interval, and Nerve preserves finite limits,
Nerve(f) is a homotopy between Nerve(F) and Nerve(G). It follows that if

F41G:A—-B
are adjoints, A and B are homotopy equivalent. For the adjunctions
n:ida = GoF

and
e:FoG = 1idp

map to homotopy inverses via Nerve.
If the category A has a terminal object 1, then the identity id, is homotopic to
the composite
A—-1<A
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of the unique map to the terminal category followed by the inclusion of the terminal
object in A. The homotopy is the map whose value at A € A is the unique map
A — 1. Similarly, if A has an initial object, A is weakly contractible.

The Grothendieck construction,X [ C, has already been described. The property
of X [ C that is crucial to the sequel is Thomason’s observation that, for CAT-
based homotopy theory,

X/C = hocolimg,

the homotopy colimit of C [6]. In more detail, let Z~'CAT denote the category of
fractions of CAT with respect to the class of weak equivalences and let ©~1(C,CAT)
denote the category of fractions of (C,CAT) with respect to the class of point-wise
"~ weak equivalences. Let
7c:C—1

denote the unique functor to the terminal category and let
me: CAT — (C,CAT)

denote the functor induced by 7c. It is evident that ¢ preserves weak equivalences
and therefore
Llrg i TTICAT — £7Y(C,CAT)

exists. Frequent reference will be made to the following fundamental result:

1.1 Theorem (Thomason’s Theorem) The Grothendieck construction preserves
weak equivalences and therefore

2-1(.)/0: £7Y(C,CAT) - £71CAT
ezists. Moreover, there is an adjunction

2-1(.)/0 4T,

Proof. [6] O
A second cornerstone of CA7-based homotopy theory is Quillen’s Theorem A

[5]:

1.2 Theorem LetF: A — B be a functor. Suppose that F'/ B is weakly contractible
for all objects B € B. Then F is a weak equivalence. O

The property of fibrations enunciated in the lemma which follows will play a key
role in the proof of many of the results contained in this paper.
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1.3 Lemma Let

c - .c
p'l Fi (1)
D' -—G—-> D

be a pullback in CAT. Suppose that G is a fibration and that, for all D € D, F/D
is weakly contractible. Then F' is a weak equivalence.

Proof. For every object D' € D’ there are functors
H:F'/D' - F/G'(D)
and
K:F/G'(D') - F' /D

such that
HoK=id and HAK.

In particular, H is a homotopy equivalence. Therefore, F/ /D’ is weakly contractible
for all objects D’ € D’. By Quillen’s Theorem A, F’ is a weak equivalence. Addi-
tional details can be found in (3] O

For any category A, there is a canonical functor
ta: (AP, Sets) — CAT

Grothendieck proposes to relate the homotopy theory of (A°P, Sets) to the homotopy
theory of CAT via ta. His main result gives sufficient conditions for ¢ta to induce
an equivalence of homotopy theories. This result is recapitulated in §2. In §3, a
class of categories meeting the conditions of Grothendieck’s theorem is introduced.
Properties of categories belonging to this class are explored in §3 and §4. Let A be
a category belonging to the class. Let

X:C — (A°P, Sets)
be a diagram. The homotopy colimit of X,
hocolimc X € (A°P, Sets),
is constructed in §5. Various properties of the homotopy colimit are described in
§6 and §7.

It should be noted that the theory sketched by Grothendieck applies to the
standard example, viz. (A°P, Sets), the category of simplicial sets.
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2 Grothendieck’s theorem
Let A denote a (small) category and let A/-: A — CAT denote the functor
which assigns the comma category A /A to each object A € A.

2.1 Definition t4: (A°P,Sets) — CAT is the left Kan extension of A/- along the
Yoneda embedding A — (A°P, Sets).

For X € (A°P,Sets),ta(X) is the category whose objects are all pairs {(4,z) |
A€ Aandz € X(A)}. A map (A,z) — (B,y) from one object to another is a
map f: A — B such that X(f)(y) = z. ta(X) is variously known as the diagram
of X, the calegory of elements of X, or the fibred category associated to X. 14 is
left adjoint to the functor

CAT(A/-,-): CAT — (AP, Sets).

Let ja denote this functor. It will be useful in the sequel to have an explicit
description of the counit ¢ of the adjunction ¢tpo 4 ja. To this end, let C be a
category and let (A,F: A/A — C) be an object of 1o 0 jo(C). Then ec(4,F) =
F(ids: A — A) = idp(4).The extension to maps is immediate.

2.2 Lemma The forgetful functor 1o(X) — A is a (Grothendieck) fibration with
discrele fibres O

2.3 Definition [2] A map 6: X — Y in (A°P,Sets) is a weak equivalence if the
functor ¢4 () is a weak equivalence in CAT . The collection of weak equivalences in
(A°P, Sets) will be denoted £ 4.

Y A inherits closure properties from the class of weak equivalences in CAT:
(1) Isomorphisms belong to £ 4.
(2) If 6 and ¢ are a composable pair of maps and any two of 8,1, or 1 o 0 are
in XA, so is the third.
(3) If pis a split epimorphism with section o and the composite cop € X5 ,then
pEZXa.

2.4 Definition Let I € (A°P,Sets) have two disjoint global sections: §5: 1 — T
and 6;: 1 > I. Amap p: Y — X € (A°P,sets) is the dual of a deformation retract
with respect to I if

(1) phasasectiono: X —»Y : poo =idy.

(2) Thereis amap H:Y x I — Y such that (2) commutes:

idx 6o idx 8,
Y — Y xI ——Y

A ®

o id
X Y Y.

This definition is motivated by considerations from axiomatic homotopy theory.
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2.5 Definition [2] An object I which has two disjoint global sections, 5: 1 — I
and 8;: 1 — I, is called a homotopy interval if duals of deformation retracts with
respect to I belong to 4.

2.6 Theorem (Grothendieck’s Theorem) Lel A be a weakly contractible category.
Assume that (A°P, Sels) contains a homolopy interval. Then the funclors 1o and
ja tnduce adjoint equivalences:

T lia 457 ja: BT (AP, Sets) — TICAT.

Proof. [2] O
3 Categories of models

3.1 Definition [2] A category A is acyclic if the diagonal functor has weakly con-
tractible homotopy fibres, i.e., the pullback

AJ(A,B) —— A

1 s 2

A x A/(A,B) AxA

is weakly contractible for all pairs (A, B) € A x A.

3.2 Proposition A is an acyclic category if and only if the projection g : A(-, A)x
A(:,B) = A(:,B) € T4 for all objects A and B of B.

Proof. Assume that 7g € £4. By definition, 1o (7g) is a weak equivalence in CAT.
But ¢ta (A(-, A)x A(-, B)) = A/(A, B), the homotopy fibre of A over (4, B) € AxA,
and ta(7B) = A/(A,B) — A/B, the evident functor. Since A/B is contractible,
A/(A, B) is weakly contractiblei.e., A is acyclic. By running this argument in
reverse, one obtains a proof of the converse O

3.3 Proposition An acyclic category is weakly contractible.

Proof. Let A be an acylic category. The diagonal functor A induces isomorphisms
mo(Nerve(A)) — mo(Nerve(A)) x mo(Nerve(A))

and
mn(Nerve(A),A) — m,(Nerve(A), A) x m,(Nerve(A), A)

for all choicesof A€ A. O

Acyclicity of A imposes additional requirements on the collection 4.
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3.4 Proposition Assume that A is an acyclic category. Then Ox60' € A whenever
0 eEXs and @' € X4

Proof. Let 8: X — Y and #': X’ — Y’ be maps in 5. By definition, ¢4 (6) and
ta(6’) are weak equivalences in CAT. In virtue of the saturation properties of the
collection of weak equivalences in CAT, 1A () x ta(¢') is a weak equivalence. For
any two objects X and X' of (A°P,Sets), there is a natural map

F:ia(X x X') = a(X) x ta(X)
defined on objects by (A,(z,z’)) — ((A,z),(A,z')). By inspection,F fits into a
pullback diagram
F
LA(X X XI) — LA(X) X LA(X’)

| 1 g

A
A _— AxA

where the vertical arrows are the forgetful functors. By 2.2, the rightmost vertical
arrow is a fibration. Since A satisfies the hypotheses of Quillen’s Theorem A, F is
a weak equivalence. Given two maps 6: X — Y and ¢': X' — Y’, construct the
commuting square

ta(X x X') —— a(X) x ta(X")
lu(exow lmw)m(e') (5)
tA(Y xY') —— 1a(Y) x ea(Y).
Since ta() x ta(0') is a weak equivalence and both horizontal arrows are weak
equivalences, t5 (8 x 8') is also a weak equivalence O
The preceding proposition has a partial converse:

3.5 Proposition Let A be a weakly contractible category. Assume that @ x 0’ € T
whenever 8 and 8’ are in $a. Then A is acyclic.

Proof. Let 1 denote the terminal object of (A°P,Sets). Note that t5(1) = A.Let
A be an object of A. tao(A(,A)) = A/A. Since A is weakly contractible and
A/A is contractible, the forgetful map A/A — A = (o(A(-,4) — 1) is a weak
equivalence. By definition, A(-,A) — 1 € 4. Consequently, for each B € A,
A(-,A) x A(-,B) = 1 x A(-, B) € £a. But this map is isomorphic to mg. By 3.2,
A is acyclic O

Let Q4 denote the subobject classifier in (A°P, Sets).
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3.6 Proposition Let A be an acyclic category. Then 1po and jo induce adjoint
equivalences
T la 427 A

if and only if QA is a homotopy interval.

Proof. One direction is immediate from Grothendieck’s Theorem. To prove the
converse, let 2 € CAT denote the category with two objects, 0 and 1, and one non—
identity arrow 0 — 1. By assumption, ja preserves weak equivalences. Since 2 — 1
is a weak equivalence in CAT, ja(2) = 1 € ZA. But ja(2) = Qa. Let §p: 1 — Q4
denote the classifying map for 0 — 1 and let 6,: 1 — Q4 denote the classifying
map for 1 — 1. Then 8y and 6, are disjoint global sections. As 254 — 1 € ¥4 and

LA
1 —— Qa

| g

1] — 1

commutes for i = 0,1, §; € X5 for i = 0,1. Let X € (A°P,Sets). As A is
acyclic,id X 6;: X — X x Qo € ¥a by 3.4.To finish the argument that Q, is a
homotopy interval, let p: Y — X be a map that has a section c: X — Y. Let H
be a homotopy between idy and o o p:

idx 6o idxé,
——— QA XY —— Y

/| ul ol g

o id
X —— Y Y.

By the closure properties of X5, H € £ 5. By the same reasoning, cop € £o. The
closure properties of Xz imply that p € Xo O

3.7 Definition A category A is a calegory of models if

(1) A is acyclic.
(2) Qa is a homotopy interval.

A substantial portion of the homotopy theory of spaces can be instantiated in
(A°P,Sets) if A is a category of models. The propositions which follow provide
partial support for this claim. Further details can be found in [3].

3.8 Proposition Assume that A is a calegory of models. Let p: Y — X be a
map in (A°P, Sets). Suppose that p has the right lifting property with respect to all
monomorphisms: there is a lifting h: X' — Y in all commuting diagrams of the
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form

i | ®)

X — . x

where i: Y' — X' is a monomorphism. Then p is the dual of a deformation retract
with respect to S2a.

Proof. Let 0 denote the initial object of (A°P,Sets). The unique map 0 — X is a
monomorphism. By assumption, there is a lifting s: X —= Y in

0 — Y

|l ®

id
X — Y.

Let Y +Y denote the coproduct of Y with itself and let §o+6;: Y +Y =Y x Qa
be the map which agrees with 6y on the first summand of the coproduct and with
6, on the second. Similarly, let sop+idy: Y +Y — Y be the map which coincides
with s o p on the first summand and with idy on the second. Let 7y : Y x Qo — Y
denote the projection. Then there is a lifting H: Y x Q4 — Y in

Y4y sop+idy

5o+61l pl (10)

Y x Q4 —Y, x

as 8 + 8, is a monomorphism. H exhibits p as the dual of a deformation retract
with respect to Q4 0O

3.8 Corollary Let f: Y — X be a map in (A°P,Sets). Then f can be factored in
the form f = poi where p ts the dual of a deformation retract with respect to Qa
and 1 1s a monomorphism.

Proof. As the comma category
(A°P,Sets)/ X

is a topos, it has enough injectives. Embed fin an injective object of (A°P, Sets)/X:

Yy — .y

/] "l (11)

id
X N X.
By virtue of the definition of injectivity, p has the right lifting property with respect
to all monomorphisms. By 3.8, p is the dual of a deformation retract 0O
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3.9 Corollary Let p: Y — X be a map which has the right lifting property with
respecl to monomorphisms which are in £5. Assume in addilion thal p € 4.
Then p is the dual of a deformation retract with respect to Q4.

Proof. As before, embed p in an injective object of the topos
(A°P, Sets)/ X:

Yy — .y
¢| v (12)
X 2 x

Asbothpandp’ arein X4, i € ¥4 also. By assumption, there is a liftingr: Y/ - Y
in

id
Y Y
.i ”1 (13)
y 2 x.

But then p is the retract of a map which has the right lifting property with respect
to all monomorphisms. It is easily verified that p must have the same property 0O

3.10 Proposition Suppose that f: Y — X has the left lifting property with respect
to all duals of deformation retracts: there is a lifting in every commutative square
of the form

Yy — .y
/] | (14)
X —— x

where p is the dual of a deformation retract with respect to Qa. Then f is a
monomorphism.

Proof. By 3.8, the unique map Y — 1 can be factored in the form poi: Y —
Y’ — 1 where 7 is a monomorphism and p is the dual of a deformation retract. By
assumption, there is a lifting g: X — Y’ in

y ',y

jl pl (15)

X — 1

As i = go f is a monomorphism, f is a monomorphism O
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Therefore, monomorphisms are characterized by the left lifting property with
respect to duals of deformation retracts and duals of deformation retracts are char-
acterized by the right lifting property with respect to monomorphisms. In the
axiomatic development of homotopy theory in (A°P,Sets) using Quillen’s notion of
a model category structure [4], cofibrations are monomorphisms and acyclic fibra-
tions are duals of deformation retracts with respect to Q4. This line of thought is
pursued in [3].

4 Auxiliary results on acyclic categories
The results of this § are needed for the construction of homotopy colimits in
(A°F, Sets) in case A is a category of models.

4.1 Lemma Let ta.: (B°P x AP, Sets) — (B°P,CAT) be the functor on diagrams
induced by ta : tax(X)(B) = ta(X(B,)) for B € B. The the following diagram
commutes:

(BOP x AP Sets) —— (B%,CAT)

‘Axnl (-)fBl (16)

id
CAT < .cAT O

4.2Lemma Let §: X — Y be a pointwise weak equivalence in the category of
B-indezed diagrams

(B°P, (AP, Sets)),

i.e. 0g: X(B,:) = Y(B,) € LA for each B € B. Then, making the identification
of
(B°P, (A°P, Sets))

with
(B°P x A°P, Sets)

it follows that 8 € Lpxa -

Proof. By assumption, ¢t5(fg) is a weak equivalence in CAT for all B € B. By the
homotopy invariance of the Grothendieck construction, this implies that

((a)-0) [ B

is a weak equivalence. But, by 4.1, ((ta)+0) [ B = tpxa(f) O
Let X € (A° x A°P, Sets). Let

A*: (AP x A°P Sets) — (AP, Sets)

- 23 -
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be the functor induced by the diagonal A: A — A x A. For each X € (A°P x
A°P Sets) there is a natural map F: tA(A*X) — taxa(X) defined on objects by
(A, z) — ((A, A),z). Evidently,

F
LA(A"X) — LAxA(X)

1 1 "
A
A — AXA
commutes.
4.3 Lemma (17) is a pullback O

4.4 Proposition Let A be an acyclic calegory. For all X € (A°P x A°P, Sels), the
map F: ta(A*X) — taxa(X) is a weak equivalence.

Proof. The pullback of a map with homotopically trivial fibres along a Grothendieck
fibration is a weak equivalence 0O

4.5 Corollary Let A be an acyclic category. Then A*(Laxa) C Za.

Proof. Let #: X =Y € Eaxa. There is a commutative diagram

LA(A'X) —_— LAXA(X)
LA(A'G)I ‘AxA(o)l (18)
LA(A‘Y) —_— LAXA(Y)

where the horizontal maps are the natural maps considered previously. By assump-
tion ¢tp xA (0) is a weak equivalence. By 4.4, both horizontal arrows are weak equiv-
alences. It follows from the saturation properties of the class of weak equivalences
that t5(A*8) is a weak equivalence 0O

4.6 Corollary Let A be an acyclic category. If : X — Y 1is a pointwise weak
equivalence in (AP x A°P, Sels), A*(0) € Za.

Proof. By 4.2,0 € Saxa. Now apply 4.5 O

4.7 Proposition Let A be weakly contractible. If A*(Xaxa) C Xa, then A is
acyclic.

Proof. In virtue of the weak contractibility of A, A x A is also weakly contractible.
Let m1: A X A — A(m: A x A — A) denote the projection on the first (second)
factor. Let X and Y € (A°P,Sets). It is readily verified that taxa (7} (X) x 73(Y))
is naturally isomorphic to ¢t (X) x ta(Y). Let X = A(-,A) and Y = A(-,B) be
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representable presheaves. Then 7 (A(-, A)) X 73 (A(+,B)) = 1 € Eaxa.For, by the
previous remark, taxa (7} (A(-, A)) x 73(A(-, B)) — 1) is isomorphic to

ta(A(-,A)) X ta(A(B) >AxA)=A/AxA/B—>AxA

and A x A is weakly contractible. By hypothesis, A*(7}(A(-, A)) x 73(A(-, B)) —
1) € Ta. Since A* is a right adjoint, A*(1) is isomorphic to 1 and A*(x}(A(-, A)) x
75(A(+, B))) is isomorphic to

A (m1(A(-A))) x A (r3(A(, B))) = A(, A) x A(;, B).

Hence A(-,A) x A(-,B) — 1 € X4 for all objects A and B of A. Consequently, by
3.5, A is acyclic provided it is weakly contractible 0O

5 Homotopy colimits in (A°P, Sets)

Let C be a (small) category. Let Rc: (C, (AP, Sets)) — (A°P, Sets) denote the
composite A* 0 (jA)« 0 (tcor)s:

(C, (A%, Sets)) —2  (A°P,Sets)
(LCOp).l A’T (19)

(A%, CAT) 222, (Ao x AP, Sets).

5.1 Theorem Let A be a category of models. If 0: X — Y € (C,(A°P, Sets))
is a poinlwise weak equivalence, i.e. 0¢c: X(C,) — Y(C,-) € Ta for every object
C € C, then Rc(0) € Ta.

Proof. It must be shown that t5 (Rc(6)) is a weak equivalence in CA7T. Consider
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the diagram:

.y Rc(8) s
tAA*(Ga)s(tcor) X — taA*(Ga)u(tcor )Y
tAxA(GA)s(tcer)e X — taxA(JAa)(tcor )Y

! !

(ta)e(Ga)s(teer)s X) A ——  (a)s(jA)s(tcer).Y) [A

“| “| (20)

(Lcop).g f A

(LCOP).XfA (LCOP).XIA
taxcepl
taxceor X — taAxcerY

I I

(ta).8 f C°P
(LA)...XfCOP z f (LA),.YfCOP.

By assumption, 0¢c: X(C,:) — Y(C,) € L, for every object C € C. By
definition, (¢a).(f) is a pointwise weak equivalence in (C,CAT). By the homotopy
invariance of the Grothendieck construction, this implies that (1a).(6) [ C°P is a
weak equivalence. By 4.1,

((0)-0) [ € = (taxcer)(®)
= ((iem)-() [ A

Consequently, ((¢cor)«(f)) [ A is a weak equivalence. As A is acyclic and Qg
is a homotopy interval, the components of the counit €: tp o jo — 1 are weak
equivalences. This implies that the components of €, : (ta)« © (ja )« — 1 are point-
wise weak equivalences. By the homotopy invariance of the Grothendieck con-
struction, (€.((tcop)s(X))) [ A and (e+((tcop)«(Y))) [ A are weak equivalences.
By saturation, ((¢ta)s © (ja)s © (tcop)«(f)) [ A is a weak equivalence. By 4.1,
taxA((Fa)« o (tcor)s(8)) is a weak equivalence. Since A is acyclic, 4.4 applies:
there are natural weak equivalences

tA 0 A*((JAa)w 0 (tcor)a(X) — taxa((Fa)s 0 (tcor)u(X))

- 26 ~



HEGGIE — HOMOTOPY COLIMITS IN PRESHEAF CATEGORIES

and
LA © A‘((jA)* o (Lcap)*(y) e d LAXA((jA)* o (l’Otacop)*(Y)).
By saturation,Rc(6) is a weak equivalence 5
Assume for the remainder of this § that A is a category of models. By the
argument used to establish 5.1, the square

(C, (A, Sets)) —<—s (A%P,Sets)

(e | | (1)
(Jeer
(C,CAT) CAT
commutes up to natural weak equivalence. As R preserves weak equivalences, the
corresponding diagram of homotopy categories .
£-IR.
-1(C, (A%, Sets)) —— E-1(AP)
2-1(4,\).1 z—n,\l (22)
nTi() fcer
£7Y(C,CAT) LICAT

commutes up to natural isomorphism. As t5 and ja induce adjoint equivalences
T lia 4Z7 s ZTY(AP, Sets) — TTICAT,
(ta)+ and (ja)« induce adjoint equivalences
E71(ta)s E71(A)w: Z7(C, (AP, Sets)) — E1(C, CAT)

for every category C. For any diagram X € (C,CAT), C [ X = (X [ CoP)°P.
Since, for any category A, Nerve(A) is weakly equivalent to Nerve(A°P), there is
a natural isomorphism in £7!CAT between C [ X and X [ C°P. By Thomason’s
theorem,there is an adjunction ‘

2-1(0/-) 4 B1(n8): (C,CAT) — CAT

where 7 is the functor induced by the unique map C — 1 : 7g&(B)(X) = B for all
categories B and diagrams X.Consequently, there is an adjunction £=1(- [ C°P) A
T1(ng). It is readily verified that the following diagram commutes on the nose:

.
Tc

(C, (A°P,Sets)) «——— (A°P, Sets)
(J‘A)-T jAI (23)

rC*

(C°P,CAT) «——— CAT.
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Since A is a category of models, the vertical functors in (23) preserve weak equiv-
alences. Consequently, (23) descends to the derived categories:

-1_

T1(C, (A°P, Sets)) — T1(A°P, Sets)
E-‘(jA).T z-m[ (24)

T-lrC*
L-1(C%P,CAT) ———— T-ICAT.
The next lemma is required for the proof of the main result of this §.

5.2 Lemma Given diagrams
F
A—— B

Gl Hl (25)

and
A" _B
LT MT (26)
3

C——D
in CAT subject to the following conditions:

(1) L and G are quasi-inverse equivalences.

(2) M and H are quasi-inverse equivalences.

(3) K4J.

(4) There is a natural isomorphism Ko G = HoF.
(6) LoJ=NoM.

Then F 1is left adjoint to G O

5.3 Theorem E£~!(Rc¢) - Z-1(ng).
Proof. Apply 5.2 to (22) and (24) O
The preceding theorem validates the identification
Rc(X) = hocolime(X)
for any diagram X : C — (A°P, Sets).

6 Properties of homotopy colimits
From the proof of 5.1, it is immediate that, if A is a category of models, ¢
commutes with hocolime: there is a natural isomorphism

ta(hocolime (X)) — ((1a)+(X)) / cop

in £7'CAT. The next proposition establishes the analogous property of ja.
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6.1 Proposition Let A be a category of models. The following square

(e

CAT
(ia)e in| (27)
hocolimg

(C, (A°P, Sets)) ———— (A°P, Sets)

commaules up to natural weak equivalence.

Proof. Let X € (C,(A°P,Sets)). It has already been noted that there is a natural
weak equivalence

tahocolime(ja)e(X) = (t4)s(ja)u(X) / cer.

As €.(X) is a weak equivalence, £,(X) [ C°P is also. By composition, this yields a
weak equivalence

tahocolimg(ja)e (X) — X/C°p.

As ja preserves weak equivalences, application of j5 to the preceding map yields a
natural weak equivalence

jatabocolima(ia)e(X) — ja(X / CcoP).

As the components of the unit 77: 1 — jata are weak equivalences, one obtains the
desired weak equivalence

hOCOlimc(jA).(X) —-PjA(X/COP) O

Let F: C — D be a functor. For every X € (D,(A°,Sets)) and A € A
there is a natural map G: tcor X(F(:), A) — tperX(:,A) defined on objects by
(C,z) — (F(X),z).

6.2 Lemma G fits into a pullback diagram

o (X(E(), A)) —— tcan(X(, A))

1 1 e

F°P
cor —— D
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where the vertical arrows are the projections 0O

6.3Lemma Let F: C — D be a functor. If F has weakly contractible homotopy
fibres, i.e. D/F is weakly coniractible for all objects D € D, then the induced functor
tcor X (F (), A) = tper X (-, A) is a weak equivalence for all objects A € A.

Proof. By assumption, F°P/D = D/F is weakly contractible for all objects D €
D. As tperX(-,A) — D°P is a fibration and (28) is a pullback, G is a weak
equivalence 0O

6.4 Proposition Let A be a category of models. Lel F: C — D be a funclor with
weakly contractible homotopy fibres. Then the diagram
P
(C,(A°P, Sets)) —— (D, (A°P, Sets))
hocolimcl hocoiimpl (29)
id
(A°P, Sets) = (A°P, Sets)
commutes up to natural weak equivalence.

Proof. By 6.3, there is a natural weak equivalence
(tcor )+ F*(X) — (tper)s (X)

in (A°P,CAT) for every diagram X € (D, (A°P,Sets)). Hence there is a pointwise
weak equivalence
(Ja)x(tcor)o F*(X) = (jA )+ (¢por)a (X)

in (A° x A°P Sets). By 4.6, since A is acyclic, A* carries pointwise weak equiva-
lences into X o . By definition,

hocolime = A*(ja )x(tcor )e

and
hocolimD =A* (jA),,(Lan),,..
This establishes the commutatvity of (29) up to natural weak equivalence O

In the special case that the indexing category C = A, the homotopy colimit
admits a simple description.
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6.5 Proposition Let A be a category of models. Then for each presheaf
X € (A°P x AP, Sets)

there is a natural weak equivalence A*(X) — hocolima (X).

Proof. By 4.1 and the remark following the proof of 5.1 ,there is a natural isomor-
phism tahocolima (X) — taxa(X) in E~!CAT. By 4.4, there is a natural weak
equivalence tp A*(X) — taxa(X) O

The next proposition concerns transport of homotopy colimits along certain functors
P: A — B between categories of models A and B. Let

P*: (C, (B°P,Sets)) — (C, (A°P, Sets))
be the functor induced by P :P*(X)(C, A) = X(C,P(A)). There is a natural map

(Lcnp)*P*x/Aq (Lcop)..X/B

defined on objects by (A € A,C € C,z € X(C,P(4))) — (P(A),C,z). It is easily
verified that

(C, (B°P, Sets)) —— (C, (A%, Sets))
(¢c°P)-l (tcop)e l (30)

-

(B®,CAT) —— (A%,CAT)

commutes. Consequently,

(LCOP)*P'XfA —_— (Lcap)*P*XfB

| | (31)
N _r, B

is a pullback for every X e‘(C, (B°P, Sets). For, by commutativity of (30),

(1e)-P*(X) [ A =P (1) (X)) [ A

and

P*((tcop).X)fA —_— (Lcop),,.X fB

l | (32)

A — A
is a pullback.
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6.6 Proposition Let P: A — B be a functor with weakly contractible homotopy
fibres. Assume that A and B are model categories. Then there is a natural weak
equivalence

ta(hocolimcP* (X)) — tp(hocolime(X)).

Proof. Because (31) is a pullback, (tcer)s(X) [ B — B is a fibration, and P is a
functor satisfying the hypotheses of Quillen’s Theorem A,

(tom)-P*(X) [ A= (cen)oX [ B

is a weak equivalence. By the argument that established 5.1, there are natural weak
equivalences

tahocolimcP* (X) — (Lcop),P*(X)/A
and

tphocolime(X) — (Lcop).X/B 0O

7 Homotopy colimits and coends
The homotopy colimit of a diagram X : C — (A°P,Sets) can be described as a
coend:

C
hocolime(X) = / Ja(/C)P x X
= ja(-/C)® ® X.

The purpose of the present § is to establish this identity. Let A € A,C € C, and
X: C — (A°P,Sets).For each object (F,z) of

Ja(C/C)°P(A) x X(C,A) = CAT(A/A,(C/C)°?) x X(C, A),

define
o(c,a)(F)(z): A/A = (1cor)(X)(A)

on objects by
(f : B— A) +— (codomain(F(f)), X (F(f),ida)(z)).

Extending to maps in the obvious way defines a functor o(¢ 4)(F)(z). By definition,
o(c,4)(F)(z) € hocolimc(X)(4).
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7.1 Lemma For each C € C and f: A— B € A,

7a(C/C)P(A) x X(C, A) ~Z2, hocolime X (A)
idxX(idc.f)T hocolich(j)T (33)
ia(C/C)P(B) x X(C, B) ~Z24 hocolime X (B)
commutes. In other words,
oc: JA(C/C)P(:) x X(C,+) — hocolimec X ()
is naturalin A€ A O
7.2Lemma Let g: C — D € C. Then

?(c,A)
Ja(C/C)°P(A) x X(C,A) —— hocolimc X (A)
iala/C)°P xidT "'(D,A)T (34)
idx X(g,id 4)

Ja(D/C)°P(A) x X(C,A) ——— ja(D/C)°P(A) x X(D, A)
commutes for every A€ A O

For C € C, let ac: ja(-/C)°P x X(C,-) — fc Ja(-/C)°P x X denote the canonical
map. As a consequence of 7.1, 7.2, and the universal property of the coend

c
/ JA(-/C)? x X,
there is a unique map o: fc JAa(-/C)° x X — hocolime(X) such that

fc Ja(-/C)°P x X — . hocolime X
acT idT (35)
Ja(-/C)°? x X(C,") ., hocolime X

commutes for every C € C.

7.3 Theorem {oc | C € C} is a universal dinatural transformation,i.e.
hocolimc X

has the universal property of the coend

c
/ JA(/C)P x X.
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Proof. The proof is a (lengthy) verification of the universal property. Details can
be found in [3] O

Consequently, hocolimc(X) admits two descriptions:
hocolimc X (A) = CAT(A/A, cor (X (-, A))
c
=/ ia(-/C) x X (-, A).

The first description of hocolime is more amenable to direct calculation. This was
illustrated in the previous § when, e.g., the connection between hocolimec and the
diagonal functor A* was described. The second description also has its uses. For
example,it is better adapted to theoretical investigations. By way of illustration,
the adjunction

Y~ hocolime H E'lvr&

will be rederived using the second description of hocolime. For objects X and Y
of (A°P,Sets),let HOM(X,Y) denote the internal hom-functor in (A°P, Sets) :

HOM(X,Y)(A) = (AP, Sets)(X x A(-, A),Y).

The functor
C
/ Ja(-/C)P x (-): (C, (AP, Sets) — (AP, Sets)

is left adjoint to HOM(ja(-/C)°P,").

7.4 Proposition Let A be a category of models. Then, for each C € C and X €
(A°P, Sets) ,there is a natural weak equivalence

HOM(ja(C/C)®P, X) — X.

Proof. 1t will be shown that there is a map
HOM(ja(C/C)°P, X) — X
which is the dual of a strong deformation retract with respect to Q4. Hence

HOM(Ga(C/C)P,X) — X € Ea. For each C € C,the comma category (C/C)°P
has a terminal object (id¢: C — C). Consequently, there is a homotopy

H: (C/C)® x 2 — (C/C)*®
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such that s s
KdXdg 1dX o,
(C/C)® —— (C/C)*P x 2 — (C/C)*®

idl | Hl l (36)
/e 2. (jopr —— 1

commutes (1 — (C/C)°P picks out the terminal object). Since ja is a right adjoint,
application of ja to (36) gives a homotopy

idxéo | idxs;,
Ja(C/C)P 2% A(C/C)® x Qa < ja(C/C)®

al u| | (37)

id
ja(C/C)® ——  ja(C/C)* —— 1
with respect to Qa4 = ja(2). Apply HOM(-, X) to this diagram giving

HOM(idx 60, X)

HOM(5a(C/C)°P, X) HOM(5A(C/C)°P x Qa, X)
idT ’HOM(H,X)T (38)

HOM((GA(C/C)°P, X) — HOM(Fa(C/C)°P, X)

and HOM(id x 63, X)
HOM(GA(C/C)°P x QA, X) ——————— HOM(Ga(C/C)°P, X)

‘HOM(H,X)T cT (39)

HOM(ia(C/C)°P, X) - HOM(1, X).
Since the composite 1 — jao(C/C)°P — 1 is evidently the identity, by functoriality,
poo: HOM(1,X) - HOM(ja(C/C)°?, X) - HOM(1, X)
is also the identity. Let
HOMH, X)~: HOM(ja(C/C)P,X) x Qo — HOM(ja(C/C)°P, X)
correspond to HOM(H, X) via the adjunction
HOM(Qa,-) - X Q4.

Using the natural isomorphisms

HOM(1,X) — X
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and
HOM(@GA(C/C)P x Qa, X) > HOM(Qa, HOM(ja(C/C)°P, X)),
it is readily verified that

HOM(ja(C/C)?, X) ——  HOM(ja(C/C)™, X)

idI ‘HOM(H,X)"‘T (40)
HOM(ia(C/CYP, X) 52 HOM(ja(C/C)P, X) x Qa
and Y
HOM(ja(C/C)P, X) —_— X
’HOM(H,X)“I PT (41)

idxé,
HOM(ja(C/C)P, X) x Qa e HOM(ja(C/C)°, X)
commute O

7.5 Corollary Let A be a category of models. Then

C
z-‘/ Ja(-/C)°P x X 4 £7 ng.

Proof. By 7.4, there is a pointwise weak equivalence
HOM(ja(-/C)*, X) — ng(X)

in (C,(A°P,Sets)). Thus HOM(ja(-/C)°P,-) preserves weak equivalences and
there is a natural isomorphism in £~1(A°P, Sets),

S YHOM(GA(-/C)P, ) =2~ rg O
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